
Prof. S.G.Gollagi

Chapter 1:

1

System Software vs. Machine
Architecture

 Machine dependent
 The most important characteristic in which most system software

differ from application software
 e.g. assembler translate mnemonic instructions into machine code
 e.g. compilers must generate machine language code
 Machine architecture differs in:
 Machine code
 Instruction formats
 Addressing mode
 Registers

 Machine independent
 There are aspects of system software that do not directly depend upon

the type of computing system
 e.g. general design and logic of an assembler
 e.g. code optimization techniques

2

System Software and
Architecture

 System software will be discussed:
 The basic functions

 Machine-dependent functions

 Machine-independent functions

 Design options (single-pass vs. multi-pass)

3

The Simplified Instructional Computer
(SIC)

 SIC is a hypothetical computer that includes the hardware
features most often found on real machines.

 Why the simplified instructional computer
 To avoid various unique features and idiosyncrasies of a particular

machine.

 To focus on central, fundamental, and commonly encountered
features and concepts.

 Two versions of SIC
 standard model (SIC)

 extension version (SIC/XE)

 Upward compatible
 Programs for SIC can run on SIC/XE

4

SIC Machine Architecture
 Memory
 215 (32,768) bytes in the computer memory

 3 consecutive bytes form a word

 8-bit bytes

 Registers

5

SIC Machine Architecture
 Data Formats
 Integers are stored as 24-bit binary numbers; 2’s complement

representation is used for negative values

 8-bit character support.

 No floating-point hardware

 Instruction Formats

 Addressing Modes

6

x: indicate indexed-addressing mode

() are used to indicate the content of a register.

SIC Machine Architecture

 Instruction Set
 load and store: LDA, LDX, STA, STX, etc.

 integer arithmetic operations: ADD, SUB, MUL, DIV, etc.

 All arithmetic operations involve register A and a word in
memory, with the result being left in the register

 comparison: COMP

 COMP compares the value in register A with a word in memory,
this instruction sets a condition code CC to indicate the result

7

SIC Machine Architecture

 Instruction Set
 conditional jump instructions: JLT, JEQ, JGT

 these instructions test the setting of CC and jump accordingly

 subroutine linkage: JSUB, RSUB

 JSUB jumps to the subroutine, placing the return address in
register L

 RSUB returns by jumping to the address contained in register L

8

SIC Machine Architecture

 Input and Output
 Input and output are performed by transferring 1 byte at a time to

or from the rightmost 8 bits of register A

 The Test Device (TD) instruction tests whether the addressed
device is ready to send or receive a byte of data

 Read Data (RD)

 Write Data (WD)

9

SIC Programming Examples

10

Ex. Data movement

11

Assembler

directives for

defining storage

Address labels

-- Arithmetic operation

BETA=ALPHA+INCR-ONE

DELTA=GAMMA+INCR-ONE

12

All arithmetic operations are performed

using register A, with the result being left

in register A.

-- Looping and indexing

13

SIC Programming Example
-- Looping and indexing (Fig. 1.5)

 Arithmetic

 Arithmetic operations are performed using register A,
with the result being left in register A

 Looping (TIX)
 (X)=(X)+1

 compare with operand

 set CC

GAMMA[I]=ALPHA[I]+BETA[I]

I=0 to 100
14

SIC/XE Machine Architecture

 Memory
 220 bytes in the computer memory

 More Registers

15

SIC/XE Machine Architecture

 Data Formats
 Floating-point data type: frac*2(exp-1024)

 frac: 0~1

 exp: 0~2047

16

For normalized floating-point numbers,
the high-order bit must be 1.

SIC/XE Machine Architecture
(3)

 Instruction formats

No memory
reference

Relative
addressing

Extended
address field

for target address calculation

SIC

e=0

e=117

SIC/XE Machine Architecture

 Addressing modes:
 two new relative addressing for format 3

 Direct addressing for formats 3 and 4 if b=p=0

 Indexed addressing can be combined if x=1:

 the term (x) should be added

18

SIC/XE Machine Architecture

 Bits x,b,p,e: how to calculate the target address
 relative, direct, and indexed addressing modes

 Bits i and n: how to use the target address (TA)
 i=1, n=0: immediate addressing

 TA is used as the operand value, no memory reference

 i=0, n=1: indirect addressing

 The word at the TA is fetched

 Value in this word is taken as the address of the operand value

 i=0, n=0 (in SIC), or

 i=1, n=1 (in SIC/XE): simple addressing

 TA is taken as the address of the operand value

 Any of these addressing modes can also be combined
with indexed addressing.

19

SIC/XE Machine Architecture

 For upward compatibility
 8-bit binary codes for all SIC instructions end in 00

 If n=i=0, bits b,p,e are considered as part of the 15-bit address
field

20

SIC/XE Machine Architecture
 How to compute TA?

 How the target address is used?

 Note: Indexing cannot be used with immediate or
indirect addressing modes

Mode Indication Target address calculation operand

Base relative b=1, p=0 TA=(B)+disp (0<=disp<=4095) (TA)

PC-relative b=0, p=1 TA=(PC)+disp (-2048<=disp<=2047) (TA)

Direct b=0, p=0 TA=disp (format 3) or address (format 4) (TA)

Indexed x=1 TA=TA+(X) (TA)

Mode Indication operand value

immediate addressingi=1, n=0 TA

indirect addressing i=0, n=1 ((TA))

simple addressing i=0, n=0 SIC instruction (all end with 00)

i=1, n=1 SIC/XE instruction

21

SIC/XE Machine Architecture

 Instruction Set
 new registers: LDB, STB, etc.

 floating-point arithmetic: ADDF, SUBF, MULF, DIVF

 register move: RMO

 register-register arithmetic: ADDR, SUBR, MULR, DIVR

 Input/Output
 SIO, TIO, HIO: start, test, halt the operation of I/O device

22

SIC/XE Machine Architecture

 Example. RSUB

 Example. COMPR A, S

 Example. LDA #3 (Format 3)

23

SIC/XE Machine Architecture

 Example. +JSUB RDREC (Format 4)

 Example. 1056 STX LENGTH

24

SIC/XE Machine Architecture

 Example. 0000 STL RETADR

 Example. LDA LENGTH (direct addressing)

25

SIC/XE Machine Architecture

 Example. STCH BUFFER, X

 Example. LDA #9

26

[B]=0033

disp=3

SIC/XE Machine Architecture

 Example. 002A J @RETADR (indirect addressing)

27

c: constant between 0 and 4095

m: memory address or

constant larger than 4095

S:Compatible with

SIC

A: Relative

addressing

D: Direct addressing

4: Format 4

SIC/XE Machine
Architecture

28

SIC/XE Machine
Architecture

29

SIC/XE Machine Architecture

 Instruction set
 Load and store registers
 LDA, LDX, STA, STX, LDB, STB, …

 Integer arithmetic operations
 ADD, SUB, MUL, DIV, ADDF, SUBF, MULF, DIVF, ADDR, SUBR, MULR,

DIVR
 Comparison COMP
 Conditional jump instructions (according to CC)
 JLE, JEQ, JGT

 Subroutine linkage
 JSUB
 RSUB

 Register move
 RMO

 Supervisor call (for generating an interrupt)
 SVC

30

SIC/XE Machine Architecture

 Input and output
 IO device
 Three instructions:

 Test device (TD)

 Read data (RD)

 Write data (WD)

 IO channels
 Perform IO while CPU is executing other instructions

 Three instructions:

 SIO: start the operation of IO channel

 TIO: test the operation of IO channel

 HIO: halt the operation of IO channel

31

SIC/XE Machine Architecture
I/O Mechanisms

 Polling I/O

 Interrupt-Driven I/O

 DMA (Direct Memory Access) I/O

32

SIC/XE Instruction Set

P: privileged

X: only for XE

F: floating-

point

C: set CC

33

for interrupt

34

35

Set Storage Key for memory protection

36

37

SIC/XE Programming Example (1)

38

SIC/XE Programming Example (2)

39

SIC/XE Programming Example (3)

40

SIC/XE Programming Example (4)

41

