
S. J. P. N. TRUST’S
HIRASUGAR INSTITUTE OF TECHNOLOGY, NIDASOSHI

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME.

Department of Computer Science & Engineering

Course: Programming in Java(18CS653)

Module 4: Packages and Interfaces,
Exception Handling in Java

Prof. Prasanna Patil
Asst. Prof. , Dept. of Computer Science & Engg.,

Hirasugar Institute of Technology, Nidasoshi
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi
1

Packages in JAVA

• A java package is a group of similar types of
classes, interfaces and sub- packages.

• Package in java can be categorized in two
form,

• built-in package

• user-defined package

• There are many built-in packages such as java,
lang, awt, javax, swing, net, io, util, sql etc.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

2

Advantages of Java Package

• Java package is used to categorize the classes
and interfaces so that they can be easily
maintained.

• Java package provides access protection.

• Java package removes naming collision.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

3

Syntax

• The package keyword is used to create a package in
java.

//save as Simple.java
package mypack;
public class Simple

{
public static void main(String args[])
{

System.out.println("Welcome to package");
}
}

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

4

How to access package from another
package?

• There are three ways to access the package
from outside the package.

– import package.*;

– import package.classname;

– fully qualified name.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

5

1. Using packagename.*

• If you use package.* then all the classes and interfaces of this package will
be accessible but not subpackages.

• The import keyword is used to make the classes and interface of another
package accessible to the current package.

Example of package that import the packagename.*
//save by A.java
package pack;
public class A
{
public void msg()
{
System.out.println("Hello");
}
}

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

6

//save by B.java
package mypack;
import pack.*;
class B
{
public static void main(String args[])
{
A obj = new A();
obj.msg();
}
}
Output:Hello

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

7

2. Using packagename.classname

• If you import package.classname then only
declared class of this package will be accessible.

• Example of package by import package.classname

//save by A.java
package pack;
public class A
{
public void msg()
{
System.out.println("Hello");

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

8

}
}
//save by B.java

package mypack;
import pack.A;
class B
{
public static void main(String args[])
{
A obj = new A();
obj.msg();
}
}
Output:Hello

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

9

3. Using FUlly QUalified name

• If you use fully qualified name then only
declared class of this package will be
accessible.

• Now there is no need to import.

• It is generally used when two packages have
same class name e.g. java.util and java.sql
packages contain Date class.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

10

• Example of package by import fully qualified name

//save by A.java
package pack;

public class A
{
public void msg()
{
System.out.println("Hello");
}
}

//save by B.java
package mypack;
class B
{
public static void main(String args[])
{
pack.A obj = new pack.A(); //using fully qualified name
obj.msg();
}
}
Output:Hello

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

11

Access Modifiers/Specifiers

• The access modifiers in java specify
accessibility (scope) of a data member,
method, constructor or class.

• There are 4 types of java access modifiers:

– private

– default

– protected

– public

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

12

• private access modifier
– The private access modifier is accessible only within class.

• default access modifier
– If you don't use any modifier, it is treated as default by

default. The default modifier is accessible only within
package.

• protected access modifier
– The protected access modifier is accessible within package

and outside the package but through inheritance only.

– The protected access modifier can be applied on the data
member, method and constructor. It can't be applied on
the class.

• public access modifier
– The public access modifier is accessible everywhere. It has

the widest scope among all other modifiers.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

13

Access
Modifier

within
class

within
package

Outside
package by
subclass only

outside
package

Private Y N N N

Default Y Y N N

Protected Y Y Y N

Public Y Y Y Y

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

14

Interfaces in Java

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

15

Interfaces in java

• An interface in java is a blueprint of a class. It has
static final variables and abstract methods.

• Interface fields are public, static and final by default,
and methods are public and abstract.

• The interface in java is a mechanism to achieve
abstraction.

• By interface, we can support the functionality of
multiple inheritance.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

16

Understanding relationship between
classes and interfaces

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

17

Syntax

interface interfacename
{
// final fields;
//abstract methods
}
class classname implements interfacename
{
// body of class
}

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

18

//Example 1
interface printable
{
int PI = 22;
void print();

}

class Test implements printable
{
public void print()
{
System.out.println("Hello");
System.out.println("PI = "+PI);

}
}

public class IPgm
{
public static void main(String args[])
{
Test obj = new Test();
obj.print();

}
}

Output:
Hello Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi
19

//Example 2
//Interface declaration: by first user
interface Drawable
{
void draw();
}

//Implementation: by second user

class Rectangle implements Drawable
{
public void draw()
{
System.out.println("drawing rectangle");
}
}

class Circle implements Drawable
{
public void draw()
{
System.out.println("drawing circle");
}
}

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

20

//Using interface: by third user
class TestInterface1
{
public static void main(String args[])
{
//In real scenario, object is provided by method e.g. getDrawable()

Drawable d=new Circle();
d.draw();

}
}

Output:

drawing circle

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

21

Multiple inheritance in Java by
interface

• If a class implements multiple interfaces, or an
interface extends multiple interfaces i.e.
known as multiple inheritance.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

22

//Example

interface Printable
{
void print();
}

interface Showable
{
void show();
}

class Pgm2 implements Printable,Showable
{
public void print()
{
System.out.println("Hello");
}

public void show()
{
System.out.println("Welcome");
}
} Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi
23

Class InterfaceDemo
{
public static void main(String args[])
{
Pgm2 obj = new Pgm2 ();
obj.print();
obj.show();
}
}

Output:
Hello
Welcome

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

24

//Example

interface Printable

{

void print();

}

interface Showable

{

void print();

}

class InterfacePgm1 implements Printable, Showable

{

public void print()

{

System.out.println("Hello");

}

}

class InterfaceDemo

{

public static void main(String args[])

{

InterfacePgm1 obj = new InterfacePgm1 (); obj.print();

}

}

Output:
Hello

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

25

• Interface inheritance
– A class implements interface but one interface extends another interface .

interface Printable
{
void print();
}

interface Showable extends Printable
{
void show();
}

class InterfacePgm2 implements Showable
{
public void print()
{
System.out.println("Hello");
}
public void show()
{
System.out.println("Welcome");
} }

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

26

Class InterfaceDemo2
{
public static void main(String args[])
{
InterfacePgm2 obj = new InterfacePgm2 ();
obj.print();
obj.show();
}
}

Output:

Hello
Welcome

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

27

interface Printable
{
void print();
}
interface Displable
{

void display();
}

interface Showable extends Printable, Displable
{
void show();
}

class InterfacePgm2 implements Showable
{
public void print()
{
System.out.println("Hello");
}
public void show()
{
System.out.println("Welcome");
}

public void display()
{
System.out.println("Good Bye");
}
}
class InDemo2
{
public static void main(String args[])
{
InterfacePgm2 obj = new InterfacePgm2 ();
obj.print();
obj.show();
obj.display();
}
}
Output
Hello
Welcome
Good Bye

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

28

Exception Handling in Java

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

29

Introduction

• It can be defined as an abnormal event that
occurs during program execution and disrupts
the normal flow of instructions.

• An abnormal event can be an error in the
program.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

30

• Errors in a java program are categorized into
two groups:

– Compile-time errors

– Run-time errors

• Concepts of Exceptions

• An exception is a run-time error that occurs
during the execution of a java program.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

31

Examples

• Divide by zero

• Running out of memory

• Resource allocation errors

• Inability to find files

• Problems in network connectivity

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

32

Exception handling techniques:

• Java exception handling is managed via five
keywords they are:

– 1. try.

– 2. catch.

– 3. throw.

– 4. throws.

– 5. finally.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

33

Exception handling Statement Syntax

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

34

1. try Block: The java code that you think may
produce an exception is placed within a try block
for a suitable catch block to handle the error.

2. catch Block: Exceptions thrown during execution
of the try block can be caught and handled in a
catch block. On exit from a catch block, normal
execution continues and the finally block is
executed .

3. finally Block: A finally block is always executed,
regardless of the cause of exit from the try
block, or whether any catch block was executed.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

35

Example:

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

36

• Output

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

37

Multiple catch Blocks:
• A try block can be followed by multiple catch blocks. The

syntax for multiple catch blocks looks like the following:

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

38

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

39

Nested try Statements
• These try blocks may be written independently or we can

nest the try blocks within each other, i.e., keep one try-
catch block within another try-block.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

40

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

41

• Output

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

42

throw Keyword

• throw keyword is used to throw an exception
explicitly. Only object of Throwable class or its
sub classes can be thrown.

• Program execution stops on encountering
throw statement, and the closest catch
statement is checked for matching type of
exception.

• Syntax :

throw ThrowableInstance

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

43

Creating Instance of Throwable class

• There are two possible ways to get an instance
of class Throwable,

– 1. Using a parameter in catch block.

– 2. Creating instance with new operator.

new NullPointerException("test");

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

44

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

45

throws Keyword

• Any method capable of causing exceptions must list all
the exceptions possible during its execution, so that
anyone calling that method gets a prior knowledge
about which exceptions to handle. A method can do so
by using the throws keyword.

• Syntax :

type method_name(parameter_list) throws exception_list

{

//definition of method

}

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

46

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

47

finally

• The finally clause is written with the try-catch
statement. It is guaranteed to be executed after a
catch block or before the method quits.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

48

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

49

Java’s Built-in Exceptions

• Inside the standard package java.lang, Java defines several
exception classes.

• The most general of these exceptions are subclasses of the
standard type RuntimeException.

• These exceptions need not be included in any method’s throws list.
In the language of Java, these are called unchecked exceptions
because the compiler does not check to see if a method handles or
throws these exceptions.

• The unchecked exceptions defined in java.lang are listed in Table
10-1.

• Table 10-2 lists those exceptions defined by java.lang that must be
included in a method’s throws list if that method can generate one
of these exceptions and does not handle it itself. These are called
checked exceptions.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

50

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

51

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

52

Creating Your Own Exception Subclasses

• Although Java’s built-in exceptions handle most common errors,
you will probably want to create your own exception types to
handle situations specific to your applications.

• Just define a subclass of Exception (which is, of course, a subclass of
Throwable).

• Your subclasses don’t need to actually implement anything—it is
their existence in the type system that allows you to use them as
exceptions.

• The Exception class does not define any methods of its own.
• It does, of course, inherit those methods provided by Throwable.
• Thus, all exceptions, including those that you create, have the

methods defined by Throwable available to them.
• They are shown in Table 10-3.
• You may also wish to override one or more of these methods in

exception classes that you create.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

53

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

54

// This program creates a custom exception type.
class MyException extends Exception {
private int detail;
MyException(int a) {
detail = a;
}
public String toString() {
return "MyException[" + detail + "]";
}
}
class ExceptionDemo {
static void compute(int a) throws MyException {
System.out.println("Called compute(" + a + ")");
if(a > 10)
throw new MyException(a);
System.out.println("Normal exit");
}
public static void main(String args[]) {
try {
compute(1);
compute(20);
} catch (MyException e) {
System.out.println("Caught " + e);
}
}
}

Output :
Called compute(1)
Normal exit
Called compute(20)
Caught MyException[20]

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

55

Chained Exceptions
• The chained exception feature allows you to associate

another exception with an exception.

• This second exception describes the cause of the first
exception.

• For example, imagine a situation in which a method throws an
ArithmeticException because of an attempt to divide by zero.

• However, the actual cause of the problem was that an I/O
error occurred, which caused the divisor to be set improperly.

• Although the method must certainly throw an
ArithmeticException, since that is the error that occurred, you
might also want to let the calling code know that the
underlying cause was an I/O error.

• Chained exceptions let you handle this, and any other
situation in which layers of exceptions exist.Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi
56

• To allow chained exceptions, two constructors
and two methods were added to Throwable.

• The constructors are shown here:

Throwable(Throwable causeExc)

Throwable(String msg, Throwable causeExc)

• In the first form, causeExc is the exception that
causes the current exception. That is, causeExc is
the underlying reason that an exception
occurred.

• The second form allows you to specify a
description at the same time that you specify a
cause exception.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

57

• The chained exception methods added to
Throwable are getCause() and initCause().

Throwable getCause()
Throwable initCause(Throwable causeExc)

• The getCause() method returns the exception
that underlies the current exception.

• If there is no underlying exception, null is
returned.

• The initCause() method associates causeExc with
the invoking exception and returns a reference to
the exception.

• Thus, you can associate a cause with an exception
after the exception has been created.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

58

// Demonstrate exception chaining.
class ChainExcDemo {
static void demoproc() {
// create an exception
NullPointerException e =
new NullPointerException("top layer");
// add a cause
e.initCause(new ArithmeticException("cause"));
throw e;
}
public static void main(String args[]) {
try {
demoproc();
} catch(NullPointerException e) {
// display top level exception
System.out.println("Caught: " + e);
// display cause exception
System.out.println("Original cause: " + e.getCause());
}
}
}

Output:
Caught: java.lang.NullPointerException: top
layer
Original cause: java.lang.ArithmeticException:
cause

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

59

Using Exceptions
• Exception handling provides a powerful mechanism for

controlling complex programs that have many dynamic
run-time characteristics.

• It is important to think of try, throw, and catch as clean
ways to handle errors and unusual boundary
conditions in your program’s logic.

• Unlike some other languages in which error return
codes are used to indicate failure, Java uses exceptions.

• Thus, when a method can fail, have it throw an
exception. This is a cleaner way to handle failure
modes.

• One last point: Java’s exception-handling statements
should not be considered a general mechanism for
nonlocal branching.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

60

