
Prof. S.G.Gollagi

Chapter 1:

1

System Software vs. Machine
Architecture

 Machine dependent
 The most important characteristic in which most system software

differ from application software
 e.g. assembler translate mnemonic instructions into machine code
 e.g. compilers must generate machine language code
 Machine architecture differs in:
 Machine code
 Instruction formats
 Addressing mode
 Registers

 Machine independent
 There are aspects of system software that do not directly depend upon

the type of computing system
 e.g. general design and logic of an assembler
 e.g. code optimization techniques

2

System Software and
Architecture

 System software will be discussed:
 The basic functions

 Machine-dependent functions

 Machine-independent functions

 Design options (single-pass vs. multi-pass)

3

The Simplified Instructional Computer
(SIC)

 SIC is a hypothetical computer that includes the hardware
features most often found on real machines.

 Why the simplified instructional computer
 To avoid various unique features and idiosyncrasies of a particular

machine.

 To focus on central, fundamental, and commonly encountered
features and concepts.

 Two versions of SIC
 standard model (SIC)

 extension version (SIC/XE)

 Upward compatible
 Programs for SIC can run on SIC/XE

4

SIC Machine Architecture
 Memory
 215 (32,768) bytes in the computer memory

 3 consecutive bytes form a word

 8-bit bytes

 Registers

5

SIC Machine Architecture
 Data Formats
 Integers are stored as 24-bit binary numbers; 2’s complement

representation is used for negative values

 8-bit character support.

 No floating-point hardware

 Instruction Formats

 Addressing Modes

6

x: indicate indexed-addressing mode

() are used to indicate the content of a register.

SIC Machine Architecture

 Instruction Set
 load and store: LDA, LDX, STA, STX, etc.

 integer arithmetic operations: ADD, SUB, MUL, DIV, etc.

 All arithmetic operations involve register A and a word in
memory, with the result being left in the register

 comparison: COMP

 COMP compares the value in register A with a word in memory,
this instruction sets a condition code CC to indicate the result

7

SIC Machine Architecture

 Instruction Set
 conditional jump instructions: JLT, JEQ, JGT

 these instructions test the setting of CC and jump accordingly

 subroutine linkage: JSUB, RSUB

 JSUB jumps to the subroutine, placing the return address in
register L

 RSUB returns by jumping to the address contained in register L

8

SIC Machine Architecture

 Input and Output
 Input and output are performed by transferring 1 byte at a time to

or from the rightmost 8 bits of register A

 The Test Device (TD) instruction tests whether the addressed
device is ready to send or receive a byte of data

 Read Data (RD)

 Write Data (WD)

9

SIC Programming Examples

10

Ex. Data movement

11

Assembler

directives for

defining storage

Address labels

-- Arithmetic operation

BETA=ALPHA+INCR-ONE

DELTA=GAMMA+INCR-ONE

12

All arithmetic operations are performed

using register A, with the result being left

in register A.

-- Looping and indexing

13

SIC Programming Example
-- Looping and indexing (Fig. 1.5)

 Arithmetic

 Arithmetic operations are performed using register A,
with the result being left in register A

 Looping (TIX)
 (X)=(X)+1

 compare with operand

 set CC

GAMMA[I]=ALPHA[I]+BETA[I]

I=0 to 100
14

SIC/XE Machine Architecture

 Memory
 220 bytes in the computer memory

 More Registers

15

SIC/XE Machine Architecture

 Data Formats
 Floating-point data type: frac*2(exp-1024)

 frac: 0~1

 exp: 0~2047

16

For normalized floating-point numbers,
the high-order bit must be 1.

SIC/XE Machine Architecture
(3)

 Instruction formats

No memory
reference

Relative
addressing

Extended
address field

for target address calculation

SIC

e=0

e=117

SIC/XE Machine Architecture

 Addressing modes:
 two new relative addressing for format 3

 Direct addressing for formats 3 and 4 if b=p=0

 Indexed addressing can be combined if x=1:

 the term (x) should be added

18

SIC/XE Machine Architecture

 Bits x,b,p,e: how to calculate the target address
 relative, direct, and indexed addressing modes

 Bits i and n: how to use the target address (TA)
 i=1, n=0: immediate addressing

 TA is used as the operand value, no memory reference

 i=0, n=1: indirect addressing

 The word at the TA is fetched

 Value in this word is taken as the address of the operand value

 i=0, n=0 (in SIC), or

 i=1, n=1 (in SIC/XE): simple addressing

 TA is taken as the address of the operand value

 Any of these addressing modes can also be combined
with indexed addressing.

19

SIC/XE Machine Architecture

 For upward compatibility
 8-bit binary codes for all SIC instructions end in 00

 If n=i=0, bits b,p,e are considered as part of the 15-bit address
field

20

SIC/XE Machine Architecture
 How to compute TA?

 How the target address is used?

 Note: Indexing cannot be used with immediate or
indirect addressing modes

Mode Indication Target address calculation operand

Base relative b=1, p=0 TA=(B)+disp (0<=disp<=4095) (TA)

PC-relative b=0, p=1 TA=(PC)+disp (-2048<=disp<=2047) (TA)

Direct b=0, p=0 TA=disp (format 3) or address (format 4) (TA)

Indexed x=1 TA=TA+(X) (TA)

Mode Indication operand value

immediate addressingi=1, n=0 TA

indirect addressing i=0, n=1 ((TA))

simple addressing i=0, n=0 SIC instruction (all end with 00)

i=1, n=1 SIC/XE instruction

21

SIC/XE Machine Architecture

 Instruction Set
 new registers: LDB, STB, etc.

 floating-point arithmetic: ADDF, SUBF, MULF, DIVF

 register move: RMO

 register-register arithmetic: ADDR, SUBR, MULR, DIVR

 Input/Output
 SIO, TIO, HIO: start, test, halt the operation of I/O device

22

SIC/XE Machine Architecture

 Example. RSUB

 Example. COMPR A, S

 Example. LDA #3 (Format 3)

23

SIC/XE Machine Architecture

 Example. +JSUB RDREC (Format 4)

 Example. 1056 STX LENGTH

24

SIC/XE Machine Architecture

 Example. 0000 STL RETADR

 Example. LDA LENGTH (direct addressing)

25

SIC/XE Machine Architecture

 Example. STCH BUFFER, X

 Example. LDA #9

26

[B]=0033

disp=3

SIC/XE Machine Architecture

 Example. 002A J @RETADR (indirect addressing)

27

c: constant between 0 and 4095

m: memory address or

constant larger than 4095

S:Compatible with

SIC

A: Relative

addressing

D: Direct addressing

4: Format 4

SIC/XE Machine
Architecture

28

SIC/XE Machine
Architecture

29

SIC/XE Machine Architecture

 Instruction set
 Load and store registers
 LDA, LDX, STA, STX, LDB, STB, …

 Integer arithmetic operations
 ADD, SUB, MUL, DIV, ADDF, SUBF, MULF, DIVF, ADDR, SUBR, MULR,

DIVR
 Comparison COMP
 Conditional jump instructions (according to CC)
 JLE, JEQ, JGT

 Subroutine linkage
 JSUB
 RSUB

 Register move
 RMO

 Supervisor call (for generating an interrupt)
 SVC

30

SIC/XE Machine Architecture

 Input and output
 IO device
 Three instructions:

 Test device (TD)

 Read data (RD)

 Write data (WD)

 IO channels
 Perform IO while CPU is executing other instructions

 Three instructions:

 SIO: start the operation of IO channel

 TIO: test the operation of IO channel

 HIO: halt the operation of IO channel

31

SIC/XE Machine Architecture
I/O Mechanisms

 Polling I/O

 Interrupt-Driven I/O

 DMA (Direct Memory Access) I/O

32

SIC/XE Instruction Set

P: privileged

X: only for XE

F: floating-

point

C: set CC

33

for interrupt

34

35

Set Storage Key for memory protection

36

37

SIC/XE Programming Example (1)

38

SIC/XE Programming Example (2)

39

SIC/XE Programming Example (3)

40

SIC/XE Programming Example (4)

41

