
CSc 453

Compilers and Systems Software

21 : Code Generation II

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2009 Christian Collberg

Next-Use Information

Overview

We need to know, for each use of a variable in a basic block,
whether the value contained in the variable will be used again
later in the block.

If a variable has no next-use we can reuse the register
allocated to the variable.

We also need to know whether a variable used in a basic block
is live-on-exit, i.e. if the value contained in the variable has a
use outside the block. The global data-flow analysis we talked
about in the optimization unit can be used to this end.

If no live-variable analysis has been done we assume all
variable are live on exit from the block. This will mean that
when the end of a basic block has been reached, all values
kept only in registers will have to be stored back into their
corresponding variables’ memory locations.

Basic Block Code Generation

X := Z + Y

X := Y + Z
Z := Z * 5
T7 := Z + 1
Y := Z − T7

Generate code one basic block at a time.

We don’t know which path through the flow-graph has taken
us to this basic block. ⇒ We can’t assume that any variables
are in registers.

Basic Block Code Generation. . .

X := Z + Y

X := Y + Z
Z := Z * 5
T7 := Z + 1
Y := Z − T7

We don’t know where we will go from this block. ⇒ Values
kept in registers must be stored back into their memory
locations before the block is exited.

into their memory locations.

Load variables into registers.

Compute....

Store register values back

Next-Use Information

X := Z + Y

X := Y + Z
Z := Z * 5
T7 := Z + 1
Y := Z − T7

We want to keep variables in registers for as long as possible,
to avoid having to reload them whenever they are needed.

When a variable isn’t needed any more we free the register to
reuse it for other variables. ⇒ We must know if a particular
value will be used later in the basic block.

Next-Use Information. . .

X := Z + Y

X := Y + Z
Z := Z * 5
T7 := Z + 1
Y := Z − T7

If, after computing a value X, we will soon be using the value
again, we should keep it in a register. If the value has no
further use in the block we can reuse the register.

Next-Use Information. . .

X is live at (5)
(5) X := · · ·

... (no ref to X) ...

(14) · · · := · · · X · · ·

X is live at (5) because the value computed at (5) is used later
in the basic block.

X’s next use at (5) is (14).

It is a good idea to keep X in a register between (5) and (14).

Next-Use Information. . .

X is dead at (12)
(12) · · · := · · · X · · ·

... (no ref to X) ...

(25) X := · · ·

X is dead at (12) because its value has no further use in the
block.

Don’t keep X in a register after (12).

Next-Use Information – Example

Intermediate Live/Dead Next Use

Code x y z t7 x y z t7

(1) x := y+z L D D (2)

(2) z := x∗5 D L (3)

(3) t7 := z+1 L L (4) (4)

(4) y := z-t7 L L D (5) (5)

(5) x := z+y D D D

x, y, z are live on exit, t7 (a temporary) isn’t.

Algorithm

Next-Use Algorithm

A two-pass algorithm computes next-use & liveness
information for a basic block.

In the first pass we scan over the basic block to find the end.
Also:

1 For each variable X used in the block we create fields X.live
and X.next use in the symbol table. Set X.live:=FALSE;
X.next use:=NONE.

2 Each tuple (i) X:=Y+Z stores next-use & live information.
We set

(i).X.live:=(i).Y.live:=(i).Z.live:=FALSE and
(i).X.next use:=(i).Y.next use:= (i).Z.next use:= NONE.

Next-Use Algorithm. . .

Basic Block

Kind=VAR Type=Int

Live=TRUE NextUse=(5)

Symbol Table Entry for X

(5) X.Live=FALSE X.NextUse=_

(4) X.Live=TRUE X.NextUse=(5)

Y.Live=FALSE Y.NextUse=_

Tuple

Info.

(4) X := Y + 3
(5) Z := X + 9

ID=X

1 Scan forwards over the basic block:

Initialize the symbol table entry for each used variable, and the
tuple data for each tuple.

2 Scan backwards over the basic block. For every tuple

(i): x := y op z do:

1 Copy the live/next use-info from x, y, z’s symbol table
entries into the tuple data for tuple (i).

2 Update x, y, z’s symbol table entries:
x.live := FALSE;
x.next use := NONE;
y.live := TRUE;
z.live := TRUE;
y.next use := i;
z.next use := i;

Example

Next-Use Example – Forward Pass

SyTab-Info Instr.-Info

live next use live next use

i x y z x y z x y z x y z

(1) x:=y+z F F F F F F

(2) z:=x*5 F F F F F F

(3) y:=z-7 F F F F F F

(4) x:=z+y F F F F F F

Next-Use Example – Backwards Pass

SyTab-Info Instr.-Info

live next use live next use

i x y z x y z x y z x y z

(4) x := z+y F T T 4 4 F F F

(3) y := z-7 F F T 3 F T T 4 4

(2) z := x*5 T F F 2 F F T 3

(1) x := y+z F T T 1 1 T F F 2

The data in each row reflects the state in the symbol table and
in the data section of instruction i after i has been processed.

Register & Address Descriptors

Register & Address Descriptors

During code generation we need to keep track of what’s in
each register (a Register Descriptor).

One register may hold the values of several variables (e.g.
after x:=y).

We also need to know where the values of variables are
currently stored (an Address Descriptor).

A variable may be in one (or more) register, on the stack, in
global memory; all at the same time.

Register & Address Descriptors. . .

Address Descriptor

Id Memory Regs.

x fp(16) {r0}
y fp(20) {}
z 0x2020 {r1, r3}
t1 {r0}

Register Descriptor

Reg Contents

r0 {x, t1}
r1 {z}
r2 {}
r3 {z}

A Simple Code Generator

A Simple Code Generator

A flowgraph: We generate code for each individual basic block.

An Address Descriptor (AD): We store the location of each
variable: in register, on the stack, in global memory.

A Register Descriptor (RD): We store the contents of each
register.

Next-Use Information: We know for each point in the code
whether a particular variable will be referenced later
on.

We need:

GenCode(i: x := y op z): Generate code for the i:th intermediate
code instruction.

GetReg(i: x := y op z): Select a register to hold the result of the
operation.

Machine Model

We will generate code for the address-register machine
described in the book. It is a CISC, not a RISC; it is similar to
the x86 and MC68k.

The machine has n general purpose registers R0, R1, ...,

Rn.

MOV M, R Load variable M into register R.

MOV R, M Store register R into variable M.

OP M, R Compute R := R OP M, where OP is one of ADD,
SUB, MUL, DIV.

OP R2, R1 Compute R1 := R1 OP R2, where OP is one of
ADD, SUB, MUL, DIV.

GenCode((i): X := Y OP Z)

L is the location in which the result will be stored. Often a
register.

Y’ is the most favorable location for Y. I.e. a register if Y is in
a register, Y’s memory location otherwise.

GenCode((i): X := Y)

Often we won’t have to generate any code at all for the tuple
X := Y; instead we just update the address and register
descriptors (AD & RD).

GetReg(i: X := Y op Z)

If we won’t be needing the value stored in Y after this
instruction, we can reuse Y’s register.

GenCode((i): X := Y OP Z)

1 L := GetReg(i: X := Y op Z).

2 Y’ := “best” location for Y. IF Y is not in Y’ THEN

gen(MOV Y’, L).

3 Z’ := “best” location for Z.

4 gen(OP Z’, L)

5 Update the address descriptor: X is now in location L.

6 Update the register descriptor: X is now only in register
L.

7 IF (i).Y.next use=NONE THEN update the register
descriptor: Y is not in any register. Same for Z.

GenCode((i): X := Y)

IF Y only in mem. location L THEN

R := GetReg(); gen(MOV Y, R);

AD: Y is now only in reg R.

RD: R now holds Y.

IF Y is in register R THEN

AD: X is now only in register R.

RD: R now holds X.

IF (i).Y.next use=NONE THEN RD: No register holds Y.

At the end of the basic block store all live variables (that
are left in registers) in their memory locations.

Register Allocation

GetReg(i: X := Y op Z)

1 IF

Y is in register R and R holds only Y

(i).Y.next use=NONE

THEN RETURN R;

2 ELSIF there’s an empty register R available THEN RETURN

R;

3 ELSIF

X has a next use and there exists an occupied register R

THEN Store R into its memory location and RETURN

R;

4 OTHERWISE RETURN the memory location of X.

Code Generation Example

Code Generation Example

The state in RD and AD is after the operation has taken
place.

Only two registers are available, r0 and r1.

In the last instruction we select r0 for spilling.

Note that x and y are kept in registers until the end of the
basic block. At the end of the block, they are returned to
their memory locations.

Code Generation Example. . .

Interm. Code Machine

(1) x := y + z MOV y, r0

ADD z, r0

(2) z := x ∗ 5 MUL 5, r0

(3) y := z - 7 MOV r0, r1

SUB 7, r1

(4) x := z + y MOV r0, z

ADD r1, r0

MOV r1, y

MOV r0, x

Code Generation Example. . .

Interm. Machine RD AD Live

x y z

x := y + z MOV y, r0 r0 ≡ x x ≡ r0 T F T

ADD z, r0

z := x ∗ 5 MUL 5, r0 r0 ≡ z z ≡ r0 F T

y := z - 7 MOV r0, r1 r0 ≡ z z ≡ r0 T T

SUB 7, r1 r1 ≡ y y ≡ r1

Code Generation Example. . .

Interm. Machine RD AD Live

x := z + y MOV r0, z r0 ≡ z z ≡ mem T T T

z ≡ r0

r1 ≡ y y ≡ r1

ADD r1, r0 r0 ≡ x x ≡ r0

r1 ≡ y y ≡ r1

z ≡ mem

MOV r1, y y ≡ mem

MOV r0, x x ≡ mem

Summary

Readings and References

Read Louden:

Generation of Intermediate Code 407–442
Machine Code Generation 453–467

This lecture is taken from the Dragon book:

Next-Use Information 534–535
Simple Code Generation 535–541.
Address & Register Descriptors 537

Summary

Register allocation requires next-use information, i.e. for each
reference to x we need to know if x ’s value will be used
further on in the program.

We also need to keep track of what’s in each register. This is
sometimes called register tracking.

We need a register allocator, a routine that picks registers to
hold the contents of intermediate computations.

