
Subject: System Software and Compilers (18CS61)

Module 5: Syntax Directed Translation,
Intermediate code generation, Code generation

S J P N Trust's

HIRASUGAR INSTITUTE OF TECHNOLOGY, NIDASOSHI.
Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt. of Karnataka and Permanently Affiliated to VTU Belagavi.
Accredited at 'A' Grade by NAAC

Programmes Accredited by NBA: CSE, ECE, EEE & ME

Dr. Mahesh G. Huddar

Dept. of Computer Science and Engineering

CSE, HIT, Nidasoshi

https://hsit.ac.in/nba-accreditation-status.php

• A syntax-directed definition (SDD) is a context-free grammar together with, attributes (values)

and rules (Semantic rules).

• Attributes are associated with grammar symbols and rules are associated with productions.

• If X is a symbol and a is one of its attributes, then we write X.a to denote the value of a at a

particular parse-tree node labeled X.

• If we implement the nodes of the parse tree by records or objects, then the attributes of X can

be implemented by data fields in the records that represent the nodes for X.

• Attributes may be of any kind: numbers, types, table references, or strings, for instance.

• The strings may even be long sequences of code, say code in the intermediate language used

by a compiler.

Syntax-Directed Definitions

CSE, HIT, Nidasoshi

Syntax-Directed Definitions

CSE, HIT, Nidasoshi

We shall deal with two kinds of attributes for nonterminals:

1. A synthesized attribute for a nonterminal A at a parse-tree node N is defined by a semantic rule

associated with the production at N. A synthesized attribute at node N is defined only in terms of

attribute values at the children of N and at N itself.

– A→BCD

– A.val = B.val or A.val = C.val or A.val = D.val

2. An inherited attribute for a nonterminal B at a parse-tree node N is defined by a semantic rule

associated with the production at the parent of N. An inherited attribute at node N is defined only in

terms of attribute values at N's parent, N itself, and N's siblings.

– A→BCD

– C.val = A.val or C.val = B.val or C.val = D.val

Syntax-Directed Definitions - Inherited and Synthesized Attributes

CSE, HIT, Nidasoshi

1. A SDD that uses only synthesized attributes, then such SDD is called as S-Attributed

SDD.

– A→BCD

– A.val = B.val or A.val = C.val or A.val = D.val

2. A SDD that uses both synthesized and inherited attributes, then such SDD is called as L-

Attributed SDD. Note: Each inherited attribute is restricted to inherit from parent or left

sibling.

– A→BCD

– A.val = B.val or C.val = A.val or C.val = B.val or C.val = D.val (not valid)

Syntax-Directed Definitions – Types of SDD

CSE, HIT, Nidasoshi

• A parse tree, showing the value(s) of its attribute(s) is called an annotated parse tree.

• How do we construct an annotated parse tree?

• In what order do we evaluate attributes?

• Before we can evaluate an attribute at a node of a parse tree, we must evaluate all the

attributes upon which its value depends.

• If all attributes are synthesized, then we must evaluate the val attributes at all the

children of a node before we can evaluate the val attribute at the node itself.

• With synthesized attributes, we can evaluate attributes in any bottom-up order.

Evaluating an SDD at the Nodes of a Parse Tree

CSE, HIT, Nidasoshi

• For SDD's with both inherited and synthesized attributes, there is no guarantee that

there is even one order in which to evaluate attributes at nodes.

• For instance, consider nonterminals A and B, with synthesized and inherited attributes A.s

and B.i, respectively, along with the production and rules

• These rules are circular; it is impossible to evaluate either A.s at a node N or B.i at the

child of N without first evaluating the other.

• The circular dependency of A.s and B.i at some pair of nodes in a parse tree is suggested

by Fig.

Evaluating an SDD at the Nodes of a Parse Tree

CSE, HIT, Nidasoshi

Evaluating an SDD at the Nodes of a Parse Tree

CSE, HIT, Nidasoshi

• Example 1: Annotated parse tree for string: 3 * 5 + 4 n

Evaluating an SDD at the Nodes of a Parse Tree

CSE, HIT, Nidasoshi

• Example 2: Annotated parse tree for string: (3 + 4) * (5 + 6) n

Evaluating an SDD at the Nodes of a Parse Tree

CSE, HIT, Nidasoshi

• Example 3: Annotated parse tree for string: 1 * 2 * 3 * (4 + 5) n

Evaluating an SDD at the Nodes of a Parse Tree

CSE, HIT, Nidasoshi

• Example 2: Annotated parse tree for string: 3 * 5

Evaluating an SDD at the Nodes of a Parse Tree

CSE, HIT, Nidasoshi

• Example 2: Annotated parse tree for string: 3 * 5

• The top-down parse of input 3 * 5 begins with the production T → F T’.

• Here, F generates the digit 3, but the operator * is generated by T’.

• Thus, the left operand 3 appears in a different subtree of the parse tree from *.

• An inherited attribute will therefore be used to pass the operand to the operator.

Evaluating an SDD at the Nodes of a Parse Tree

CSE, HIT, Nidasoshi

• Example 2: Annotated parse tree for string: 3 * 5 * 7

Evaluating an SDD at the Nodes of a Parse Tree

CSE, HIT, Nidasoshi

• Example 3: Annotated parse tree for string: int a, b, c

Evaluating an SDD at the Nodes of a Parse Tree

CSE, HIT, Nidasoshi

• "Dependency graphs" are a useful tool for determining an evaluation order for the

attribute instances in a given parse tree.

• While an annotated parse tree shows the values of attributes, a dependency graph

helps us determine how those values can be computed.

Evaluation Orders for SDD's

CSE, HIT, Nidasoshi

• A dependency graph depicts the flow of information among the attribute instances in a particular

parse tree; an edge from one attribute instance to another means that the value of the first is needed to

compute the second.

• Edges express constraints implied by the semantic rules.

1. For each parse-tree node, say a node labeled by grammar symbol X, the dependency graph has a

node for each attribute associated with X .

2. Suppose that a semantic rule associated with a production p defines the value of synthesized

attribute A.b in terms of the value of X.c. Then, the dependency graph has an edge from X.c to

A.b.

3. Suppose that a semantic rule associated with a production p defines the value of inherited

attribute B.c in terms of the value of X.a. Then, the dependency graph has an edge from X.a to

B.c. For each node N labeled B that corresponds to an occurrence of this B in the body of

production p, create an edge to attribute c at N from the attribute a at the node Ad that

corresponds to this occurrence of X. Note that M could be either the parent or a sibling of N.

Evaluation Orders for SDD’s - Dependency Graphs

CSE, HIT, Nidasoshi

• Example 1: Consider the following production and rule:

• At every node N labeled E, with children corresponding to the body of this production,

the synthesized attribute val at N is computed using the values of val at the two children,

labeled E and T.

• Thus, a portion of the dependency graph for every parse tree in which this production is

used looks like Fig.

• As a convention, we shall show the parse tree edges as dotted lines, while the edges of the

dependency graph are solid.

Evaluation Orders for SDD’s - Dependency Graphs

CSE, HIT, Nidasoshi

• Example 1: Consider the following production and rule:

Evaluation Orders for SDD’s - Dependency Graphs

CSE, HIT, Nidasoshi

• Example 2: Annotated parse tree for string: 3 * 5

Evaluating an SDD at the Nodes of a Parse Tree

CSE, HIT, Nidasoshi

Syntax-directed definition for simple type declarations

CSE, HIT, Nidasoshi

Syntax-directed definition for simple type declarations

CSE, HIT, Nidasoshi

Syntax-directed definition for simple type declarations

CSE, HIT, Nidasoshi

• The dependency graph characterizes the possible orders in which we can evaluate the

attributes at the various nodes of a parse tree.

• If the dependency graph has an edge from node M to node N, then the attribute

corresponding to M must be evaluated before the attribute of N.

• Thus, the only allowable orders of evaluation are those sequences of nodes Nl, N2,. . . , Nk

such that if there is an edge of the dependency graph from Ni to Nj; then i < j.

• Such an ordering embeds a directed graph into a linear order and is called a topological

sort of the graph.

Ordering the Evaluation of Attributes

CSE, HIT, Nidasoshi

• In practice, translations involve side effects: a desk calculator might print a result; a code

generator might enter the type of an identifier into a symbol table.

• With SDD's, we strike a balance between attribute grammars and translation schemes.

• Attribute grammars have no side effects and allow any evaluation order consistent with

the dependency graph. Translation schemes impose left to right evaluation and allow

semantic actions to contain any program fragment.

Semantic Rules with Controlled Side Effects

CSE, HIT, Nidasoshi

We shall control side effects in SDD's in one of the following ways:

• Permit incidental side effects that do not constrain attribute evaluation. In other words,

permit side effects when attribute evaluation based on any topological sort of the

dependency graph produces a “correct” translation, where “correct” depends on the

application.

• Constrain the allowable evaluation orders, so that the same translation is produced for any

allowable order. The constraints can be thought of as implicit edges added to the

dependency graph

Semantic Rules with Controlled Side Effects

CSE, HIT, Nidasoshi

1. Construction of Syntax Trees

2. The Structure of a Type

Applications of Syntax-Direct ed Translation

CSE, HIT, Nidasoshi

1. Construction of Syntax Trees

• each node in a syntax tree represents a construct; the children of the node represent the

meaningful components of the construct.

• A syntax-tree node representing an expression El + E2 has label + and two children

representing the subexpressions El and E2.

Applications of Syntax-Directed Translation

CSE, HIT, Nidasoshi

1. Construction of Syntax Trees - Continued

• We shall implement the nodes of a syntax tree by objects with a suitable number of fields.

• Each object will have an op field that is the label of the node.

• The objects will have additional fields as follows:

– If the node is a leaf, an additional field holds the lexical value for the leaf. A constructor function

Leaf (op, val) creates a leaf object.

– If the node is an interior node, there are as many additional fields as the node has children in the

syntax tree. A constructor function Node takes two or more arguments: Node(op, cl, c2, . . . , ck)

creates an object with first field op and k additional fields for the k children cl, . . . , ck.

Applications of Syntax-Directed Translation

CSE, HIT, Nidasoshi

1. Construction of Syntax Trees - Continued

Applications of Syntax-Directed Translation

CSE, HIT, Nidasoshi

1. Construction of Syntax Trees - Continued

CSE, HIT, Nidasoshi

2. The Structure of a Type

• Inherited attributes are useful when the structure of the parse tree differs from the abstract

syntax of the input; attributes can then be used to carry information from one part of the

parse tree to another.

• The next example shows how a mismatch in structure can be due to the design of the

language, and not due to constraints imposed by the parsing method

Applications of Syntax-Direct ed Translation

CSE, HIT, Nidasoshi

2. The Structure of a Type – Example 1

• In C, the type int [2][3] can be read as, "array of 2 arrays of 3 integers."

• The corresponding type expression array(2, array(3, integer)) is represented by the tree in

Fig.

• The operator array takes two parameters, a number and a type.

• If types are represented by trees, then this operator returns a tree node labeled array with two

children for a number and a type

Applications of Syntax-Direct ed Translation

CSE, HIT, Nidasoshi

2. The Structure of a Type – Example 2

• The SDD in Fig. nonterminal T generates either a basic type or an array type. Nonterminal

B generates one of the basic types int and float.

• T generates a basic type when T derives B C and C derives E. Otherwise, C generates array

components consisting of a sequence of integers, each integer surrounded by brackets

Applications of Syntax-Directed Translation

CSE, HIT, Nidasoshi

2. The Structure of a Type – Example 2

Applications of Syntax-Directed Translation

CSE, HIT, Nidasoshi

