

Outline
 Role of lexical analyzer

 Input Buffering

 Specification of tokens

 Recognition of tokens

 Lexical analyzer generator

 Finite automata

 Design of lexical analyzer generator

The role of lexical analyzer

Lexical
Analyzer

Parser
Source

program

token

getNextToken

Symbol
table

To semantic

analysis

Why to separate Lexical analysis
and parsing
1. Simplicity of design

2. Improving compiler efficiency

3. Enhancing compiler portability

Tokens, Patterns and Lexemes
 A token is a pair a token name and an optional token

value

 A pattern is a description of the form that the lexemes
of a token may take

 A lexeme is a sequence of characters in the source
program that matches the pattern for a token

Example

Token Informal description Sample lexemes

if

else

comparison

id

number

literal

Characters i, f

Characters e, l, s, e

< or > or <= or >= or == or !=

Letter followed by letter and digits

Any numeric constant

Anything but “ sorrounded by “

if

else

<=, !=

pi, score, D2

3.14159, 0, 6.02e23

“core dumped”

printf(“total = %d\n”, score);

Attributes for tokens
 E = M * C ** 2
 <id, pointer to symbol table entry for E>
 <assign-op>
 <id, pointer to symbol table entry for M>
 <mult-op>
 <id, pointer to symbol table entry for C>
 <exp-op>
 <number, integer value 2>

Lexical errors
 Some errors are out of power of lexical analyzer to

recognize:

 fi (a == f(x)) …

 However it may be able to recognize errors like:

 d = 2r

 Such errors are recognized when no pattern for tokens
matches a character sequence

Error recovery
 Panic mode: successive characters are ignored until we

reach to a well formed token

 Delete one character from the remaining input

 Insert a missing character into the remaining input

 Replace a character by another character

 Transpose two adjacent characters

Input buffering
 Sometimes lexical analyzer needs to look ahead one or

more symbols to decide about the current token.

 In C language: we need to look after -, = or < to decide
what token to return

 We need to introduce a two buffer scheme to handle
large look-aheads safely

E = M * C * * 2 eof

Sentinels

Switch (*forward++) {

case eof:

if (forward is at end of first buffer) {

reload second buffer;

forward = beginning of second buffer;

}

else if {forward is at end of second buffer) {

reload first buffer;\

forward = beginning of first buffer;

}

else /* eof within a buffer marks the end of input */

terminate lexical analysis;

break;

cases for the other characters;

}

E = M eof * C * * 2 eof eof

Specification of tokens
 In theory of compilation regular expressions are used

to formalize the specification of tokens

 Regular expressions are means for specifying regular
languages

 Example:
 Letter_(letter_ | digit)*

 Each regular expression is a pattern specifying the
form of strings

Regular expressions
 Ɛ is a regular expression, L(Ɛ) = {Ɛ}

 If a is a symbol in ∑then a is a regular expression, L(a)
= {a}

 (r) | (s) is a regular expression denoting the language
L(r) ∪ L(s)

 (r)(s) is a regular expression denoting the language
L(r)L(s)

 (r)* is a regular expression denoting (L9r))*

 (r) is a regular expression denting L(r)

Regular definitions
d1 -> r1

d2 -> r2

…

dn -> rn

 Example:

letter_ -> A | B | … | Z | a | b | … | Z | _

digit -> 0 | 1 | … | 9

id -> letter_ (letter_ | digit)*

Extensions
 One or more instances: (r)+

 Zero of one instances: r?

 Character classes: [abc]

 Example:

 letter_ -> [A-Za-z_]

 digit -> [0-9]

 id -> letter_(letter|digit)*

Recognition of tokens
 The next step is to formalize the patterns:

digit -> [0-9]

Digits -> digit+

number -> digit(.digits)? (E[+-]? Digit)?

letter -> [A-Za-z_]

id -> letter (letter|digit)*

Relop -> < | > | <= | >= | = | <>

 We also need to handle whitespaces:

ws -> (blank | tab | newline)+

Transition diagrams
 Transition diagram for relop

Transition diagrams
 Transition diagram for reserved words and identifiers

Transition diagrams
 Transition diagram for unsigned numbers

Transition diagrams
 Transition diagram for whitespace

Architecture of a transition-
diagram-based lexical analyzer

TOKEN getRelop()

{

TOKEN retToken = new (RELOP)

while (1) { /* repeat character processing until a

return or failure occurs */

switch(state) {

case 0: c= nextchar();

if (c == ‘<‘) state = 1;

else if (c == ‘=‘) state = 5;

else if (c == ‘>’) state = 6;

else fail(); /* lexeme is not a relop */

break;

case 1: …

…

case 8: retract();

retToken.attribute = GT;

return(retToken);

}

Lexical Analyzer Generator - Lex

Lexical
Compiler

Lex Source program

lex.l
lex.yy.c

C
compiler

lex.yy.c a.out

a.outInput stream Sequence

of tokens

Structure of Lex programs

Declarations

%%

Translation rules

%%

Auxiliary functions

Pattern {Action}

Example
%{

/* definitions of manifest constants

LT, LE, EQ, NE, GT, GE,

IF, THEN, ELSE, ID, NUMBER, RELOP */

%}

/* regular definitions

delim [\t\n]

ws {delim}+

letter [A-Za-z]

digit [0-9]

id {letter}({letter}|{digit})*

number {digit}+(\.{digit}+)?(E[+-]?{digit}+)?

%%

{ws} {/* no action and no return */}

if {return(IF);}

then {return(THEN);}

else {return(ELSE);}

{id} {yylval = (int) installID(); return(ID); }

{number} {yylval = (int) installNum(); return(NUMBER);}

…

Int installID() {/* funtion to install the
lexeme, whose first character is
pointed to by yytext, and whose
length is yyleng, into the symbol
table and return a pointer thereto
*/

}

Int installNum() { /* similar to
installID, but puts numerical
constants into a separate table */

}

25

Finite Automata
 Regular expressions = specification

 Finite automata = implementation

 A finite automaton consists of

 An input alphabet

 A set of states S

 A start state n

 A set of accepting states F S

 A set of transitions state input state

26

Finite Automata State Graphs
 A state

• The start state

• An accepting state

• A transition
a

27

A Simple Example
 A finite automaton that accepts only “1”

 A finite automaton accepts a string if we can follow
transitions labeled with the characters in the string
from the start to some accepting state

1

28

Another Simple Example
 A finite automaton accepting any number of 1’s

followed by a single 0

 Alphabet: {0,1}

 Check that “1110” is accepted but “110…” is not

0

1

29

Epsilon Moves
 Another kind of transition: -moves

• Machine can move from state A to state B
without reading input

A B

30

Execution of Finite Automata
 A DFA can take only one path through the state graph

 Completely determined by input

 NFAs can choose

 Whether to make -moves

 Which of multiple transitions for a single input to take

31

Acceptance of NFAs
 An NFA can get into multiple states

• Input:

0

1

1

0

1 0 1

• Rule: NFA accepts if it can get in a final state

32

NFA vs. DFA (1)
 NFAs and DFAs recognize the same set of languages

(regular languages)

 DFAs are easier to implement

 There are no choices to consider

33

NFA vs. DFA (2)
 For a given language the NFA can be simpler than the

DFA

0
1

0

0

0
1

0

1

0

1

NFA

DFA

• DFA can be exponentially larger than NFA

34

Implementation
 A DFA can be implemented by a 2D table T

 One dimension is “states”

 Other dimension is “input symbols”

 For every transition Si
a Sk define T[i,a] = k

 DFA “execution”

 If in state Si and input a, read T[i,a] = k and skip to state
Sk

 Very efficient

