
Subject: System Software and Compilers (18CS61)

Module 1: Introduction to System Software

S J P N Trust's

HIRASUGAR INSTITUTE OF TECHNOLOGY, NIDASOSHI.
Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt. of Karnataka and Permanently Affiliated to VTU Belagavi.
Accredited at 'A' Grade by NAAC

Programmes Accredited by NBA: CSE, ECE, EEE & ME

Dr. Mahesh G. Huddar

Dept. of Computer Science and Engineering

CSE, HIT, Nidasoshi

https://hsit.ac.in/nba-accreditation-status.php

• System software consists of a variety of programs that support the operation of a

computer.

• Examples for system software are

– Operating System,

– Compiler,

– Assembler,

– Macro Processor,

– Loader or Linker,

– Debugger,

– Text Editor

System Software Definition

CSE, HIT, Nidasoshi

System software Application software

Collection of programs that help the user to interact with

hardware components efficiently.

Collection of programs written for a specific application such

as banking, browsing, MS-OFFICE etc.

System software control and manage the hardware

and hence system software directly interact with

hardware

Application software uses the service of the system software

to interact with hardware components. So, application

software will not interact with hardware directly.

To write system softwarethe programmer

needs to understand the architecture and hardware

details and hence system software are machine

dependent

To write the application software the programmer need not

worry about the architecture and hardware details and

hence application software are machine independent.

Programmer should be more familiar with architecture,

instruction formats, addressing modes and so on.

Programmer should be more familiar with programming

languages, data structures and clear knowledge of the

problem domain.

Development of system software is complex task Development of application software is relatively easier.

Examples: compiler, assembler, operating

system etc

Examples: ticket reservation, banking software, MS-WORD

etc.

System Software vs Application Software

CSE, HIT, Nidasoshi

• The SIC machine architecture depends on the following features:

– Memory

– Registers

– Data Formats

– Instruction Formats

– Addressing Modes

– Instruction Set

– Input and Output

SIC Machine Architecture

CSE, HIT, Nidasoshi

• Memory

– Memory consists of 8-bit bytes

– Any 3 consecutive bytes form a word (24 bits)

– Total of 32768 (215) bytes in the computer memory

SIC Machine Architecture

CSE, HIT, Nidasoshi

• Registers

– Five 24-bits registers. Their mnemonic, number and use are given in the following

table.

SIC Machine Architecture

CSE, HIT, Nidasoshi

• Data Formats

– Integers are stored as 24-bit binary number

– 2’s complement representation for negative values

– Characters are stored using 8-bit ASCII codes

– No floating-point hardware on the standard version of SIC

SIC Machine Architecture

CSE, HIT, Nidasoshi

• Instruction Formats

– All machine instructions on the standard version of SIC have the 24-bit format as

shown below

• Addressing Modes

– There are two addressing modes available, which are as shown in the below table.

Parentheses are used to indicate the contents of a register or a memory location.

SIC Machine Architecture

Opcode(8) x Address (15)

Mode Indication Target address calculation

Direct x = 0 TA = address

Indexed x = 1 TA = address + (x)

CSE, HIT, Nidasoshi

• Instruction Set

– Load and store registers - LDA, LDX, STA, STX, etc.

– Integer arithmetic operations - ADD, SUB, MUL, DIV

• All arithmetic operations involve register A and a word in memory, with the result being left in A

– COMP – Comparison instruction

– Conditional jump instructions - JLT, JEQ, JGT

– Subroutine linkage - JSUB, RSUB

– I/O (transferring 1 byte at a time to/from the rightmost 8 bits of register A)

• Test Device instruction (TD)

• Read Data (RD)

• Write Data (WD)

SIC Machine Architecture

CSE, HIT, Nidasoshi

• The SIC machine architecture depends on the following features:

– Memory

– Registers

– Data Formats

– Instruction Formats

– Addressing Modes

– Instruction Set

– Input and Output

SIC/XE Machine Architecture

CSE, HIT, Nidasoshi

• Memory

– Memory consists of 8-bit bytes

– Any 3 consecutive bytes form a word (24 bits)

– Total of 1 Mb (220) bytes in the computer memory

SIC/XE Machine Architecture

CSE, HIT, Nidasoshi

• Registers

– There are nine registers;

each register is 24 bits in

length except floating

point register.

– Their mnemonic, number

and uses are shown in the

following table.

SIC/XE Machine Architecture

CSE, HIT, Nidasoshi

• Data Formats

– Integers are stored as 24-bit binary number

– 2’s complement representation for negative values

– Characters are stored using 8-bit ASCII codes

– Support 48 bit floating-point numbers

– There is a 48-bit floating-point data type, F*2(e-1024)

SIC/XE Machine Architecture

1 11 36

s exponent fraction

CSE, HIT, Nidasoshi

• Instruction Formats

– Format 1 (1 byte – Example: RSUB

– Format 1 (2 byte) - Example: ADDR S, T

– Format 3 (4 byte) -

• Example: LDA #3

– Format 4 (6 byte) -

• Example: +JSUB RDREC

SIC/XE Machine Architecture

8
opcode

8 4 4
op r1 r2

6 1 1 1 1 1 1 12
op n i x b p e Displacement

6 1 1 1 1 1 1 20
op n i x b p e Address

CSE, HIT, Nidasoshi

• Addressing Modes and Flag Bits

– Base relative (n=1, i=1, b=1, p=0)

– Program-counter relative (n=1, i=1, b=0, p=1)

– Direct (n=1, i=1, b=0, p=0)

– Immediate (n=0, i=1, x=0)

– Indirect (n=1, i=0, x=0)

– Indexing (both n & i = 0 or 1, x=1)

– Extended (e=1 for format 4, e=0 for format 3)

SIC/XE Machine Architecture

CSE, HIT, Nidasoshi

SIC/XE Machine Architecture
 Base RelativeAddressing Mode

n i x b p e

n=1, i=1, b=1, p=0, TA = (B) + disp (0disp 4095)

 Program-Counter RelativeAddressing Mode

n i x b p e

n=1, i=1, b=0, p=1, TA= (PC) + disp (-2048disp 2047)

opcode 1 1 1 0 disp

opcode 1 1 0 1 disp

CSE, HIT, Nidasoshi

SIC/XE Machine Architecture

 DirectAddressing Mode

n i x b p e

n=1, i=1, b=0, p=0, TA = disp (0disp 4095)

n i x b p e

n=1, i=1, b=0, p=0, TA=(X)+disp (with index addressing mode)

opcode 1 1 0 0 disp

opcode 1 1 1 0 0 disp

CSE, HIT, Nidasoshi

SIC/XE Machine Architecture

 ImmediateAddressing Mode

n i x b p e

n=0, i=1, x=0, operand = disp

 IndirectAddressing Mode
n i x b p e

n=1, i=0, x=0, TA= (disp)

opcode 0 1 0 disp

opcode 1 0 0 disp

CSE, HIT, Nidasoshi

SIC/XE Machine Architecture

 Simple Addressing Mode

n i x b p e

i=0, n=0, TA= bpe + disp (SIC standard)

n i x b p e

i=1, n=1, TA = disp (SIC/XE standard)

opcode 0 0 disp

opcode 1 1 disp

CSE, HIT, Nidasoshi

How to convert Hexacode or Object code to

Target address

• Calculate the Target address of the following

machine instructions.

• Given, (X)=000690, (B)=006030, (PC)=003060

SIC/XE Machine Architecture

CSE, HIT, Nidasoshi

SIC/XE Machine Architecture

CSE, HIT, Nidasoshi

• Instruction Set

– Load and store registers - LDA, LDX, STA, STX, LDB, STB etc.

– Integer arithmetic operations - ADD, SUB, MUL, DIV

– Floating-point arithmetic operations: ADDF, SUBF, MULF, DIVF

– COMP – Comparison instruction

– Conditional jump instructions - JLT, JEQ, JGT

– Subroutine linkage - JSUB, RSUB

– Register move instruction: RMO

– Register-to-register arithmetic operations: ADDR, SUBR, MULR, DIVR

– Supervisor call instruction: SVC

SIC/XE Machine Architecture

CSE, HIT, Nidasoshi

– I/O (transferring 1 byte at a time to/from the rightmost 8 bits of register

A)

• Test Device instruction (TD)

• Read Data (RD)

• Write Data (WD)

SIC/XE Machine Architecture

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

• An assembler is a kind of translator that accepts the input in assembly

language program and produces its machine language equivalent.

• Ex: MASM, TASM

Definition of Assembler

CSE, HIT, Nidasoshi

1. Convert mnemonic operations code their equivalent machine language.

– Ex: STL→14, JSUB→48

2. Convert symbolic operands to their equivalent machine address.

– Ex: Cloop →100

3. Build machine instruction in the proper format (format 3 or format 4).

4. Convert the data constant to internal machine representation.

– Ex: EF→4546

5. Write the object program and the assembly listing.

Basic Assembler Functions

CSE, HIT, Nidasoshi

• These are pseudo instructions,

• They provide definition to the assembler itself.

• They are not translated into machine operation code.

• In addition to the mnemonic machine instruction, we have used the following assembler

directives.

• START, END, BYTE, WORD, RESB, RESW

Assembler Directives

CSE, HIT, Nidasoshi

• START: Specify name and starting address for the program.

• END: Indicate the end of the source and specify the first

executable instruction in the program.

• BYTE: Generate character or hexadecimal constant occupying as many bytes as

needed to represent the constant.

• WORD: Generate one-word integer constant.

• RESB: Reserves the indicated number of bytes for a data area.

• RESW: Reserves the indicated number of words for a data area.

Assembler Directives

CSE, HIT, Nidasoshi

• Our simpler assembler uses 2 major internal data structures.

– OPTAB (Operation Table)

– SYMTAB (Symbol Table)

– LOCCTR (Location Counter)

• Assembler Algorithms:

– PASS - 1AssemblerAlgorithm

– PASS - 2AssemblerAlgorithm

Assembler Algorithms and Data Structures

CSE, HIT, Nidasoshi

• A Location Counter (LOCCTR) is used to be a variable and help in the assignment of addresses.

• LOCCTR initialized to be beginning address specified in the START statement.

• Whenever a label in the source program is read, the current value of LOCCTR gives the address to be

associated with that label.

• After each source statement is processed , the length of the assembled instruction or data area to be

generated is added to LOCCTR.

• There is certain information (such as location counter values and error flags for statements) that can or

should be communicated between the two passes.

• For this reason, Pass 1 usually writes an inter-mediate file that contains each source statement together

with its assigned address, error indicators, etc.

• This file is used as the input to Pass 2.

Data Structures – LOCCTR Location Counter

CSE, HIT, Nidasoshi

• It is also one of the internal Data structure.

• It is used to look up mnemonic operation code and translate them to their machine language

equivalent.

• In more complex assembler, this table also contains information about

instruction format and length.

• During pass 1, OPTAB is used to look up and validate operation codes in the source program.

• During pass 2, it is used to translate the operation codes to machine

language.

• For SIC/XE machine, that has instruction of different format, to find the instruction length for

incrementing LOCCTR.

• OPTAB is usually organized as a hash table, with mnemonic operation code as the key.

• In most cases, OPTAB is a static table – that is, entries are not normally added to or deleted

from it.

Data Structures - OPTAB (Operation Table)

CSE, HIT, Nidasoshi

• It is also internal data structures in assembler.

• SYMTAB is used to store values assigned to labels.

• SYMTAB includes the name and value (address) for each label in the source program,

together with flags to indicate error condition (e.g., a symbol defined in two different places).

• This table also contain other information about data area.

• During Pass 1, labels are entered into SYMTAB as they are encountered in the source program,

along with their assigned addresses (from LOCCTR).

• During Pass 2, symbols used as operands are looked up in SYMTAB to obtain the addresses to be

inserted in the assembled instruction.

• SYMTAB is usually organized as a hash table for efficiency of insertion and retrieval.

Data Structures - SYMTAB (Symbol Table)

CSE, HIT, Nidasoshi

• Pass 1 (define symbol)

• Assign addresses to all statements (generate LOC).

• Save the values (address) assigned to all labels for Pass 2.

• Perform some processing of assembler directives.

• Pass 2

• Assemble instructions.

• Generate data values defined by BYTE, WORD.

• Perform processing of assembler directives not done during

• Pass 1.

• Write the object program and the assembly listing .

Functions of the two passes assembler

CSE, HIT, Nidasoshi

Functions of the two passes assembler

CSE, HIT, Nidasoshi

• The object program (OP) will be loaded into memory for

execution.

• Three types of records

– Header Record: program name, starting address, length.

– Text Record: starting address, length, object code.

– End Record: address of first executable instruction.

Object Program

CSE, HIT, Nidasoshi

Records Formats

CSE, HIT, Nidasoshi

Records Formats

CSE, HIT, Nidasoshi

• Problems on both SIC and SIC/XE machine

• Theory on instruction format and addressing modes , object program .

• SIC/XE

– PC-relative/Base-relative addressing - Ex. op m

– Indirect addressing - Ex. Op @m

– Immediate addressing - Ex. Op #c

– Extended format - Ex. +op m

– Index addressing - Ex. Op m, x

– Register-to-Register instructions - Ex. COMPR s, t

– Larger Memory → multi-programming (program allocation)

2.2 Machine-Dependent Assembler Features

CSE, HIT, Nidasoshi

• Generate the complete object program for the following assembly language program.

Assume standard SIC machine and the following machine codes in hexa and also

indicate the content of symbol at the end.

• LDA=00, LDX=04, STA=0C, ADD=18, TIX=2C, JLT=38, RSUB=4C

Generate Object Program

CSE, HIT, Nidasoshi

Generate Object Program
Line no LOCATION COUNTER LABEL OPCODE Operand Object Code

1 SUM START 4000(H) -

2 4000 FIRST LDX ZERO 045788

3 4003 LDA ZERO 005788

4 4006 LOOP ADD TABLE, X 18CO15

5 4009 TIX COUNT 2C5785

6 400C JLT LOOP 384006

7 400F STA TOTAL 0C578B

8 4012 RSUB 4C0000

9 4015 TABLE RESW 2000 -

10 5785 COUNT RESW 1 -

11 5788 ZERO WORD 0 000000

12 578B TOTAL RESW 1 -

13 578E END FIRST -

CSE, HIT, Nidasoshi

• Instruction format -3bytes(24 bits)

• SIC add 3 byte to location counter

• RESW→convert decimal to hexa decimal

• LOC= LOC+3*#[operand]

=4015+3*2000(d) = 4015+3*6000 = 4015+1770 = 5785

• WORD→ add 3 byte to location counter

• RESB→ Convert decimal to hexadecimal

• LOC=LOC+#[operand]

• BYTE→ count the number of character in operand field and add that number to

• Location counter depends on type .

• Length of program=END-START

Generate Object Program

Opcode(8 bit) X(1) Disp(12)

CSE, HIT, Nidasoshi

Generate Object Program

SYMBOL Address

FIRST 4000

LOOP 4006

TABLE 4015

COUNT 5785

ZERO 5788

TOTAL 578B

CSE, HIT, Nidasoshi

• Using records write the object program

• Header Record →only one

• Text Record →any number depends on program length

• End Record → only one

• H^SUM_ _ _^004000^00178E

• T^004000^15^045788^005788^18C015^2C5785^384006^0C578B^4C0000

• T^005788^3^000000

• E^004000

Generate Object Program

CSE, HIT, Nidasoshi

• Generate the complete object program for the following assembly language program

Generate Object Program

line Label Opcode Operand

1 SUM START 3000(H)

2 FIRST LDX ZERO

3 LDA THREE

4 LOOP ADD TABLE,X

5 TIX COUNT

6 JLT LOOP

7 STA TOTAL

8 RSUB

9 THREE WORD 3

10 TABLE RESW 100

11 COUNT RESW 20

12 ZERO WORD 0

13 TOTAL RESW 1

14 END FIRST

CSE, HIT, Nidasoshi

• Generate the complete object program for the following assembly language program

Generate Object Program

line Loc Label Opcode Operand Object code

1 SUM START 3000(H) -

2 3000 FIRST LDX ZERO 043180

3 3003 LDA THREE 003015

4 3006 LOOP ADD TABLE,X 18B018

5 3009 TIX COUNT 2C3144

6 300C JLT LOOP 383006

7 300F STA TOTAL 0C3183

8 3012 RSUB 4C0000

9 3015 THREE WORD 3 000003

10 3018 TABLE RESW 100 -

11 3144 COUNT RESW 20 -

12 3180 ZERO WORD 0 000000

13 3183 TOTAL RESW 1 -

14 3186 END FIRST -

CSE, HIT, Nidasoshi

• H^SUM- - -^003000^000186

• T^003000^18^043180^003015^18B018^2C3144^38 3006^0C3183^4C0000^000003

• T^003180^03^000000

• E^003000

Generate Object Program

CSE, HIT, Nidasoshi

PASS 1 and PASS 2 Assemblers

CSE, HIT, Nidasoshi

• Object program for text book problem using SIC

• Data transfer (RD, WD)

– A buffer is used to store record

– Buffering is necessary for different I/O rates

– The end of each record is marked with a null character (0016)

– Buffer length is 4096 Bytes

– The end of the file is indicated by a zero-length record

• Subroutines (JSUB, RSUB)

– RDREC, WRREC

– Save link (L) register first before nested jump

Generate Object Program

CSE, HIT, Nidasoshi

• Below Figure 2.2 shows the generated object code for each statement.

– Loc gives the machine address in Hex.

– Assume the program starting at address 1000.

• Translation functions

– Translate STL to 14.

– Translate RETADR to 1033.

– Build the machine instructions in the proper format (,X).

– Translate EOF to 454F46.

– Write the object program and assembly listing.

Generate Object Program

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

Object program

CSE, HIT, Nidasoshi

• A forward reference

– 10 1000 FIRST STL RETADR 141033

– A reference to a label (RETADR) that is defined later in the program

– Most assemblers make two passes over the source program

• Most assemblers make two passes over source program.

– Pass 1 scans the source for label definitions and assigns address (Loc).

– Pass 2 performs most of the actual translation.

CSE, HIT, Nidasoshi

Problems on SIC/XE machine
• Register translation

– register name (A, X, L, B, S, T, F, PC, SW) and their values (0, 1, 2, 3, 4, 5, 6, 8, 9)

– preloaded in SYMTAB

• Address translation

– Most register-memory instructions use program counter relative or base relative

addressing

– Format 3: 12-bit disp (address) field

• Base-relative: 0~4095

• PC-relative: -2048~2047

– Format 4: 20-bit address field (absolute addressing)

CSE, HIT, Nidasoshi

• The START statement

– Specifies a beginning address of 0.

• Register-register instructions

– CLEAR & TIXR, COMPR

• Register-memory instructions are using

– Program-counter (PC) relative addressing

– The program counter is advanced after each instruction is fetched and

before it is executed.

– PC will contain the address of the next instruction.

10 0000 FIRST STL RETADR 17202D

TA - (PC) = disp = 30 - 3 = 2D

CSE, HIT, Nidasoshi

Object program on SIC/XE machine

LINE LOC LABEL OPCODE OPERAND OBJECT CODE

1 WRREC START 105D

2 CLEAR X

3 LDT LENGTH

4 WLOOP TD OUTPUT

5 JEQ WLOOP

6 LDCH BUFFER,X

7 WD OUTPUT

8 TIXR T

9 JLT WLOOP

10 RSUB

11 OUTPUT BYTE X’05’

12 BUFFER RESB 400

13 LENGTH RESB 2

14 END WRREC

CSE, HIT, Nidasoshi

LINE LOC LABEL OPCODE OPERAND OBJECT
CODE

1 WRREC START 105D -

2 105D CLEAR X B410

3 105F LDT LENGTH 7721A5

4 1062 WLOOP TD OUTPUT E32011

5 1065 JEQ WLOOP 332FFA

6 1068 LDCH BUFFER,X 53A00C

7 106B WD OUTPUT DF2008

8 106E TIXR T B850

9 1070 JLT WLOOP 3B2FEF

10 1073 RSUB 4F0000

11 1076 OUTPUT BYTE X’05’ 05

12 1077 BUFFER RESB 400 -

13 1207 LENGTH RESB 2 -

14 1209 END WRREC -

CSE, HIT, Nidasoshi

Object code calculation

1. Check the instruction format

2. If format 3 , check program counter relative address and base

relative address for displacement calculation.

3. Format 1 and format 2 not required address.

4. Remember the n and i bit . # (n=0, i=1), @(n=1, i=0)

5. Remember the mnemonic number of register

6. EX: CLEAR X b410 (clear-B4)(X=1) (r2-absent)

CSE, HIT, Nidasoshi

Object Program

• H^WRREC_^00105D^0001AC

• T^00105D^1A^00B410^7721a5^E32011^332FFA^53A00C^DF200

8^00B850^3B2FEF^4F000^ 05

• E^00105D
CSE, HIT, Nidasoshi

6

LINE LOC LABEL OPCODE OPERAND OBJECT CODE

1 SUM START 0

2 FIRST LDX #0

3 LDA #0

4 +LDB #TABLE2

5 BASE TABLE2

6 LOOP ADD TABLE,X

7 ADD TABLE2,X

8 TIX COUNT

9 JLT LOOP

10 +STA TOTAL

11 RSUB

12 COUNT RESW 1

13 TABLE RESW 2000

14 TABLE2 RESW 2000

15 TOTAL RESW 1

16 END FIRST 4

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

OBJECT PROGRAM

H^SUM- - - ^000000^002F03

T^000000^1D^050000^010000^69101790^1BA013^1BC000^2F200A^3B2FF4^0F

102F00^4F0000

E^000000 CSE, HIT, Nidasoshi

50

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

Program Relocation (VVIMP)

• In a typical multiprogramming environment where multiple programs can run

simultaneously , there is no guarantee that program will get loaded at a particular memory

location.

• Rather programs are time sharing not only memory but other resources

including CPU.

• Because of the above mentioned scenario, there is no way that assembler can not prepare

object program with reference to final location.

• Rather, to load a program into memory whenever there is a room for it , the actual starting

address of the program is not known until load time, only loader knows this.

CSE, HIT, Nidasoshi

• The assembler does not know the actual location where the program will be loaded it

cannot make the necessary changes in the addressing used by the program.

• But the assembler needs to save information of address sensitive locations in the object

program.

• So that loader can take proper decision when program needs to be loaded or assembler

can identify for the loader those parts of the object program that need modification.

• An object program that contains the information necessary to perform this kind of

modification is called a “Relocatable Program”.

• Loader that allow for program relocation are called relocating loader or relative

loader.

CSE, HIT, Nidasoshi

Program Relocation

56
56

CSE, HIT, Nidasoshi

Solution of Program Relocation

57

CSE, HIT, Nidasoshi

Modification record (direct addressing)

– 1 M

– 2-7 Starting location of the address field to be modified, relative to the

beginning of the program.

– 8-9 Length of the address field to be modified, in half bytes.

CSE, HIT, Nidasoshi

2.3.1 Literals

• It is often convenient for the programmer to be able to write the value of a

constant operand as a part of the instruction that uses it.

• This avoids having to define the constant elsewhere in the program and make up

a label for it.

• Such an operand is called a literal because the value is stated "literally" in the

instruction.

CSE, HIT, Nidasoshi

2.3.1 Literals

• The difference between literal and immediate

– Immediate addressing, the operand value is assembled as part of the machine instruction, no

memory reference.

– With a literal, the assembler generates the specified value as a constant at some other memory

location. The address of this generated constant is used as the TA for the machine instruction,

using PC-relative or base- relative addressing with memory reference.

• Literal pools

– It is delcared at the end of the program (Fig. 2.10).

– Assembler directive LTORG, it creates a literal pool that contains all of the literal operands used

since the previous LTORG.

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

RDREC

CSE, HIT, Nidasoshi

WRREC

CSE, HIT, Nidasoshi

Literals-Continue
• When to use LTORG

❖The literal operand would be placed too far away from the instruction referencing.

❖Cannotuse PC-relative addressing or Base-relative addressing to generate Object

Program.

• Most assemblers recognize duplicate literals.

❖By comparison of the character strings defining them.

❖ =C’EOF’and =X’454F46’

CSE, HIT, Nidasoshi

Literals-Continue
• Literal table (LITTAB)

– Contains the literal name (=C’EOF’), the operand value (454F46) and length (3),

and the address (002D).

– Organized as a hash table.

– Pass 1, the assembler searches LITTAB for the specified literal name.

– Pass 1 encounters a LTORG statement or the end of the program, the assembler

makes a scan of the literal table.

– Pass 2, the operand address for use in generating OC is obtained by searching

LITTAB.

CSE, HIT, Nidasoshi

2.3.2 Symbol-Defining Statements
• The standard names reflect the usage of the registers.

• Assembler directive ORG

❖Use to indirectly assign values to symbols.

ORG value

❖The assembler resets its LOCCTR to the specified value.

❖ORG can be useful in label definition.

BASE EQU R1

COUNT EQU R2

INDEX EQU R3CSE, HIT, Nidasoshi

Symbol-Defining Statements
• The location counter is used to control assignment of storage in the object Program

• In most cases, altering its value would result in an incorrect assembly.

• ORG is used

• SYMBOL is 6-byte, VALUE is 3-byte, and FLAGS is 2-byte.

68
68

CSE, HIT, Nidasoshi

2.3.3 Expressions

• Allow arithmetic expressions formed

❖Using the operators +, -, *, /.

❖Division is usually defined to produce an integer result.

❖Expression may be constants, user-defined symbols, or special terms.

❖106 1036 BUFEND EQU *

❖Gives BUFEND a value that is the address of the next byte after the buffer area.

• Absolute expressions or relative expressions

❖A relative term or expression represents some value (S+r), S: starting

address, r: the relative value.

CSE, HIT, Nidasoshi

107 1000 MAXLEN EQU BUFEND-BUFFER

❖ Both BUFEND and BUFFER are relative terms.

❖ The expression represents absolute value: the difference between the two addresses.

❖ Loc =1000 (Hex)

❖ The value that is associated with the symbol that appears in the source statement.

❖ BUFEND+BUFFER, 100-BUFFER,

absolute values nor locations.

• Symbol tables entries

3*BUFFER represent neither

2.3.3 Expressions

CSE, HIT, Nidasoshi

2.3.4 Program Blocks
• Three blocks, Figure 2.11

❖Default, CDATA, CBLKS.

• Assembler directive USE

❖ Indicates which portions of the source program blocks.

❖At the beginning of the program, statements are assumed to be part of the default block.

❖ Lines 92, 103, 123, 183, 208, 252.

• Each program block may contain several separate segments.

❖The assembler will rearrange these segments to gather together the pieces of each block.

CSE, HIT, Nidasoshi

Main

CSE, HIT, Nidasoshi

RDREC

CSE, HIT, Nidasoshi

WRREC

CSE, HIT, Nidasoshi

Program Blocks-continue
• Pass 1, Figure 2.12

❖ A separate location counter for each program block.

❖ The location counter for a block is initialized to 0 when the block is first

begun.

❖ Assign each block a starting address in the object program (location 0).

❖ Labels, block name or block number, relative address

❖ Working table

Block name Block number Address Length

(default) 0 0000 0066 (0~65)

CDATA 1 0066 000B (0~A)

CBLKS 2 0071 1000 (0~0FFF)

CSE, HIT, Nidasoshi

80

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

Program Blocks
• Pass 2, Figure 2.12

– The assembler needs the address for each symbol relative to the start of the object program.

– Loc shows the relative address and block number.

– Notice that the value of the symbol MAXLEN (line 70) is shown

without a block number.

20 0006 0 LDA LENGTH 032060

0003(CDATA) +0066 =0069 =TA

using program-counter relative addressing

TA - (PC) =0069-0009 =0060 =disp

CSE, HIT, Nidasoshi

Program Blocks
• Separation of the program into blocks.

❖Because the large buffer is moved to the end of the object program.

❖No longer need extended format, base register, simply a LTORG statement.

❖No need Modification records.

❖ Improve program readability.

• Figure 2.13

❖Reflect the starting address of the block as well as the relative location of the code within the

block.

• Figure 2.14

❖Loader simply loads the object code from each record at the dictated.

❖CDATA(1) & CBLKS(1) are not actually present in Object program.

CSE, HIT, Nidasoshi

Program Blocks-object program

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

2.3.5 Control Sections & Program Linking
• Control section

❖Handling of programs that consist of multiple control sections.

❖A part of the program.

❖Can be loaded and relocated independently.

❖Different control sections are most often used for subroutines or other logical subdivisions of a

program.

❖The programmer can assemble, load, and manipulate each of these control sections separately.

❖ Flexibility.

❖Linking control sections together.

CSE, HIT, Nidasoshi

Control Sections & Program Linking
• External references

❖ Instructions in one control section might need to refer to instructions or

• data located in another section.

• Figure 2.15, multiple control sections.

❖Three sections, main COPY, RDREC, WRREC.

❖Assembler directive CSECT.

❖EXTDEF and EXTREF for external symbols.

❖The order of symbols is not significant.

COPY START 0

EXTDEF BUFFER, BUFEND,

LENGTH

EXTREF RDREC, WRREC

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

90

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

Control Sections & Program Linking
• Figure 2.16, the generated object code.

15 0003 CLOOP+JSUB RDREC 4B100000

160 0017 +STCH BUFFER,X 57900000

❖ RDREC is an external reference.

❖ The assembler has no idea where the control section containing RDREC

will be loaded, so it cannot assemble the address.

❖ The proper address to be inserted at load time.

❖Must use extended format instruction for external reference (M records are needed).

190 0028 MAXLEN WORD BUFEND-BUFFER

❖ An expression involving two external references.

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

Control Sections & Program Linking
❖ The loader will add to this data area with the address of BUFEND and

subtract from it the address of BUFFER. (COPY and RDREC)

❖ Line 190 and 107, in 107, the symbols BUFEND and BUFFER are

defined in the same section.

❖ The assembler must remember in which control section a symbol is

defined.

❖ The assembler allows the same symbol to be used in different control

sections, lines 107 and 190.

• Figure 2.17, two new records.

❖ Defined record for EXTDEF, relative address.

❖ Refer record for EXTREF.

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

Control Sections & Program Linking
• Modification record

– M

– Starting address of the field to be modified, relative to the beginning of

the control section (Hex).

– Length of the field to be modified, in half-bytes.

– Modification flag (+ or -).

– External symbol.

M^000004^05+RDREC

M^000028^06+BUFEND

M^000028^06-BUFFER

• Use Figure 2.8 for program relocation.

98
98

CSE, HIT, Nidasoshi

99

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

2.4 Assembler Design Options
• 2.4.1 Two-Pass Assembler

• Most assemblers

❖Processing the source program into two passes.

❖The internal tables and subroutines that are used only during Pass 1.

❖The SYMTAB, LITTAB, and OPTAB are used by both passes.

• The main problems to assemble a program in one pass involves forward

references.

CSE, HIT, Nidasoshi

2.4.2 One-Pass Assemblers
• Eliminate forward references

❖Data items are defined before they are referenced.

❖But, forward references to labels on instructions cannot be eliminated as easily.

❖Prohibit forward references to labels.

• Two types of one-pass assembler. (Fig. 2.18)

❖One type produces object code directly in memory for immediate execution.

❖The other type produces the usual kind of object program for later execution.

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

One-Pass Assemblers

• Load-and-go one-pass assembler

❖The assembler avoids the overhead of writing the object program out and

reading it back in.

❖The object program is produced in memory, the handling of forward

references becomes less difficult.

❖Figure2.19(a), shows the SYMTAB after scanning line

40 of the program in Figure 2.18.

❖Since RDREC was not yet defined, the instruction was assembled with no value

assigned as the operand address (denote by ----).

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

One-Pass Assemblers

• Load-and-go one-pass assembler

❖RDREC was then entered into SYMTAB as an undefined symbol, the

address of the operand field of the instruction (2013) was inserted.

❖Figure 2.19(b), when the symbol ENDFIL was defined (line 45), the assembler

placed its value in the SYMTAB entry; it then inserted this value into the

instruction operand field (201C).

❖At the end of the program, all symbols must be defined without any * in

SYMTAB.

❖For a load-and-go assembler, the actual address must be known at

assembly time.

CSE, HIT, Nidasoshi

One-Pass Assemblers
• Another one-pass assembler by generating OP

❖Generate another Text record with correct operand address.

❖When the program is loaded, this address will be inserted into the

instruction by the action of the loader.

❖Figure 2.20, the operand addresses for the instructions on lines 15, 30, and 35 have

been generated as 0000.

❖When the definition of ENDFIL is encountered on line 45, the third Text record is

generated, the value 2024 is to be loaded at location 201C.

❖The loader completes forward references.

CSE, HIT, Nidasoshi

110

CSE, HIT, Nidasoshi

2.4.3 Multi-Pass Assemblers
• Use EQU, any symbol used on the RHS be defined previously in the source.

ALPHA

BETA

DELTA

EQU BETA

EQU DELTA

RESW 1

– Need 3 passes!

• Figure 2.21, multi-pass assembler

CSE, HIT, Nidasoshi

Multi-Pass Assemblers

• Problem-step1

CSE, HIT, Nidasoshi

Multi-Pass Assemblers

• Problem-step2

CSE, HIT, Nidasoshi

Multi-Pass Assemblers

• Problem-step3

CSE, HIT, Nidasoshi

Multi-Pass Assemblers

• Problem-step4

CSE, HIT, Nidasoshi

Multi-Pass Assemblers

CSE, HIT, Nidasoshi

Module-1: Chapter3

Loaders

Source

Program
Assembler

Object

Code

Loader

Executable

Code

Linker

CSE, HIT, Nidasoshi

Design of an Absolute Loader
• Absolute loader, in Figures 3.1 and 3.2.

– Does not perform linking and program relocation.

– The contents of memory locations for which there is no Text record are

shown as xxxx.

– Each byte of assembled code is given using its Hex representation in

character form.

120

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

Algorithm for Absolute loader (IMP)

CSE, HIT, Nidasoshi

A Simple Bootstrap Loader
• A bootstrap loader, Figure 3.3.

❖ Loads the first program to be run by the computer--- usually an operating system.

❖ The bootstrap itself begins at address 0 in the memory.

❖ It loads the OS or some other program starting at address 80

❖ Each byte of object code to be loaded is represented on device F1 as two Hex digits (by GETC

subroutines).

❖ The ASCII code for the character 0 (Hex 30) is converted to the

numeric value 0.

❖ The object code from device F1 is always loaded into consecutive bytes of memory, starting at address

80.

CSE, HIT, Nidasoshi

A Simple Bootstrap Loader
• THIS BOOTSTRAP READS OBJECT CODE FROM DEVICE Fl AND ENTERS IT INTO MEMORY

STARTING AT ADDRESS 80 (HEXADECIMAL). AFTER ALL OF THE CODE FROM DEVF1 HAS

BEEN SEEN ENTERED INTO MEMORY, THE BOOTSTRAP EXECUTES A JUMP TO ADDRESS 80 TO

BEGIN EXECUTION OF THE PROGRAM JUST LOADED. REGISTER X CONTAINS THE NEXT

ADDRESS TO BE LOADED.

• SUBROUTINE TO READ ONE CHARACTER FROM INPUT DEVICE AND CONVERT IT FROM

ASCII CODE TO HEXADECIMAL DIGIT VALUE. THE CONVERTED DIGIT VALUE IS RETURNED

IN REGISTER A. WHEN AN END-OF-FILE IS READ, CONTROL IS TRANSFERRED TO THE

STARTING ADDRESS (HEX 80).

CSE, HIT, Nidasoshi

CSE, HIT, Nidasoshi

