A.Year / Chapter 2014/ 1	Semester 5	Subject SS	Topic Machine Architecture		
			nit 1		
		Machine A	Architecture		
.1 Introduction:					
		is that supports	s the operation of a computer. This software makes i		
-			thout needing to know the detail of how the machin		
vorks internally.		11			
) ifference between	system softwar	e & applicatio	on software:		
System Software	e		Application Software		
It is a program of	or group of prog	grams written	It is a program or collection of programs		
for a computer sy	stem managem	ent.	written to solve a particular problem.		
These are develop	ped by the manu	ıfacturers.	These are developed by users.		
To write system	n software the	programmer	To write the application software the		
needs to under	rstand the arc	chitecture &	programmer need not worry about the		
hardware details	s and hence	are Machine	architecture & hardware details & hence are		
Dependent.			Machine Independent.		
System software	e control &	manage the	Application software uses the services of the		
hardware.			system software to interact with the hardware.		
Development of	system softwar	e is complex	Development of application software is		
task.			relatively easier.		
Ex: Operating	System, Com	pilers, Text	Ex: MS-WORD, MS-EXCEL, Payroll		
Editors, Assembl	ers, Loaders, Li	nkers	inventory system, Student management		
			system, Library Management System		

Most system software is machine-dependent, we must include real machines & real pieces of software.

1.2 The Simplified Instructional Computer (SIC):

SIC is a hypothetical computer that has been carefully designed to include the hardware features most often found on real machines, while avoiding unusual or irrelevant complexities.

They are two versions :

- 1. SIC Standard Model
- 2. SIC/XE Extra equipment or extra expensive.

The two versions are designed to be upward compatible i.e. An object program for the standard SIC machine will also executed properly on a SIC/XE machine.

S J P N Trust's	Author	TCP04
Hirasugar Institute of Technology, Nidasoshi-591236	Aruna D.	V 1.1
Tq: Hukkeri, Dt: Belgaum, Karnataka, India, web:www.hsit.ac.in	Page No.	CSE
Phone:+91-8333-278887, Fax:278886, Mail:principal@hsit.ac.in	1	AUG 2014

A.Year / Chapter	Semester	Subject	Торіс
2014/1	5	SS	Machine Architecture
.3 SIC Machine	Architecture	<u>e (The Standard M</u>	<u>Iodel)</u>
.3.1 Memory:			
1. Memory cons	ists of 8 bit byte	es.	
2. Three consecu	tive bytes form	a word.	
3. All addresses	on SIC are byte	addresses.	
4. These are a to	tal of 32,768 (2	15) bytes.	
.3.2 Register:			

There are 5 Register, each register is 24 bits in length.

Mnemonic	Number	Special Use		
А	0	Accumulator, used for arithmetic operation.		
X	1	Index register, used for addressing.		
L	2	Linkage register, the jump to Subroutine (JSUB) instruction		
		stores the return Address in this register.		
PC	8	Program Counter, contains the address of the next		
		instruction to be fetched for execution.		
SW	9	Status word, contains a variety of information including a		
		Condition Code (CC).		

1.3.3 Data Formats:

- 1. Integer are stored as 24 bit binary number.
- **2.** 2's Complement representations is used for negative values.
- **3.** Characters are stored as 8 bit ASCII Code.
- 4. There is a no floating point hardware.

<u>1.3.4 Instruction Formats:</u>

All machine instruction have 24 bit formats.

8	1	15
opcode	Х	address

The flag bit X is used to indicate indexed addressing mode.

1.3.5 Addressing Modes:

- 1. There are 2 types of addressing mode.
- 2. It indicate by the setting of the x bit in the instruction.

Mode	Indication	Target Address
Direct	x=0	TA = address
Indexed	x=1	TA = address + (x)

S J P N Trust's	Author	TCP04
Hirasugar Institute of Technology, Nidasoshi-591236	Aruna D.	V 1.1
Tq: Hukkeri, Dt: Belgaum, Karnataka, India, web: <u>www.hsit.ac.in</u>	Page No.	CSE
Phone:+91-8333-278887, Fax:278886, Mail: <u>principal@hsit.ac.in</u>	2	AUG 2014

A.Year / 2014		Semes 5	ter	Subject SS	Macl		pic rchitecture	
Direct Add	lressing m	ode:						
Example: I	DA TEN	(opcoc	le of LD.	A = 00)				
O	pcode (8)		x(1)	address(15)				
00	000 0000		0	001 0000 0000 0	0000			
Effective a	ddress (EA)=1000						
Content of	the address	s 1000 is	s loaded	to accumulator.				
Indexed A	ddressing	Mode:						
Example: S	TCH BU	JFFER,2	K (opco	de of STCH = 54)				
O	pcode (8)		x(1)	address(15)				
01	01 0100		1	001 0000 0000 0	0000			
Effective a	ddress (EA	L) = 1000	(x) + (x)					
Accumulate	or contains	the con	tent of a	calculated address				
<u>1.3.6 Instr</u>	uction Set	:						
1. SIC	provides a	a basic s	et of inst	ruction.				
2. Inst	ruction to	load and	store reg	gister (LDA,LDX,	STA,STX).			
3. It in	cludes inte	eger arit	hmetic of	peration (ADD,SU	B,MUL,DIV).			
4. The	re is an ins	struction	COMP	it compares the va	lue in register A	with a	word in mem	ory.
5. This	s instructio	on sets a	Conditio	n Code(CC) to inc	licate the result(>	>,=,<).		
6. Cor	ditional ju	mps ins	tructiona	l are used JLT,JEC),JGT are used.			
7. JSU	B jumps to	o the sub	oroutine	placing the return	address in Regist	er "L".		
8. RSU	JB returns	by jump	oing to th	e address containe	ed in register L.			
<u>1.3.7 Input</u>	t and Out	<u>out:</u>						
1. Inp	ut and outp	out are p	erformed	by transferring or	ne byte at a time.			
2. Eac	h device is	assigne	d a uniqu	e eight bit code.				
3. The	re are 3 IC) instruc	tions that	uses device code	as an operand.			
• Tex	t device(T	D) : Inst	ruction t	est whether the ad	dressed device is	s ready	to send or re	ceive a byte
				tting a Condition (2		2
			2	send or receive.				
	eans the d		2					
			2	data must wait unt	il the device is re	eady, th	en execute.	
-	C	Ū		of data from the ad		<u>,</u>		
			-	e of data to the ad				
- vv1		ויי. איו	nes a Uyl	S J P N Trust's			Author	TCP04
8.40	Hirasug	ar Inst	itute o	f Technology, I	Vidasoshi-591	236	Aruna D.	V 1.1
ESTD () 1984	Tq: Huk			m, Karnataka, Ind 7, Fax:278886, Mail: <u>princip</u>		<u>n</u>	Page No.	CSE
				,	<u></u>		3	AUG 2014

A.Year / Chapter	Semester	Subject	Торіс
2014/1	5	SS	Machine Architecture
1.4 SIC/XE Mac	<u>hine Architec</u>	<u>ture</u>	
<u> 1.4.1 Memory:</u>			
1. Memory cons	sists of 8 bit byte	es.	
 Three consec 	2		
	5		
3. All address of	n SIC/XE are by	te address.	
4. The maximum	n memory avail	able on SIC/XE is 1 1	Mega Byte (2^{20} bytes).
4. The maximum	n memory avail	able on SIC/XE is 1 l	Mega Byte (2 ²⁰ bytes).

1.4.2 Register:

There are 9 registers among which first 8 are 24bit in length.

Mnemonic	Number	Special Use		
А	0	Accumulator, used for arithmetic operation.		
X	1	Index register, used for addressing.		
L	2	Linkage register, the jump to Subroutine (JSUB) instruction		
		stores the return Address in this register.		
РС	8	Program Counter, contains the address of the next		
		instruction to be fetched for execution.		
SW	9	Status word, contains a variety of information including a		
		Condition Code (CC).		
В	3	Base register, used for addressing.		
S	4	General working register- no special use		
Т	5	General working register- no special use		
F	6	Floating-point accumulator (48 bits)		

1.4.3 Data Formats:

- 1. Integers are stored as 24 bit binary number.
- 2. 2's Complement representation is used for negative value.
- **3.** Characters are stored as 8 bit ASCII code.
- 4. There is a 48 floating point data types having a following format.

1	11	36
S	exponent	fraction

fraction \rightarrow It is interpreted as a value between 0 & 1. The high-order bit of fraction must be 1.

exponent \rightarrow It is interpreted as an unsigned binary number between 0 & 2047.

 $s \rightarrow It$ is interpreted as sign of the floating point number (s=0 Positive number s = 1 negative number).

S J P N Trust's	Author	TCP04
Hirasugar Institute of Technology, Nidasoshi-591236	Aruna D.	V 1.1
Tq: Hukkeri, Dt: Belgaum, Karnataka, India, web:www.hsit.ac.in	Page No.	CSE
Phone:+91-8333-278887, Fax:278886, Mail:principal@hsit.ac.in	4	AUG 2014

A.Year / Chapter 2014/ 1	- Sem	ester 5	S	Subject SS		Topic Machine Architectu	ıre
.4.4 Instruction f	<u>formats:</u>						
1. SIC/XE ma	chine su	pport fou	ır instr	ruction	format		
2. Format 1 an	nd forma	t 2- that	do not	referen	nce mei	nory.	
3. Format 3 an	nd forma	t 4- that	referer	nce mer	mory.		
4. If e is set 0	then it is	Format	3 & if	e is set	t 1 then	it is Format 4.	
ormat 1 (1 byte	<u>):</u>						
8							
ор							
x : RSUB (opcod	e = 4C)						
8 (op)							
0100 1100							
4 C							
<u>ormat 2 (2 bytes</u>	<u>):</u>						
8 4	4						
op r1	r2						
x: COMPR A, S	(opcode	COMPR	= A0)				
8 (op) 4 ((r1) 4	(r2)					
1010 0000 0 0	000 0	100					
ormat 3 (3 bytes	<u>):</u>						
6	1 1	1	1	1	1	12	
op	n i	X	b	p	e	disp	
x: LDA #3							
<u>ormat 4 (4 bytes</u>	<u>):</u>						
6	1 1	1	1	1	1	20	
0							

1.4.5 Addressing modes:

- 1. Direct : If b& p are both set to 0 then disp field is taken to be target address.
- Base relative : b=1 & p=0, the displacement field is interpreted as a 12-bit unsigned integer.
 (0 <= disp <= 4095)
- 3. Program Counter relative : b=0 & p=1, the displacement field is interpreted as a 12-bit signed integer. (-2048 <= disp <= 2047)</p>

S J P N Trust's	Author	TCP04
Hirasugar Institute of Technology, Nidasoshi-591236	Aruna D.	V 1.1
Tq: Hukkeri, Dt: Belgaum, Karnataka, India, web: <u>www.hsit.ac.in</u>	Page No.	CSE
Phone:+91-8333-278887, Fax:278886, Mail:principal@hsit.ac.in	5	AUG 2014

A.Year / Chapter 2014/ 1	Se	Semester Si			S	ubject SS	Machine	Topic Architecture		
-	=1	ther	ı it	is c	alle	ed a	s indexed add		nbined with base-relative &	
program coun	ter	rela	tive	.						
5. Immediate :	If	bit	i=1	&	n=	=0, 1	the target ad	dress itself is used a	as the operand value. It i	
represented in	the	e co	de v	with	n # s	sym	bol.			
6. Indirect: If 1	oit	i=0	&	n=	1, t	he v	word at the	location given by the	e TA is fetched, the valu	
									It is represented in the cod	
with @ symbol								-	-	
Name		ts S	et				Format	Example	Target Address	
lane		i	x	b	n	e	1 ormat	Example		
Direct	n 1	1	0	0	p 0	0	Format 3	LDA LENGTH	TA = disp	
Direct	1	1	0	0	0	1	Format 4		TA = address	
Base-Relative	1	1	0	1	0	0	Format 3	STX LENGTH	TA = disp + (B)	
	1	1	0	1	0	1	Format 4		TA = address + (B)	
Program Counter		1	0	0	1	0		STL RETADR	TA = disp + (PC)	
Relative								STETETET		
	1	1	0	0	1	1	Format 4		TA = address + (PC)	
Indexed Base-		1	1	1	0	0	Format 3	STCH BUFFER,X	TA = disp + (B) + (X)	
Relative			-					2 -		
	1	1	1	1	0	1	Format 4		TA = address + (B) + (X)	
Indexed Program		1	1	0	1	0		LDCH BUFFER,X	TA = disp + (PC) + (X)	
Counter Relative)		
	1	1	1	0	1	1	Format 4		TA = address + (PC) + (X)	
Immediate	0	1	0	0	0	0	Format 3	LDA #10	TA = disp	
	0	1	0	0	0	1	Format 4		TA = address	
Immediate with	0	1	0	1	0	0/	Format 3/4		TA = disp + (B) /	
Base-Relative						1			TA = address + (B)	
Immediate with	0	1	0	0	1		Format 3/4		TA = disp + (PC) /	
Program Counter						1			TA = address + (PC)	
Indirect	1	0	0	0	0	0	Format 3	J @RETADR	TA = disp	
	1	0	0	0	0	1	Format 4		TA = address	
Indirect with Base-	1	0	0	1	0	0/	Format 3/4		TA = disp + (B) /	
Relative						1			TA = address + (B)	
Indirect with	1	0	0	0	1	0/	Format 3/4		TA = disp + (PC) /	
Program Counter						1			TA = address + (PC)	
0	lot l	be u	sed	wi	th in		ediate or indir	ect addressing modes	· · · · ·	
						SJI	P N Trust's		Author TCP04	

S J P N Trust's	Author	TCP04
Hirasugar Institute of Technology, Nidasoshi-591236	Aruna D.	V 1.1
Tq: Hukkeri, Dt: Belgaum, Karnataka, India, web: <u>www.hsit.ac.in</u>	Page No.	CSE
Phone:+91-8333-278887, Fax:278886, Mail: <u>principal@hsit.ac.in</u>	6	AUG 2014

A.Year / 201 4	•	Semester 5	Subject SS		opic A rchitecture	
• SIC	C/XE instru	actions that spe	cify neither immedia	ate nor indirect addres	ssing are asse	embled with
bits	s n & i botł	n set to 1.				
1.4.6 Instr	uction set	•				
1. Ins	truction to	load and store	register (LDA,LDX	,STA,STX, LDB, STI	B, LDS, STS	, LDT, STI
etc).					
2. It i	ncludes int	eger arithmetic	operation (ADD,SUI	B,MUL,DIV).		
3. The	ere is an in	struction COMI	it compares the value	ue in register A with a	word in mem	ory.
4. Th	s instructio	on sets a Condit	ion Code(CC) to indi	icate the result(>,=,<).		
5. Co	nditional ju	imps instruction	al are used JLT,JEQ	,JGT are used.		
6. JSU	JB jumps t	o the subroutine	e placing the return a	ddress in Register "L"		
7. RS	UB returns	by jumping to	the address contained	d in register L.		
8. Flo	ating point	arithmetic oper	ration instruction are	also available(ADDF,	SUBF,MULF	F,DIVF)
9. Re	gister to reg	gister arithmetic	operation are also a	vailable. (ADDR,SUB	R,MULR,DI	VR)
10. Suj	pervisor ca	l instruction are	also available(SVC)	to communicate with	OS.	
<u>1.4.7 Inpu</u>	t and Out	<u>put:</u>				
1. Inp	ut and outp	out are performe	ed by transferring on	e byte at a time.		
2. Eac	ch device is	s assigned a uni	que eight bit code.			
3. The	ere are 3 IC) instructions th	at uses device code a	as an operand.		
	• Text d	evice(TD) : Ins	truction test whether	the addressed device i	s ready to ser	d or receive
	a byte	of data. This ca	n be done by setting	a Condition Code(CC)).	
	< mea	ns the device is	ready to send or rece	eive.		
	= mea	ns the device is	not ready.			
	A prog	gram needing to	transfer data must w	vait until the device is a	ready, then ex	ecute.
	• Read I	Data(RD) : Read	ls a byte of data from	n the addressed device.		
	• Write	Data(WD) : Wr	ites a byte of data to	the addressed device.		
4. The	ere are IO	channels that ca	an be used to perform	m input and output wh	nile the CPU	is executing
oth	er instructi	ons.				
5. Th	e instructio	ns SIO , PIO , H	HO are used to Start	, Test and Halt the ope	ration of IO c	hannels.
<u>1.5 Prob</u>	lems on [Farget Addr	ess Calculation :			
Generate t	ne target ac	ldress for the fo	llowing object codes	:		
i) 032600		ii)010030	iii) 03C300h	iv) 022030	v) 0310	C303
Content of	X=00009	0; Content of B	=006000; Content of	PC=003000;		
Ans: I) 03	2600					
<u>A</u>			S J P N Trust's		Author	TCP04
8.200	Hirasug	jar Institute		lidasoshi-591236	Author Aruna D.	V 1.1
	Tq: Huk		um, Karnataka, Ind 187, Fax:278886, Mail: <u>principal</u>		Page No.	CSE
		110116.731-0333-2/80	, ו מאובי סססט, ועומוו: <u>µרווונוµa</u>	erioriaciii	7	AUG 2014

	Hirasugar Institute of Technology, Nidasoshi-591236	Aruna D.	V 1.1
	Tq: Hukkeri, Dt: Belgaum, Karnataka, India, web: <u>www.hsit.ac.in</u>	Page No.	CSE
10 (1) 1984	Phone:+91-8333-278887, Fax:278886, Mail: <u>principal@hsit.ac.in</u>	7	AUG 2014

A.Year / C 2014		•			bject SS	Topic Machine Architecture		
Hex	opcode	n	i	X	b	р	e	disp/address
0 32600	0 000 0 0	1	1	0	0	1	0	0110 0000 0000

Program- Counter Relative Addressing Mode :

TA = (PC) + disp

= 003000 + 600

= 003600

Ans : ii) 010030

Hex	opcode	n	i	x	b	p	e	disp/address
0 10030	0 000 0 0	0	1	0	0	0	0	0000 0011 0000

Immediate Addressing:

TA = disp

= 0030

Ans : iii) 03C300H

Hex	opcode	n	i	X	b	p	e	disp/address
0 3C300	0 000 0 0	1	1	1	1	0	0	0011 0000 0000

Base Indexed Relative Addressing:

TA = (B) + disp + (X)

= 006000 + 300 + 000090

= 006390

Ans : iv) 022030

Hex	opcode	n	i	X	b	p	e	disp/address
0 22030	0 000 0 0	1	0	0	0	1	0	0000 0011 0000

Indirect Program Counter Relative Addressing Mode :

TA = (PC) + disp

= 003000 + 030

= 003030

Ans: v) 0310C303

Hex	opcode	n	i	x	b	p	e	address
0 310C303	0 000 0 0	1	1	0	0	0	1	0000 1100 0011 0000 0011

Simple Addressing mode:

TA = address

= 0C303

	S J P N Trust's	Author	TCP04
	Hirasugar Institute of Technology, Nidasoshi-591236	Aruna D.	V 1.1
	Tq: Hukkeri, Dt: Belgaum, Karnataka, India, web: <u>www.hsit.ac.in</u>	Page No.	CSE
ESTD () 1964	Phone:+91-8333-278887, Fax:278886, Mail:principal@hsit.ac.in	8	AUG 2014

A.Year / Chap 2014/ 1	oter	Semester 5	Subject SS		pic rchitecture	
1.6 Simple Sl	IC &	SIC/XE Ex	amples:			
• No mem	ory-m	emory move i	nstruction			
• 3-byte w	vord:					
LDA, S	ΓA, LI	DL, STL, LDX	K, STX			
• 1-byte:						
LDCH,	STCH					
• Storage	definit	ion				
WORD	: Gene	rate one word	integer constant.			
RESW :	Reser	ve the indicate	ed number of words	for a data area.		
BYTE :	Genera	ate character o	or hexadecimal cons	tant, occupying as many	bytes as needed	to
	repres	ent the consta	nt.			
RESB :	Reserv	e the indicate	d number of bytes fo	or a data area.		
• All arith	metic	operations are	performed using reg	gister A, with the result	being left in regis	ter A.
<u>1.6.1. Data mov</u>	vemen	t				
LDA STA LDCH STCH		FIVE ALPHA CHRZ C1				
FIVE V CHRZ E	RESW WORD BYTE RESB	1 5 C'Z' 1				
1.6.2 Arithmeti	ic Ope	<u>rations:</u>				
2. Write a seque	ence of	instrcutions f	for SIC and SIC/XE	to set BETA=(ALPHA+	-INCR-1) &	
GAMMA = (D	ELTA	+INCR-1).				
SIC Example:						
LDA ADD SUB STA LDA ADD SUB STA		ALPHA INCR ONE BETA GAMMA INCR ONE DELTA				
ALPHA F	VORD RESW RESW		1 1 1			
	: Hukk	eri, Dt: Belga	S J P N Trust's of Technology, aum, Karnataka, In 3887, Fax:278886, Mail:princip		Aruna D. Page No.	CP04 V 1.1 CSE G 2014

A.Year / C 2014		Subject SS	Topic Machine Architecture
GAMMA	RESW	1	
DELTA	RESW	1	
INCR	RESW	1	
SIC/XE Ex:	ample:		
LDS	INCR		
LDA	ALPHA		
ADD	DR S, A		
SUB	#1		
STA	BETA		
LDA	GAMMA		
ADD	DR S, A		
SUB	#1		
STA	DELTA		
ALPHA	RESW	1	
BETA	RESW	1	
GAMMA	RESW	1	
DELTA	RESW	1	
INCR	RESW	1	

1.6.3 Looping & Indexing Operations:

TIX instruction : First it increments the value of x by 1 then it tests the value with its operand value.

TIXR instruction : First it increments the value of x by 1 then it tests the value with its operand value register.

3. Write a sequence of instructions for SIC and SIC/XE to copy the string "system software" into another string.

SIC Example:

-		7000		
MOVEOU	LDX	ZERO STD1 V		
MOVECH	LDCH	STR1, X		
	STCH	STR2, X		
	TIX	FIFTEEN		
	JLT	MOVECH		
STR1	BYTE	C 'system software'		
STR2	RESB	15		
ZERO	WORD	0		
FIFTEEN	WORD	15		
SIC/XE Exa	mnle			
SIC/AL EX	-			
	LDT	#15		
	LDX	#0		
MOVECH	LDCH	STR1, X		
	STCH	STR2, X		
	TIXR	Т		
	JLT	MOVECH		
		S J P N Trust's	Author	TCP04
8	Hirasugar In	stitute of Technology, Nidasoshi-591236	Aruna D.	V 1.1
	Tq: Hukkeri, Dt: Belgaum, Karnataka, India, web: <u>www.hsit.ac.in</u>		Page No.	CSE
ESTD () 1984	Phone:+9	91-8333-278887, Fax:278886, Mail: <u>principal@hsit.ac.in</u>	10	AUG 2014

A.Year / C 2014/	•	Semester 5	Subject SS	Topic Machine Architecture
STR1	BYTE	C 'syst	em software'	
STR2	RESB	15		
4. Write a se SIC Examp	1	f instruction fo	r SIC to clear 20 by	tes strings to all blanks.
	LDX	ZERO		
MOVECH	LDCH	CHRZ	, 1	
	STCH	STR2,	Х	
	TIX	TWEN	JTY	

CHRZ	BYTE	С''
STR2	RESB	20
ZERO	WORD	0
TWENTY	WORD	20

JLT

MOVECH

Note:

TIX instruction adds 1 to register so it is not suitable for next program where the value of index register

must be incremented by 3 byte.

5. Write a sequence of instructions for SIC & SIC/XE to add two array elements namely ALPHA &

BETA & store the result in GAMMA.

SIC Example:

_		
ADDLP	LDA STA LDX LDA ADD STA LDA ADD STA COMP JLT	ZERO INDEX INDEX ALPHA, X BETA, X GAMMA, X INDEX THREE INDEX K300 ADDLP
INDEX ALPHA BETA GAMMA ZERO K300	RESW RESW RESW WORD WORD	1 100 100 100 0 300

LDS	#3
LDT	#300

S J P N Trust's	Author	TCP04
Hirasugar Institute of Technology, Nidasoshi-591236	Aruna D.	V 1.1
Tq: Hukkeri, Dt: Belgaum, Karnataka, India, web: <u>www.hsit.ac.in</u>	Page No.	CSE
Phone:+91-8333-278887, Fax:278886, Mail:principal@hsit.ac.in	11	AUG 2014

A.Year / (2014		nester 5	Subject SS	Topic Machine Architecture
	LDX	#0		
ADDLP	LDA	ALPH	A, X	
	ADD	BETA		
	STA	GAM	•	
	ADDR	S, X		
	COMPR	Χ, Τ		
	JLT	ADDL	Р	
ALPHA	RESW		100	
BETA	RESW		100	
GAMMA	RESW		100	

1.6.4 Input & Output:

6. Write a sequence of instructions for SIC to read a 1-byte of data from the device 'F1' & copy it to the

device '05'.

INLOOP	RD	INDEV INLOOP INDEV DATA
OUTLP	~	OUTDEV OUTLP DATA OUTDEV
INDEV OUTDEV DATA	BYTE BYTE RESB	

7. Write a subroutine for SIC & SIC/XE to read a 100-byte record from the device 'F1' into BUFFER.

SIC Example:

	JSUB READ		
READ RLOOP	JEQ R RD I	NDEV LOOP NDEV UFFER, X 100	
INDEV BUFFER ZERO K100	BYTE RESB WORD WORD	X 'F1' 100 0 100	

S J P N Trust's	Author	TCP04
Hirasugar Institute of Technology, Nidasoshi-591236	Aruna D.	V 1.1
Tq: Hukkeri, Dt: Belgaum, Karnataka, India, web: <u>www.hsit.ac.in</u>	Page No.	CSE
Phone:+91-8333-278887, Fax:278886, Mail:principal@hsit.ac.in	12	AUG 2014

A.Year / 2014		emester 5	Subject SS		pic rchitecture	
SIC/XE Ex	<u> xample:</u>					
	JSUB RE	EAD				
READ RLOOP	TD IN JEQ R RD IN STCH B TIXR T	100 NDEV LOOP NDEV UFFER, X				
INDEV BUFFER	BYTE RESB	X 'F1' 100				
8. Write a s	subroutine for	r SIC & SIC/X	XE to write a 100-b	yte record from BUFFE	R into the de	vice '05'.
<u>SIC Exam</u>	ple:					
	JSUB W	RITE				
WRITE WLOOP	TD O JEQ W LDCH B WD O TIX K	ERO UTDEV VLOOP UFFER, X UTDEV 100 VLOOP				
OUTDEV BUFFER ZERO K100	BYTE RESB WORD WORD	X '05' 100 0 100				
SIC/XE Ex	<u>xample:</u>					
	JSUB W	RITE				
WRITE	LDX # LDT #	0 100				
WLOOP	JEQ W LDCH B WD O TIXR T	UTDEV VLOOP UFFER, X UTDEV VLOOP				
		Tugatit t	SJPN Trust's	lidaaabi E01226	Author	TCP04
Contraction of the second seco				Nidasoshi-591236	Aruna D.	V 1.1
ESTD () 1964			I m, Karnataka, Ind 37, Fax:278886, Mail: <u>principa</u>		Page No. 13	CSE AUG 2014
					15	

	ar / Chapte 2 014/ 1	r Semes 5	ster	Subject SS	Topic Machine Architecture
	•				
OUTD BUFFI			X '05' 100		
Derri		5D	100		
<u>1.7 P</u>	entium Pr	<u>o Archit</u>	<u>ecture</u>		
1.7.1 N	<u>lemory:</u>				
Memo	ry can be de	efined in 2 v	ways:		
Physic	al Level:				
1.	Memory co	onsists of 8	bit bytes		
2.	All address	ses used are	e byte addr	ess.	
3.	Two conse	cutive byte	form a wo	ord.	
4.	Four byte f	form a dout	ole-word.(dword)	
Logica	l View: Co	llection of	segments		
1.	Memory a	ddress cons	ists of two	parts: a segment	number & an offset.
2.	Segments of	can be of di	fferent siz	es & often used f	or different purposes.
3.	A segment	can also be	e divided in	nto pages.	
4.	The segme	ent/offset a	address sp	ecified by the	programmer is automatically translated into
	physical by	te address	by the x86	Memory Manag	ement Unit (MMU).
1.7.2 F	<u>Register:</u>				
1.	These are	8 general-p	ourpose re	gister, which are	named EAX,EBX,ECX,EDX,ESI,EDI,EBP an
	ESP.				
2.	Each gener	al purpose	register is	32 bits long(One	e double word)
3.	Register E	AX,EBX,E	CX, and E	DX are generally	used for data manipulation.
4.	Register E	SI, EDI, EE	BP & ESP	are generally use	d to hold addresses.
5.	EIP is a 3	2-bit speci	ial purpos	e register that c	ontains a pointer to the next instruction to b
	executed.				
6.	FLAGS is	a 32-bit reg	gister that	contains many di	fferent bit flags which indicates the status of th
	processor,	some conta	ins the res	ults of compariso	ons & arithmetic operations.
7.	There are 6	5 16-bit seg	ment regis	ster which are nar	ned DS,CS,SS,ES,GS,FS.
8.	Floating p	oint compu	tations are	e performed usin	g a special floating point unit (FPU). This un
	contains ai	aht 90 hit d		1 1 4	ner control and status registers.

	S J P N Trust's	Author	TCP04
8	Hirasugar Institute of Technology, Nidasoshi-591236	Aruna D.	V 1.1
	Tq: Hukkeri, Dt: Belgaum, Karnataka, India, web: <u>www.hsit.ac.in</u>	Page No.	CSE
	Phone:+91-8333-278887, Fax:278886, Mail: <u>principal@hsit.ac.in</u>	14	AUG 2014

A.Year / Chapter	Semester	Subject	Торіс
2014/1	5	SS	Machine Architecture

1.7.3 Data formats:

- 1. Integers are normally stored as 8,16 or 32 bits binary numbers.
- 2. 2's complement is used for negative values.
- 3. Integers can also be stored in binary coded decimal(BCD).
 - In unpacked BCD format, each byte represents one decimal digit.
 - In packed BCD format, each byte represents two decimal digits with each encoded using 4 bits of the byte.
- 4. Characters are stored one per byte using their 8 bit ASCII codes.
- **5.** Strings may consists of bits, bytes, words or doublewords, special instructions are provided to handle each type of string.
- 6. There are three different floating point data formats.

a. The single-precision format is 32 bit long.

1	7	24		
S	exponent	fraction		

b. The double-precision format is 64 bit long.

1	10	53		
S	exponent	fraction		

c. Extended-precision format is 80 bit long.

1	15	64
S	exponent	fraction

1.7.4 Instruction formats:

- 1. All of the x86 machine instructions use variations of the same basic format.
- **2.** This format begins with optional prefixes containing flags that modify the operation of the instructions.
- **3.** Following the prefixes is an opcode(1 or 2 bytes);
- **4.** Following the opcode are a number of bytes that specify the operands & addressing modes to be used.
- 5. The opcode is the only elements that is always present in every instructions.
- **6.** Other elements may or may not be present, and may be of different lengths, depending on the operations and the operands involved.

	S J P N Trust's Hirasugar Institute of Technology, Nidasoshi-591236	Author Aruna D.	TCP04 V 1.1
	Tq: Hukkeri, Dt: Belgaum, Karnataka, India, web:www.hsit.ac.in	Page No.	CSE
ESTD () 1984	Phone:+91-8333-278887, Fax:278886, Mail:principal@hsit.ac.in	15	AUG 2014

A.Year / Chapter	Semester	Subject	Торіс			
2014/1	5	SS	Machine Architecture			
7 There are a large number of different potential instruction formats varying in length from 1 byte						

 There are a large number of different potential instruction formats, varying in length from 1 byte to 10 bytes or more.

1.7.5 Addressing Modes:

- 1. An operand value may be specified as part of the instruction itself (immediate mode), or it may be in a register (register mode).
- 2. Operands stored in memory are often specified using variations of the general target address calculations.

TA = (base register) + (index register) * (scale factor) + displacement

- **3.** Any general-purpose register may be used as base register & any general-purpose register except ESP can be used as index register.
- **4.** The scale factor may have the value 1, 2, 4 or 8 and displacement may be at 8-, 16- or 32-bit value.
- 5. Various combinations of these items may be omitted resulting in eight addressing mode.
- **6.** The address of an operand in memory may also be specified as an absolute location (direct mode) or as a location relative to the EIP register (relative mode).

<u>1.7.6 Instruction set:</u>

- 1. There are more than 400 different machine instructions available.
- 2. An instruction may have zero, one,two,or three operands.
- **3.** There are register-to-register, registers-to-memory instructions, and a few memory-to-memory instructions.
- 4. In some cases, operands may also be specified in the instructions as immediate values.
- **5.** Most data movements and integers arithmetic instructions can use operands that are 1,2, or 4 byte.
- **6.** These are many instructions that perform logical and bit manipulations and support control of the processor and memory-management systems.

1.7.7 Input and Output:

- Input is performed by instructions that transfer one byte,word or doubleword at a time from an I/O port into register EAX.
- 2. Output instructions transfer one byte word,or double word from EAX to an I/O port.

S J P N Trust's	Author	TCP04
Hirasugar Institute of Technology, Nidasoshi-591236	Aruna D.	V 1.1
Tq: Hukkeri, Dt: Belgaum, Karnataka, India, web: <u>www.hsit.ac.in</u>	Page No.	CSE
Phone:+91-8333-278887, Fax:278886, Mail:principal@hsit.ac.in	16	AUG 2014