System Programming

System Software:
An Introduction to Systems Programming

Leland L. Beck
3rd Edition
Addison-Wesley, 1997

http://web.thu.edu tw/ctyang/

a ¥ita - Welcome to CT Yang's homepage - Microzoft Internet Explozex
BEF EHE WRO BS%w IBM ¥ EE [5Comf [O)Cows [JDELP &]cty @] ACMdl EZdW &) Broker (&) Ganglia Tiger Grid Report @) [EEECS (&) iseesplore @] Hlnefp 37 [(33C » 4F

Q- 0 % & O 9t € FHD[E) e fnednivkmghinghy v| Google |

O~

‘Siomepage

7 \fita

Chao-Tung Yang was born on Movember 9,
1968 in Yilan, Taiwan, BR.O.C. He received a
B.S. degree in Computer Science and
Information Engineering from Tunghai

Navigation

T YANGG@HP

University, Taichung, Taiwan in 1990, and an e Home
M.5. degree in Computer Science from s Vita
Mational Chiao Tung University, Hsinchu, ¢ Education
Taiwan in 1992, He received a Ph.D. degree s Current Position and
in Computer Science fram Mational Chiao Past Experisnces
Tung University in July 1996, He wan the s Recent and Past
1998 Acer Dragon Award for outstanding Activities
Ph.D. Dissertation. He has worked as an e Peviewing Activities
associate researcher for ground operations . p_mf-wie_gltl
7 in the ROCSAT Ground System Section (RGS) s Schedule
Con?:a_ct and of the Mational Space Program Office (NSPO) * Teaching
Additional in Hsinchu™ s Science-based Industrial Park s Publications
Information since 1996, In &ug. 2001, he joined the
_ faculty of the Department of Computer
EL”;:;%%S Science and Information Engineering at
Fax: +886-4-2359-1567 Tunghai University, where he is currently an o MSC
Aszociate Professor, His researches have s MNCHC
> Gehedule been sponsored by Taiwan agencies Mational o MNSPO
. Science Council (NSC), Mational Center far o THU
Teaching High Performance Computing (MCHCY, and e CSIE in THY
* Publications Ministry of Education, as well as a number of e HPC Lab,
* HpC Lab. industrial organizations. His present research o UniGrid [1] [2]
interests are in grid and cluster computing, o TIGER
parallel and high-performance computing, e TIGER Broker
and internet-based applications. He is bath *« GGF
&l © B

2

http://npc.csie.thu.edu.tw/

<3 HIGH PERFORMANCE COMPUTING LAB. // &3t S5 B =< // - Microsoft Internet Explorer

BRE HRED #HR0 SS8EW IBM > EE 5 Cof [5Cows [5DBLE &ty AcMdl [EHdw &) Broker Ganglia Tiger Grid Report @] [EEECS (@] iseenplore @] Blnefp 037 [(33C » 4F

e - O @ @ p * @ -’ﬁiﬂ:@|@http:.-'m.fww.hpc.cs:iz.mu.edu.m." "l GDOSIE'|

igh

erformance
omputing

BT AT RE

HIGH PERFORMANCE COMPUTING LAB.

[FEFE]FE rENEFLE I [ERrdEagnTEe R] B
» [REE]FE FEREEEEER [Frhh S le R | Hi
» [FFEHE] 58 FERTFEEL L - SEEEE (042 F A EinasatR R AR | AR

» [FEFFETFEREEEEESFIFSE F BRSHE » Bt RfeHEETE P EEEEEERESEwEES
» [NEWT B3B8 DELP AISksr S ERIE

» [NEW]{BERMGHFRIIELTIE

» [NEW]{fHBEIT P et

» [NEW]{BERN o5 25 F2HERE

» [HOT] FEi=EEHEE BROs—4 s HIwHssiTsl

» [HOT] =ER=REMEREEEEED

» HREaasiiEEE [ABHE]

» FATIEEAR-EE [ANT) [BEE]

» The Eleventh Workshop on Compiler Technigues for High-Performance Computing

Bt —ThE R BB R TR AT
» BRI EEIRE of ST EUSTAHEERIEYE

» EEEsTEERE 2004 FBEE (Microsoft PowerPoint)
» BEANITERENIT P ERSEET
» AR A AR A2 INET ST R RS B FSE R E S A (B R B

» EPEIRELNIER HR & MEM Messenger %]
» HEARIRERE STEMERNSTRIENEIE T LR EED)
wi
HPC Lab OGC 07-15-2005 LA I -
RE 0f-20-2005 |l
msn¥

Score List

Participation: 5%

Two quizzes: 20% (each 10%)
Two or three homework: 10%
A mid exam: 20%

A final exam: 25%

A final project: 25%

System Programming

Chapter 1: Background
Chapter 2: Assemblers

Chapter 3: Loaders and Linkers
Chapter 4: Macro Processors

Chapter 5: Compilers
Operating Systems

Other System Software
Software Engineering Issues

Chapter 1
Background

Outline

Introduction
System Software and Machine Architecture

The Simplified Instructional Computer (SIC)

o SIC Machine Architecture
o SIC/XE Machine Architecture
o SIC Programming Examples

Traditional (CISC) Machines
RISC Machines

1.1 Introduction

System Software consists of a variety of programs
that support the operation of a computer.

The software makes it possible for the users to
focus on an application or other problem to be
solved, without needing to know the details of how
the machine works internally.

1.1 Introduction

Machine dependency of system software

o System programs are intended to support the operation
and use of the computer.

o Machine architecture differs in:
Machine code
Instruction formats
Addressing mode
Registers

Machine independency of system software

o General design and logic is basically the same:
Code optimization
Subprogram linking

1.2 System Software and Machine Architecture

One characteristic in which most system software
differs from application software is machine
dependency.

System programs are intended to support the
operation and use of the computer itself, rather
than any particular application.

e.g. of system software

o Text editor, assembler, compiler, loader or linker,
debugger, macro processors, operating system,
database management systems, software engineering
tools, ...

10

— R IEEEFRIRED o

EEE

=

FERE YR ENRFEEE

*ETE—E%*F/;Q Fcﬁ

& MARRT K 2S EI’JINJBEVEO

u:
(L7}

17

E'IE.

DIE

0 Edp%ESAVIGIS RS - (BEAK SRR

723X (Application)

NEMBHTE - FREAR LA
RIRFET(System Program)

IRSIRE B ETEIBIER

EQ¥R{E o

2285 DL Simplified Instructional Computer

(SIC

DO

SIC/XE)RFINBISIE AR R E SRS

IN

1

1.2 System Software and Machine Architecture

Text editor
o To create and modify the program

Compiler and assembler
0 You translated these programs into machine language

Loader or linker

o The resulting machine program was loaded into
memory and prepared for execution

Debugger
o To help detect errors in the program

12

RiENFIES0EE

Application Program

Utility Program (Library)

Debugging Aids

Macro Processor

Text Editor

Compiler

Assembler

Loader and Linker

Memory
anagement

|/

Processor
and Process
Management

Device
Management

—_|

Information
Management

|

|

|

OS

Bare Machine (Computer)

13

1.3 The Simplified Instructional Computer

Like many other products, SIC comes in two
versions
o The standard model

o An XE version
“extra equipments”, “extra expensive”

The two versions has been desighed to be upward
compatible

SIC (Simplified Instructional Computer)
SIC/XE (Extra Equipment)

14

1.3 The Simplified Instructional Computer

SIC

o Upward compatible

o Memory consists of 8-bit bytes, 3 consecutive bytes
form a word (24 bits)

o There are a total of 32768 bytes (32 KB) in the
computer memory.

0 5 registers, 24 bits in length

A 0]
X 1
L 2
PC 8
SW 9

Accumulator

Index register

Linkage register (JSUB)
Program counter

Status word (Condition Code)

15

1.3.1 SIC Machine Architecture

Data Formats
o Integers are stored as 24-bit binary number
o 2’s complement representation for negative values
o Characters are stored using 8-bit ASCII codes

o No floating-point hardware on the standard version of
SIC

16

1.3.1 SIC Machine Architecture

Instruction format
o 24-bit format

o The flag bit x is used to indicate indexed-addressing

mode 8 1 15

opcode X address

Addressing Modes

o There are two addressing modes available
Indicated by x bit in the instruction

(X) represents the contents of reg. X

Mode Indication Target address calculation

Direct x=0 TA = address
Indexed x=1 TA = address + (X)

17

1.3.1 SIC Machine Architecture

Instruction set

o Format 3

o Load and store registers (LDA, LDX, STA, STX, etc.)
o Integer arithmetic operations (ADD, SUB, MUL, DIV)
o Compare instruction (COMP)

o Conditional jump instructions (JLT, JEQ, JGT)

o JSUB jumps to the subroutine, placing the return
address in register L.

o RSUB returns by jumping to the address contained in
register L.

18

1.3.1 SIC Machine Architecture

/0
o |I/0 are performed by transferring 1 byte at a time to or
from the rightmost 8 bits of register A.
o Each device is assighed a unique 8-bit code.

o Test Device (TD): tests whether the addressed device is
ready to send or receive

o Read Data (RD)
o Write Data (WD)

19

1.3.2 SIC/XE Machine Architecture

1 megabytes (1024 KB) in memory
3 additional registers, 24 bits in length

o B 3 Base register; used for addressing
oS 4 General working register
o T 5 General working register

1 additional register, 48 bits in length
o F 6 Floating-point accumulator (48 bits)

20

1.3.2 SIC/XE Machine Architecture

Data format

o 24-bit binary number for integer, 2’s complement for
negative values

o 48-bit floating-point data type
o The exponent is between O and 2047
0 f*92(e-1024)

0 O:setall bitsto O

1 11 36

s| exponent fraction

1.3.2 SIC/XE Machine Architecture

Instruction formats

o Relative addressing (fH¥%}{i71il) - format 3 (e=0)
o Extend the address to 20 bits (fg&¥{i/4il-) - format 4 (e=1)
o Don’t refer memory at all - formats 1 and 2

Format 2 (2 bytes):

8 4 4
op r1 r2

Format 1 (1 byte): Format 3 (3 bytes):

_ 6 111111 12
8

op nli|x|{blple disp

op

Format 4 (4 bytes):

6 111111 20

op nli|x|blple address

22

1.3.2 SIC/XE Machine Architecture

Addressing modes

oniXxbpe

o Simple n=0, i=0 (SIC) or n=1, i=1, TA=disp
o Immediate n=0, i=1 Disp=Value

o Indirect n=1, i=0 TA=(Operand)=(TA,)
o Base relative b=1, p=0 TA=(B)+disp

0 <= disp <= 4095
o PC relative b=0, p=1 TA=(PC)+disp
-2048 <= disp <= 2047

Mode Indication Target address calculation

Base relative b=1,p=0 TA=(B)+disp (0<disp<4095)

Program-counter b=0,p=1 TA=(PC)+disp (-2048 <disp <2047)
relative

23

1.3.2 SIC/XE Machine Architecture

Addressing mode

Q
Q
Q
Q
Q
Q

Direct

Index

Index+Base relative
Index+PC relative
Index+Direct
Format 4

b=0, p=0 TA=disp

x=1 TA, o, =TA,4F(X)
x=1, b=1, p=0 TA=(B)+disp+(X)
x=1, b=0, p=1 TA=(PC)+disp+(X)
x=1, b=0, p=0 TA=disp+(X)

e=1

Appendix and Fig. 1.1 Example

24

Figure 1.1

(B) = 006000
(PC) = 003000
(X) = 000090

Memory address
o 00000

(0000 0000 0000 0000 0000)

o ~FFFFF (Byte)

(111111111111 1111 1111)

00000

(03030

(03600

(06390

0c303

FFF’F\D‘\/'\'~

003600

103000

00C303

003030

(a)

O/FFD

25

(B) = 006000
(PC) = 003000
(X) = 000090

H

Machine instruction Value

l . loaded
Hex Binary into

. 1 . Target register
op n i X b p e disp/address address A

032600 000000 o @ 1) 0 0110 0000 0000 03600 103000

03C300 000000 1 _0) o 0011 0000 0000 06390 00C303

022030 000000 o @ 1) o 0000 0011 DOOO 03030 103000

010030 000000 O 0 O 0 0000 0011 0000 30 000030

003600 000000 0O <_1 1 0110 0000 0000> 3600 103000

0310C303 000000 O 0 0 1 0000 1100 0011 0000 0011 Oc303 003030

(b)

26

1.3.2 SIC/XE Machine Architecture

Instruction set
o Format 1, 2, 3,0or4
o Load and store registers (LDB, STB, etc.)

o Floating-point arithmetic operations (ADDF, SUBF,
MULF, DIVF)

o Register-to-register arithmetic operations (ADDR, SUBR,
MULR, DIVR)

a A special supervisor call instruction (SVC) is provided
/0
o 1 byte at a time, TD, RD, and WD

a SIO, TlIO, and HIO are used to start, test, and halt the
operation of |/0 channels.

27

1.3.3 SIC Programming Examples

Sample data movement operations
2 No memory-to-memory move instructions (Fig. 1.2)

LDA five

five word 5

LDA FIVE LOAD CONSTANT 5 INTO REGISTER A
STA ALPHA STORE IN ALPHA

LDCH CHARZ LOAD CHARACTER ‘Z‘ INTO REGISTER A
STCH Cl STORE IN CHARACTER VARIABLE Cl1

ALPHA RESW
FIVE WORD
CHARZ BYTE
Cl RESB

ONE-WORD VARIABLE
ONE-WORD CONSTANT
ONE-BYTE CONSTANT
ONE-BYTE VARIABLE

B, O WvPR
N

28

1.3.3 SIC Programming Examples

LDA #5 LOAD VALUE 5 INTO REGISTER A
STA ATLPHA STORE IN ALPHA
LDA #90 OOOO5A 1.0AD ASCII CODE FOR ‘Z’ INTO REG A
STCH Cl STORE IN CHARACTER VARIABLE Cl
ALPHA RESW 1 ONE-WORD VARIARBLE
Cl RESB 1 ONE-BYTE VARIABLE

(b)

Figure 1.2 Sample data movement operations for (a) SIC and
(b) SIC/XE.

29

1.3.3 SIC Programming Examples

Sample arithmetic operations
o (ALPHA+INCR-1) assign to BETA (Fig. 1.3)
0 (GAMMA+INCR-1) assign to DELTA

ONE
ALPHA
BETA
GAMMA

DELTA
INCR

LDA
ADD
SUB
STA
LDA

STA

WORD
RESW
RESW
RESW

RESW
RESW

AL.PHA
INCR
ONE
BETA
GAMMA
INCR
ONE
DELTA

(-

e

LOAD ALPHA INTO REGISTER A
ADD THE VALUE OF INCR
SUBTRACT 1

STORE IN BETA

LOAD GAMMA INTO REGISTER A
ADD THE VALUE OF INCR
SUBTRACT 1

STORE IN DELTA

ONE-WORD CONSTANT
ONE-WORD VARIABLES

30

1.3.3 SIC Programming Examples

SIC/XE example

LDS INCR LOAD VALUE OF INCR INTO REGISTER S
LDA ALPHA LOAD ALPHA INTO REGISTER A

ADDR S,A ADD THE VALUE OF INCR

SUB #1 SUBTRACT 1

STA BETA STORE IN BETA

LDA GAMMA LOAD GAMMA INTO REGISTER A

ADDR S,A ADD THE VALUE OF INCR

SUB #1 SUBTRACT 1

STA DELTA STORE IN DELTA

. ONE WORD VARIABLES
ALPHA RESW

1
BETA RESW 1
GAMMA RESW 1
DELTA RESW 1
INCR RESW 1

31

1.3.3 SIC Programming Examples

String copy - SIC example

MOVECH

STR1
STR2
ZERO
ELEVEN

LDX
LDCH
STCH
TIX
JLT

BYTE
RESB

WORD
WORD

ZERO

STR1,X
STR2,X
ELEVEN
MOVECH

INITIALIZE INDEX REGISTER TO O

LOAD CHARACTER FROM STR1 INTO REG A
STORE CHARACTER INTO STR2

ADD 1 TO INDEX, COMPARE RESULT TO 11
LOOP IF INDEX IS LESS THAN 11

C’'TEST STRING' 11-BYTE STRING CONSTANT

11

11

11-BYTE VARIABLE
ONE-WORD CONSTANTS

32

1.3.3 SIC Programming Examples

String copy - SIC/XE example

MOVECH

STR1
STR2

LDT
LDX
LDCH
STCH
TIXR
JLT

BYTE
RESB

#11

#0
STR1,X
STR2,X
T
MOVECH

INITIALIZE REGISTER T TO 11
INITIALIZE INDEX REGISTER TO O

LOAD CHARACTER FROM STR1 INTO REG A
STORE CHARACTER INTO STR2

ADD 1 TO INDEX, COMPARE RESULT TO 11
LOOP IF INDEX IS LESS THAN 11

C’'TEST STRING' 11-BYTE STRING CONSTANT

11

11-BYTE VARIABLE

33

1.3.3 SIC Programming Examples

ADDLP

INDEX
ALPHA
BETA

GAMMA

ZERO

K300
THREE

LDA
STA
LDX
LDA
ADD
STA
LDA
ADD
STA
COMP
JLT

WORD

WORD
WORD

ZERO
INDEX
INDEX
ALPHA,X
BETA, X
GAMMA, X
INDEX
THREE
INDEX
K300
ADDLP

100
100
100

300
3

INITTIALIZE INDEX VALUE TO 0

LOAD INDEX VALUE INTO REGISTER X
LOAD WORD FROM ALPHA INTO REGISTER A
ADD WORD FROM BETA

STORE THE RESULT IN A WORD IN GAMMA
ADD 3 TO INDEX VALUE

COMPARE NEW INDEX VALUE TO 300
LOOP IF INDEX IS LESS THAN 300

ONE-WORD VARIABLE FOR INDEX VALUE
ARRAY VARIABLES--100 WORDS EACH

ONE-WORD CONSTANTS

34

1.3.3 SIC Programming Examples

LDS

LDX
ADDLP LDA

STA
ADDR
COMPR

ALPHA RESW
BETA RESW

#3

#300

#0
ALPHA, X
BETA, X
GAMMA, X
S, X

X,T
ADDLP

100
100
100

INITIALIZE REGISTER S TO 3
INITIALIZE REGISTER T TO 300
INITIALIZE INDEX REGISTER TC 0

LOAD WORD FROM ALPHA INTO REGISTER A
ADD WORD FROM BETA

STORE THE RESULT IN A WORD IN GAMMA
ADD 3 TO INDEX VALUE

COMPARE NEW INDEX VALUE TO 300

LOOP IF INDEX VALUE IS LESS THAN 300

ARRAY VARIABLES--100 WORDS EACH

(b)

Figure 1.5 Sample indexing and looping operations for (a) SIC and

(b) SIC/XE.

35

1.3.3 SIC Programming Examples

INLOOP TD

JEQ

STCH

OUTLP D

JEQ
LDCH

INDEV BYTE
OUTDEV BYTE

DATA

RESB

Figure 1.6 Sample input and output operations for SIC.

INDEV
INLOOP
INDEV
DATA

OUTDEV
OUTLP
DATA
OUTDEV

X'F1l’
X'05"
1

TEST INPUT DEVICE

LOOP UNTIL DEVICE IS READY
READ ONE BYTE INTO REGISTER A
STORE BYTE THAT WAS READ

TEST OUTPUT DEVICE

LOOP UNTIL DEVICE IS READY

LOAD DATA BYTE INTO REGISTER A
WRITE ONE BYTE TO OUTPUT DEVICE

INPUT DEVICE NUMBER
OUTPUT DEVICE NUMBER
ONE-BYTE VARIABLE

36

1.3.3 SIC Programming Examples

RL.OOP

INDEV
RECORD
ZERO
K100

JSUB

LDX
JEQ

STCH
TIX

RSUB
BYTE
RESB

WORD
WORD

READ

ZERO
INDEV
RL.OOP
INDEV
RECORD, X
K100
RLOOP

X'Fl’
100

100

CALL READ SUBROUTINE

SUBROUTINE TO READ 100-BYTE RECORD
INITTALIZE INDEX REGISTER TO O
TEST INPUT DEVICE

LOOP IF DEVICE IS BUSY

READ ONE BYTE INTO REGISTER A
STORE DATA BYTE INTO RECORD

ADD 1 TO INDEX AND COMPARE TO 100
LOOP IF INDEX IS LESS THAN 100
EXIT FROM SUBROUTINE

INPUT DEVICE NUMBER
100-BYTE BUFFER FOR INPUT RECORD
ONE-WORD CONSTANTS

37

1.3.3 SIC Programming Examples

JSUB

READ LDX
LDT

RLOOP TD
JEQ

STCH
TIXR
JLT

RSUB

INDEV BYTE
RECORD RESB

READ

#0

#100
INDEV
RLOOP
INDEV
RECORD, X

RLOOP

X'F1'
100

CALL READ SUBROUTINE

SUBROUTINE TO READ 100-BYTE RECORD
INTITIALTZE INDEX REGISTER TO O
INITIALIZE REGISTER T TO 100

TEST INPUT DEVICE

LOOP IF DEVICE IS BUSY

READ ONE BYTE INTO REGISTER A
STORE DATA BYTE INTO RECORD

ADD 1 TO INDEX AND COMPARE TO 100
LOOP IF INDEX IS LESS THAN 100
EXIT FROM SUBROUTINE

INPUT DEVICE NUMBER
100-BYTE BUFFER FOR INPUT RECORD

38

Traditional (CISC) Machines

Complex Instruction Set Computers (CISC)
complicated instruction set
different instruction formats and lengths

e.g. VAX or PDP-11 from DEC

Q
Q
o many different addressing modes
a
o e.g. Intel x86 family

Reduced Instruction Set Computer (RISC)

39

RISC Machines

RISC system

o Instruction
standard, fixed instruction format
single-cycle execution of most instructions
memory access is available only for load and store instruction
other instructions are register-to-register operations

a small number of machine instructions, and instruction format
Instructional-level parallelism

o A large number of general-purpose registers
o A small number of addressing modes

o Three RISC machines
SPARC family
PowerPC family
Cray T3E

40

	System Programming
	http://web.thu.edu.tw/ctyang/
	http://hpc.csie.thu.edu.tw/
	Score List
	System Programming
	Chapter 1�Background
	Outline
	1.1 Introduction
	1.1 Introduction
	1.2 System Software and Machine Architecture
	1.2 System Software and Machine Architecture
	系統程式所包含的範圍
	1.3 The Simplified Instructional Computer
	1.3 The Simplified Instructional Computer
	1.3.1 SIC Machine Architecture
	1.3.1 SIC Machine Architecture
	1.3.1 SIC Machine Architecture
	1.3.1 SIC Machine Architecture
	1.3.2 SIC/XE Machine Architecture
	1.3.2 SIC/XE Machine Architecture
	1.3.2 SIC/XE Machine Architecture
	1.3.2 SIC/XE Machine Architecture
	1.3.2 SIC/XE Machine Architecture
	Figure 1.1
	1.3.2 SIC/XE Machine Architecture
	1.3.3 SIC Programming Examples
	1.3.3 SIC Programming Examples
	1.3.3 SIC Programming Examples
	1.3.3 SIC Programming Examples
	1.3.3 SIC Programming Examples
	1.3.3 SIC Programming Examples
	1.3.3 SIC Programming Examples
	1.3.3 SIC Programming Examples
	1.3.3 SIC Programming Examples
	1.3.3 SIC Programming Examples
	1.3.3 SIC Programming Examples
	Traditional (CISC) Machines
	RISC Machines

