=~

Lexical Analysis

/ \\

==

Outline

Role of lexical analyzer
Input Buffering
Specification of tokens
Recognition of tokens
Lexical analyzer generator
Finite automata

Design of lexical analyzer generator

_ == /

The role of lexical analyzer

token

To semantic
analysis

Source Lexical
PIOgrdi Analyzer

getNextToken

~Why to sepamﬁraﬂaysis/

and parsing

1. Simplicity of design
>. Improving compiler efficiency
5. Enhancing compiler portability

Tokens, Patterns and Lexemes

A token is a pair a token name and an optional token
value

A pattern is a description of the form that the lexemes
of a token may take

A lexeme is a sequence of characters in the source
program that matches the pattern for a token

Example

Token | Informal description Sample lexemes
If Characters i, f if
else Characterse, I, s, € else

Comparison <or>or<=or>=or==orl= <z, I=

id Letter followed by letter and digits | pi, score, D2
number Any numeric constant 3.14159, 0, 6.02e23

literal Anything but “ sorrounded by “ | “core dumped”

printf(“total = %d\n”, score);

Attributes for tokens
E=M*(C** 2

<id, pointer to symbol table entry for E>

<assign-op>

<id, pointer to symbol table entry for M>
<mult-op>

<id, pointer to symbol table entry for C>

<exp-op>

<number, integer value 2>

/ \\ e

/V

Lexical errors

Some errors are out of power of lexical analyzer to
recognize:

e fi (a ==1(x)) ..
However it may be able to recognize errors like:
ed=o2r

Such errors are recognized when no pattern for tokens
matches a character sequence

/ \\ e

==

Error recovery

Panic mode: successive characters are ignored until we
reach to a well formed token

Delete one character from the remaining input
Insert a missing character into the remaining input
Replace a character by another character
Transpose two adjacent characters

Input buffering

Sometimes lexical analyzer needs to look ahead one or
more symbols to decide about the current token.

e In C language: we need to look after -, = or < to decide
what token to return

We need to introduce a two buffer scheme to handle
large look-aheads safely

lllllllllllllllllllllllllllllll

|||||||||||||||||||||||||||||||

Switch (*forward++) {
case eof:
if (forward is at end of first buffer) {
reload second buffer;
forward = beginning of second buffer;

}
else if {forward is at end of second buffer) {
reload first buffer;\
forward = beginning of first buffer;
}

else /* eof within a buffer marks the end of input */
terminate lexical analysis;
break;
cases for the other characters;

=

Specification of tokens

In theory of compilation regular expressions are used
to formalize the specification of tokens

Regular expressions are means for specifying regular
languages
Example:

o Letter_(letter_ | digit)*

Each regular expression is a pattern specifying the
form of strings

/ o o AT —

/V

Regular expressions

e is a regular expression, L(g) = {¢}

Ifaisasymbol in X then ais a regular expression, L(a)
= {a]

(r) | (s) is a regular expression denoting the language
L(r) U L(s)

(r)(s) is a regular expression denoting the language
L(r)L(s)

(r)* is a regular expression denoting (Lgr))*

(r) is a regular expression denting L(r)

e
Regular definitions

di->n

d2 ->r2
dn -> rn

Example:
letter ->A|B|..|Z|a|b|..|Z]|_
digit ->o0|1]|..]|9
id -> letter_ (letter_ | digit)*

Extensions

One or more instances: (r)+
Zero of one instances: r?

Character classes: [abc]

Example:

o letter -> [A-Za-z_|

e digit ->][0-9]

e id -> letter_(letter|digit)*

Recognition of tokens

The next step is to formalize the patterns:
digit ->[0-9]
Digits -> digit+
number -> digit(.digits)? (E[+-]? Digit)?

letter -> [A-Za-z_]
id -> letter (letter|digit)*

Relop ><|>|<=|>=|=]|<>
We also need to handle whitespaces:

ws -> (blank | tab | newline)+

Transition diagrams

* Transition diagram for relop

start i{}/\ < i @ =

return (relop, LE)

oz =© return (relop, NE)
\ *
___other ;@ return (relop, LT)

return (relop, EQ)

x__ other
return (relop, GT)

return (relop, GE)

© O

Transition diagrams

* Transition diagram for reserved words and identifiers

letter or digit

—>® letter ;® other ;@ return (getToken(), installlD())

Transition diagrams

¢ Transition diagram for unsigned numbers

digit digit
P P D
D@ D@
g digit
®

Transition diagrams

* Transition diagram for whitespace

delim

start e delim nthar *

__Architecture o

diagram-based lexical analyzer

TOKEN getRelop()
{
TOKEN retToken = new (RELOP)
while (1) { /* repeat character processing until a
return or failure occurs */
switch(state) {
case o: c= nextchar();
if (c == ‘<‘) state =15
else if (c == ‘=’) state = 5;
else if (c == >’) state = 6;
else fail(); /* lexeme is not a relop */
break;

case1: ...

case 8: retract();
retToken.attribute = GT;
return(retToken);

Lexical Analyzer Generator - Lex

Lex Source program 1
= prog LeX1c.al o
' Compiler
lex.yy.c : a.out
compiler
Sequence

Input stream

of tokens

Structure of Lex programs

Declarations

%%

Translation rules > Pattern {Action}
%%

Auxiliary functions

=

%

xampE
{

/* definitions of manifest constants
LT OE N ol G
IF, THEN, ELSE, ID, NUMBER, RELOP */

%}

/* regular definitions

delim
WS
letter
digit
id

number

%%
{ws}
if
then
else
{id}

{number}

[\t\n]

{delim}+

[A-Za-z]

[0-9]

{letter}({letter}|{digit})*
{digit}+(\.{digit}+) ?(E[+-]?{digit}+)?

{/* no action and no return */}

{return(IF);}

{return(THEN);}

{return(ELSE);}

{yylval = (int) installID(); return(ID); }

{yylval = (int) installNum(); return(NUMBER);}

P

/

Int installID() {/* funtion to install the
lexeme, whose first character is
pointed to by yytext, and whose
length is yyleng, into the symbol
table and return a pointer thereto

a

Int installNum() { /* similar to
installID, but puts numerical
constants into a separate table */

=

Finite Automata

Regular expressions = specification

Finite automata = implementation

A finite automaton consists of
e An input alphabet X
e A set of states S
e A start state n
e A set of accepting states F — S
e A set of transitions state —"Put state

25

Finite Automata Stags Graphs

A state

- The start state D
- An accepting state @

d

- A transition -

26

=

A Simple Example

A finite automaton that accepts only “1

i

A finite automaton accepts a string if we can follow
transitions labeled with the characters in the string
from the start to some accepting state

27

Another Simple Example

A finite automaton accepting any number of 1’s
followed by a single o

Alphabet: {0,1}
1

/O\@
Check that “1110” is accepted but “110...” is not

28

=

Epsilon Moves

Another kind of transition: e-moves

e

OO

- Machine can move from state A to state B
without reading input

29

Execution of Finite Automata

A DFA can take only one path through the state graph
e Completely determined by input

NFAs can choose

e Whether to make e-moves
e Which of multiple transitions for a single input to take

30

Acceptance of NFAs

* An NFA can get into multiple states

ik
Qf\@“ ——@
=
- Input: o

* Rule: NFA accepts if it can get in a final state

31

-
NFA vs. DFA (1)

NFAs and DFAs recognize the same set of languages
(regular languages)

DFAs are easier to implement

e There are no choices to consider

32

e

'NFA vs. DFA (2)

For a given language the NFA can be simpler than the
DFA

1
NF A 3.@
0
C o

1
* DFA can be exponentially larger than NFA

33

Implementation

A DFA can be implemented by a 2D table T

e One dimension is “states”

e Other dimension is “input symbols”

e For every transition S, »>2S, define T[i,a] = k
DFA “execution”

e Ifin state S, and input a, read T|[i,a] = k and skip to state
Sy

<

e Very efficient

34

