
S. J. P. N. TRUST’S
HIRASUGAR INSTITUTE OF TECHNOLOGY, NIDASOSHI

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME.

Department of Computer Science & Engineering

Course: Programming in Java(18CS653)

Module 3: Introducing Classes

Prof. Prasanna Patil
Asst. Prof. , Dept. of Computer Science & Engg.,

Hirasugar Institute of Technology, Nidasoshi

Class

• Class is a user-defined data type which
contains instance variables & methods.

• A class is declared by use of the class keyword.
A simplified general form of a class definition
is shown here:

The General Form of a Class:

class classname
{
type instance-variable1;
.
.
.
.
type instance-variableN;
type methodname1(parameter-list)
{
// body of method
}
type methodnameN(parameter-list)
{
// body of method
}
}

A Simple Class

class Box

{

double width;

double height;

double depth;

}

Declaring Objects:

• When you create a class, you are creating a
new data type. You can use this type to
declare objects of that type.

Box mybox = new Box();

• The new operator dynamically allocates
memory for an object.

A program that uses the Box class

class Box {
double width;
double height;
double depth;
}

// This class declares an object of type Box.
class BoxDemo {

public static void main(String args[]) {
Box mybox = new Box();
double vol;

// assign values to mybox's instance variables
mybox.width = 10;
mybox.height = 20;
mybox.depth = 15;
// compute volume of box
vol = mybox.width * mybox.height * mybox.depth;
System.out.println("Volume is " + vol);

}
}

This program declares two Box objects.
class Box {
double width;
double height;
double depth;
}
class BoxDemo2 {
public static void main(String args[]) {

Box mybox1 = new Box();
Box mybox2 = new Box();
double vol;
// assign values to mybox1's instance

variables

mybox1.width = 10;
mybox1.height = 20;
mybox1.depth = 15;

/* assign different values to mybox2’s instance
variables */

mybox2.width = 3;
mybox2.height = 6;
mybox2.depth = 9;
// compute volume of first box
vol = mybox1.width * mybox1.height *

mybox1.depth;
System.out.println("Volume is " + vol);
// compute volume of second box
vol = mybox2.width * mybox2.height *

mybox2.depth;
System.out.println("Volume is " + vol);

}
}

Output:
Volume is 3000.0
Volume is 162.0

A Closer Look at new

• The new operator dynamically allocates memory
for an object. It has this general form:

class-var = new classname();

• Here, class-var is a variable of the class type being
created.

• The classname is the name of the class that is
being instantiated.

• The class name followed by parentheses specifies
the constructor for the class.

• It is important to understand that new allocates memory for an
object during run time.

• The advantage of this approach is that your program can create
as many or as few objects as it needs during the execution of
your program.

• However, since memory is finite, it is possible that new will not
be able to allocate memory for an object because insufficient
memory exists.

• If this happens, a run-time exception will occur.

Distinction between class and object

• A class creates a new data type that can be
used to create objects. That is, a class creates
a logical framework that defines the
relationship between its members.

• When you declare an object of a class, you are
creating an instance of that class.

• Thus, a class is a logical construct.

• An object has physical reality.

Assigning Object Reference Variables

• Object reference variables act differently than you
might expect when an assignment takes place.

Box b1 = new Box();
Box b2 = b1;

• you might think that b1 and b2 refer to separate and
distinct objects.

• After this fragment executes, b1 and b2 will both refer
to the same object.

• The assignment of b1 to b2 did not allocate any
memory or copy any part of the original object.

• It simply makes b2 refer to the same object as does b1.

• Thus, any changes made to the object through
b2 will affect the object to which b1 is
referring, since they are the same object.

Introducing Methods:

• This is the general form of a method:

type name(parameter-list)

{

// body of method

}

• Here, type specifies the type of data returned
by the method.

Accessing class members:

• Class members can be accessed using dot(.)
operator as follows:

ObjectName.VariableName

ObjectName.methodName(parameter_list);

Adding a Method to the Box Class:

class Box {

double width;

double height;

double depth;

void volume()

{

System.out.print("Volume is ");

System.out.println(width * height * depth);

}

}

class BoxDemo3

{

public static void main(String args[])

{

Box mybox1 = new Box();

mybox1.width = 10;

mybox1.height = 20;

mybox1.depth = 15;

mybox1.volume();

}

}

Output:
Volume is 3000.0

Returning a Value:
class RECT {

double length;
double breadth;
void set(double a, double b) {

length = a;
breadth = b;

}
double area() {

return (length * breadth);
}

}

class RECTDemo {
public static void main(String args[]) {

RECT b1 = new RECT();
b1.set(4.0,5.0);
System.out.println(“Area of Rectangle = “ +b1.area());

}
}

Constructors :

• It is a special method which is used to initialize
the values of instance-variables at the time of
creation of objects.

• Features:

– Constructor will have same name as that of class
name.

– It does not specify a return type not even void.

– It should be declared in public section.

• Types of Constructors:

1. default constructor: It is a constructor which do
not take any argument.

2. Parameterized constructor: It is a constructor
which takes any number of parameters.

• Default constructor is automatically loaded by
the compiler.

Example of default constructor:
class B {

int x;
B() {

System.out.println("Constructing Box");
x = 10;

}
void show() {

System.out.println("x = " + x);
}

}

class MB {
public static void main(String args[]) {
B b1 = new B();
b1.show();
}
}

Output:
Constructing Box
x = 10

Example of Parameterized Constructor :
class B {

int x, y;
B(int a, int b) {

x = a;
y = b;

}
void show() {

System.out.println("x = " + x);
System.out.println("y = " + y);

}
}
class MB {

public static void main(String args[]) {
B b1 = new B(4, 5);
b1.show();

}
}

Output:
x = 4
y = 5

The this Keyword:

• this is always a reference to the object on which the
method was invoked.

• You can use this anywhere a reference to an object of
the current class’ type is permitted.

• Eg:
class Box {

Box(double w, double h, double d) {
this.width = w;
this.height = h;
this.depth = d;

}
}

Instance Variable Hiding:

• It is illegal in Java to declare two local variables with the same
name inside the same or enclosing scopes.

• When a local variable has the same name as an instance
variable, the local variable hides the instance variable.

• You can use this keyword to resolve any name space collisions
that might occur between instance variables and local
variables.

Box(double width, double height, double depth)
{

this.width = width;
this.height = height;
this.depth = depth;

}

program to implement the stack of 10
integer values.

class Stack {
int stck[] = new int[10];
int top;
Stack() {

top = -1;
}
void push(int item) {

if(top == 9)
System.out.println("Stack is full.");

else
{

stck[++top] = item;
System.out.println(“Pushed item is = “+stck[top]);

}
}

int pop()
{

if(top < 0)
{

System.out.println("Stack underflow.");
return 0;

}
else

return stck[top--];
}

}

class TestStack {
public static void main(String args[])
{

Stack k1 = new Stack();
k1.push(10);
k1.push(20);
k1.push(30);
System.out.println(“popped item is = “+k1.pop());
System.out.println(“popped item is = “+k1.pop());

}
}

Garbage Collection

• Since objects are dynamically allocated by using the new operator, you
might be wondering how such objects are destroyed and their memory
released for later reallocation.

• In some languages, such as C++, dynamically allocated objects must be
manually released by use of a delete operator.

• Java takes a different approach; it handles deallocation for you
automatically.

• The technique that accomplishes this is called garbage collection.
• It works like this:

– When no references to an object exist, that object is assumed to be no longer
needed, and the memory occupied by the object can be reclaimed.

– There is no explicit need to destroy objects as in C++.
– Garbage collection only occurs sporadically (if at all) during the execution of

your program.
– It will not occur simply because one or more objects exist that are no longer

used.

• The finalize() Method:

– Sometimes an object will need to perform some
action when it is destroyed.

– For example, if an object is holding some non-Java
resource such as a file handle or character font,
then you might want to make sure these
resources are freed before an object is destroyed.

– To handle such situations, Java provides a
mechanism called finalization.

– By using finalization, you can define specific
actions that will occur when an object is just
about to be reclaimed by the garbage collector.

• To add a finalizer to a class, you simply define the finalize() method.
• The Java run time calls that method whenever it is about to recycle

an object of that class.
• Inside the finalize() method, you will specify those actions that

must be performed before an object is destroyed.
• The garbage collector runs periodically, checking for objects that are

no longer referenced by any running state or indirectly through
other referenced objects.

• Right before an asset is freed, the Java run time calls the finalize()
method on the object.

• The finalize() method has this general form:
protected void finalize()
{

// finalization code here
}

• Here, the keyword protected is a specifier that prevents access to
finalize() by code defined outside its class.

Overloading Methods

• In Java it is possible to define two or more
methods within the same class that share the
same name, as long as their parameter
declarations are different.

• When this is the case, the methods are said to
be overloaded, and the process is referred to
as method overloading.

• Method overloading is one of the ways that
Java supports polymorphism.

• When an overloaded method is invoked, Java
uses the type and/or number of arguments as its
guide to determine which version of the
overloaded method to actually call.

• Thus, overloaded methods must differ in the type
and/or number of their parameters.

• While overloaded methods may have different
return types, the return type alone is insufficient
to distinguish two versions of a method.

// Demonstrate method overloading.

class OverloadDemo {
void test() {

System.out.println("No parameters");
}
// Overload test for one integer parameter.

void test(int a) {
System.out.println("a: " + a);

}
// Overload test for two integer parameters.

void test(int a, int b) {
System.out.println("a and b: " + a + " " + b);

}
double test(double a) {

System.out.println("double a: " + a);
return a*a;

}
}

class Overload {
public static void main(String args[]) {

OverloadDemo ob = new OverloadDemo();
double result;
// call all versions of test()
ob.test();
ob.test(10);
ob.test(10, 20);
result = ob.test(123.25);
System.out.println("Result of ob.test(123.25): " + result);

}
}

Output
No parameters
a: 10
a and b: 10 20
double a: 123.25
Result of ob.test(123.25): 15190.5625

• When an overloaded method is called, Java looks
for a match between the arguments used to call
the method and the method’s parameters.

• However, this match need not always be exact.

• In some cases, Java’s automatic type conversions
can play a role in overload resolution.

• For example, consider the following program:

class OverloadDemo {
void test() {
System.out.println("No parameters");
}

// Overload test for one integer parameter.

void test(int a) {
System.out.println("a: " + a);
}

// Overload test for two integer parameters.

void test(int a, int b) {
System.out.println("a and b: " + a + " " + b);

}

void test(double a) {
System.out.println("Inside test(double) a: " + a);

}
}

class Overload {
public static void main(String args[]) {
OverloadDemo ob = new OverloadDemo();

int i = 88;
ob.test();
ob.test(10, 20);
ob.test(i); // this will invoke test(double)

ob.test(123.2); // this will invoke test(double)

}
}

Output
No parameters
a and b: 10 20
a: 88
Inside test(double) a: 123.2

Overloading Constructors

• In addition to overloading normal methods,
you can also overload constructor methods.

• The method of defining more than one
constructors inside a class is called as
Constructor Overloading.

• In fact, for most real-world classes that you
create, overloaded constructors will be the
norm, not the exception.

class Box {
double width;
double height;
double depth;
// constructor used when all dimensions

specified
Box(double w, double h, double d) {
width = w;
height = h;
depth = d;
}
// constructor used when no dimensions

specified
Box() {
width = -1; // use -1 to indicate
height = -1; // an uninitialized
depth = -1; // box
}
// constructor used when cube is created
Box(double len) {
width = height = depth = len;
}
// compute and return volume
double volume() {
return width * height * depth;
}
}

class OverloadCons {
public static void main(String args[]) {
// create boxes using the various constructors
Box mybox1 = new Box(10, 20, 15);
Box mybox2 = new Box();
Box mycube = new Box(7);
double vol;
// get volume of first box
vol = mybox1.volume();
System.out.println("Volume of mybox1 is " + vol);
// get volume of second box
vol = mybox2.volume();
System.out.println("Volume of mybox2 is " + vol);
// get volume of cube
vol = mycube.volume();
System.out.println("Volume of mycube is " + vol);
}
}

Output :
Volume of mybox1 is 3000.0
Volume of mybox2 is -1.0
Volume of mycube is 343.0

Using Objects as Parameters

• It is both correct and common to pass objects
to methods.

• For example, consider the following short
program:

// Objects may be passed to methods.
class Test {
int a, b;
Test(int i, int j) {
a = i;
b = j;
}
// return true if o is equal to the invoking object
boolean equals(Test o) {
if(o.a == a && o.b == b) return true;
else return false;
}
}
class PassOb {
public static void main(String args[]) {
Test ob1 = new Test(100, 22);
Test ob2 = new Test(100, 22);
Test ob3 = new Test(-1, -1);
System.out.println("ob1 == ob2: " + ob1.equals(ob2));
System.out.println("ob1 == ob3: " + ob1.equals(ob3));
}
}

Output :
ob1 == ob2: true
ob1 == ob3: false

A Closer Look at Argument Passing

• In general, there are two ways that a
computer language can pass an argument to a
subroutine.

– Call by Value

– Call by Reference

Call by Value

• This approach copies the value of an
argument into the formal parameter of the
subroutine.

• Therefore, changes made to the parameter of
the subroutine have no effect on the
argument.

// Primitive types are passed by value.
class Test {
void meth(int i, int j) {
i *= 2;
j /= 2;
}
}
class CallByValue {
public static void main(String args[]) {
Test ob = new Test();
int a = 15, b = 20;
System.out.println("a and b before call: " +
a + " " + b);
ob.meth(a, b);
System.out.println("a and b after call: " +
a + " " + b);
}
}

Output :
a and b before call: 15 20
a and b after call: 15 20

Call by Reference

• In this approach, a reference to an argument
(not the value of the argument) is passed to
the parameter.

• Inside the subroutine, this reference is used to
access the actual argument specified in the
call.

• This means that changes made to the
parameter will affect the argument used to
call the subroutine.

// Objects are passed by reference.

class Test {

int a, b;

Test(int i, int j) {

a = i;

b = j;

}

// pass an object

void meth(Test o) {

o.a *= 2;

o.b / = 2;

}

}

class CallByRef {

public static void main(String args[]) {

Test ob = new Test(15, 20);

System.out.println("ob.a and ob.b before call: " + ob.a + " " + ob.b);

ob.meth(ob);

System.out.println("ob.a and ob.b after call: " +ob.a + " " + ob.b);

}

}

Output :
ob.a and ob.b before call: 15 20
ob.a and ob.b after call: 30 10

Note :

• When a primitive type is passed to a method,
it is done by use of call-by-value.

• Objects are implicitly passed by use of call-by-
reference.

Returning Objects

• A method can return any type of data,
including class types that you create.

• For example, in the following program, the
incrByTen() method returns an object in
which the value of a is ten greater than it is in
the invoking object.

// Returning an object.
class Test {
int a;
Test(int i) {
a = i;
}
Test incrByTen() {
Test temp = new Test(a+10);
return temp;
} }
class RetOb {
public static void main(String args[]) {
Test ob1 = new Test(2);
Test ob2;
ob2 = ob1.incrByTen();
System.out.println("ob1.a: " + ob1.a);
System.out.println("ob2.a: " + ob2.a);
ob2 = ob2.incrByTen();
System.out.println("ob2.a after second increase: “ + ob2.a);
}
}

Output :
ob1.a: 2
ob2.a: 12
ob2.a after second increase: 22

Recursion

• Java supports recursion.

• Recursion is the process of defining something
in terms of itself.

• Recursion is the attribute that allows a
method to call itself.

• A method that calls itself is said to be
recursive

// A simple example of recursion.
class Factorial {
// this is a recursive method
int fact(int n) {

int result;
if(n==1) return 1;
result = n* fact(n-1) ;
return result;
}

}
class Recursion {
public static void main(String args[]) {
Factorial f = new Factorial();
System.out.println("Factorial of 3 is " + f.fact(3));
System.out.println("Factorial of 4 is " + f.fact(4));
System.out.println("Factorial of 5 is " + f.fact(5));
}
}

Output :
Factorial of 3 is 6
Factorial of 4 is 24
Factorial of 5 is 120

• When a method calls itself, new local variables
and parameters are allocated storage on the
stack, and the method code is executed with
these new variables from the start.

• As each recursive call returns, the old local
variables and parameters are removed from
the stack, and execution resumes at the point
of the call inside the method.

• Recursive methods could be said to
“telescope” out and back.

• Advantages :

– The main advantage to recursive methods is that they
can be used to create clearer and simpler versions of
several algorithms than can their iterative relatives.

– Some types of AI-related algorithms are most easily
implemented using recursive solutions.

• Disadvantages:

– Recursive versions of many routines may execute a bit
more slowly than the iterative equivalent because of
the added overhead of the additional function calls.

– Many recursive calls to a method could cause a stack
overrun.

// Another example that uses recursion.
class RecTest {
int values[];
RecTest(int i) {
values = new int[i];
}
// display array -- recursively
void printArray(int i) {
if(i==0) return;
else printArray(i-1);
System.out.println("[" + (i-1) + "] " + values[i-1]);
}
}
class Recursion2 {
public static void main(String args[]) {
RecTest ob = new RecTest(10);
int i;
for(i=0; i<5; i++)
ob.values[i] = i;

ob.printArray(5);
}
}

Output :
[0] 0
[1] 1
[2] 2
[3] 3
[4] 4

Introducing Access Control
• It may be necessary in some situations to restrict the

access to certain variables & methods from outside the
class.

• This can be achieved in Java by applying visibility
modifiers or access specifiers.

• Java supports four types of access specifiers.
– Public : It has a widest possible visibility & accessible

everywhere.
– No Specifier : When no access modifier is specified, the

member defaults to a limited version of public accessibility
known as “friendly” level of access.

– Protected : The visibility level of protected field lies in
between the public & friendly access.

– Private : They are accessible only within their own class.

/* This program demonstrates the
difference between

public and private.
*/
class Test {
int a; // default access
public int b; // public access
private int c; // private access
// methods to access c
void setc(int i) { // set c's value
c = i;
}
int getc() { // get c's value
return c;
}
}
class AccessTest {
public static void main(String args[]) {

Test ob = new Test();
// These are OK, a and b may be

accessed directly
ob.a = 10;
ob.b = 20;
// This is not OK and will cause an

error
// ob.c = 100; // Error!
// You must access c through its

methods
ob.setc(100); // OK
System.out.println("a, b, and c: " +

ob.a + "," +
ob.b + " ," + ob.getc());
}
}
• Output :
• a, b, and c: 10, 20, 100

Understanding static:

• It is possible to create a member that can be used by itself,
without reference to a specific instance.

• To create such a member, precede its declaration with the
keyword static.

• You can declare both methods and variables to be static.
– If instance-variable is declared with static, all instances of the

class share the same static variable.
– If method is declared with static, then by using class name that

method can be called.

• Methods declared as static have several restrictions:
– They can only call other static methods.
– They must only access static data.
– They cannot refer to this or super in any way.

// Demonstrate static variables, methods, and blocks.
class UseStatic {
static int a = 3;
static int b;
static void meth(int x) {
System.out.println("x = " + x);
System.out.println("a = " + a);
System.out.println("b = " + b);
}
static {
System.out.println("Static block initialized.");
b = a * 4;
}
public static void main(String args[]) {
meth(42);
}
}

Output :
Static block initialized.
x = 42
a = 3
b = 12

• Outside of the class in which they are defined,
static methods and variables can be used
independently of any object.

• To do so, you need only specify the name of
their class followed by the dot operator.

• For example, if you wish to call a static
method from outside its class, you can do so
using the following general form:

classname.method()

• Here, classname is the name of the class in
which the static method is declared.

class StaticDemo {
static int a = 42;
static int b = 99;
static void callme() {
System.out.println("a = " + a);
}
}
class StaticByName {
public static void main(String args[]) {
StaticDemo.callme();
System.out.println("b = " + StaticDemo.b);
}
}

Output :
a = 42
b = 99

Introducing final

• A variable can be declared as final. Doing so
prevents its contents from being modified.

final int FILE_NEW = 1;
final int FILE_OPEN = 2;
final int FILE_SAVE = 3;
final int FILE_SAVEAS = 4;
final int FILE_QUIT = 5;

• Variables declared as final do not occupy memory
on a per-instance basis.

• Thus, a final variable is essentially a constant.

Arrays Revisited

• Arrays are implemented as objects.

• Because of this, there is a special array
attribute that you will want to take advantage
of.

• Specifically, the size of an array—that is, the
number of elements that an array can hold—is
found in its length instance variable.

• All arrays have this variable, and it will always
hold the size of the array.

// This program demonstrates the length array
member.

class Length {
public static void main(String args[]) {
int a1[] = new int[10];
int a2[] = {3, 5, 7, 1, 8, 99, 44, -10};
int a3[] = {4, 3, 2, 1};
System.out.println("length of a1 is " + a1.length);
System.out.println("length of a2 is " + a2.length);
System.out.println("length of a3 is " + a3.length);
}
} Output :

length of a1 is 10
length of a2 is 8
length of a3 is 4

// Improved Stack class that uses the length
array member.

class Stack {

private int stck[];

private int top;

// allocate and initialize stack

Stack(int size) {

stck = new int[size];

top = -1;

}

// Push an item onto the stack

void push(int item) {

if(top==stck.length-1) // use length member

System.out.println("Stack is full.");

else

stck[++top] = item;

}

// Pop an item from the stack

int pop() {

if(top < 0) {

System.out.println("Stack underflow.");

return 0;

}

else
return stck[top--];
}
}
class TestStack2 {
public static void main(String args[]) {
Stack mystack1 = new Stack(5);
Stack mystack2 = new Stack(8);
// push some numbers onto the stack
for(int i=0; i<5; i++) mystack1.push(i);
for(int i=0; i<8; i++) mystack2.push(i);
// pop those numbers off the stack
System.out.println("Stack in mystack1:");
for(int i=0; i<5; i++)
System.out.println(mystack1.pop());
System.out.println("Stack in mystack2:");
for(int i=0; i<8; i++)
System.out.println(mystack2.pop());
}
}

Inheritance

Introduction

• Inheritance is the process by which one object
acquires the properties of another object.

• Using inheritance, you can create a general class that
defines traits common to a set of related items.

• This class can then be inherited by other, more specific
classes, each adding those things that are unique to it.

• In the terminology of Java, a class that is inherited is
called a superclass .

• The class that does the inheriting is called a subclass .

Syntax

• class Superclassname

{

….......

}

• class subclassname extends Superclassname

{

…........

}

Types of Inheritance:

1. Single Inheritance.

2. Hierarchical Inheritance

3. Multilevel Inheritance

4. Multiple Inheritance

Using super Keyword :

• super has two general forms.

– To Call Superclass Constructors.

– To access a member of the superclass that has
been hidden by a member of a subclass.

1. Using Super to call superclass
constructor:

• A subclass can call a constructor defined by its
superclass by use of the following form of
super:

super(arg-list);

• Here, arg-list specifies any arguments needed
by the constructor in the superclass.

Example
class test
{
private int a, b;
public test(int x, int y)
{
a=x;
b=y;
}
void show()
{
System.out.println(“ a : “ +a);
System.out.println(“ b : “ +b);
}
}
class subtest extends test
{
private int c;
public subtest(int x,int y, int z)
{
super(x,y);
c=z;
}

void display()
{
show();
System.out.println(“ c : “ +c);
}
}

public class Test1
{
public static void main(String args[])
{
subtest S = new subtest(4,8,14);
S.display();
}
}

Output :
a: 4
b : 8
c: 14

2. To access a member of the superclass that has been hidden
by a member of a subclass:

class SSIP
{
int i;
}
class SCSIP extends SSIP
{
int i;
SCSIP(int a, int b)
{
super.i = a;
i = b;
}
void display()
{
System.out.println(“ Super class I =

”+super.i);

System.out.println(“ Sub class I = ”+i);
}
}
public class Test1
{
public static void main(String args[])
{
SCSIP S = new SCSIP(10,20);
S.display();
}
}

Output:
Super class I = 10
Sub class I = 20

1. Single Inheritance:

• The process of deriving one subclass from
one superclass is called as Single Inheritance.

Example
class SSIP
{
int i;
SSIP(int a)
{
i=a;
}
void show()
{
System.out.println(“i= “+i);
}
}

class SCSIP extends SSIP

{

int j;

SCSIP(int a, int b)

{

super(a);

j=b;

}

void display()

{

System.out.println(“j= “+j);

}

}

class MSSIP

{

public static void main(String args[])

{

SCSIP s1 = new SCSIP(10,20);

s1.show();

s1.display();

}

}

2. Hierarchical Inheritance :

• The process of deriving more than one
subclass from the single superclass is called
as hierarchical inheritance.

class PERSON
{
String name, address;
int id;
PERSON() { }
PERSON(String s, int a, String t)
{
name = s;
id = a;
address = t;
}
void show()
{
System.out.println(“Name of the Person = ”+name);
System.out.println(“ID of Person = ”+id);
System.out.println(“Address of Person = ”+address);
}
}

class EMP extends PERSON
{
double sal, inc;
EMP() { }
EMP(String s, int a, String t, double v, double k)
{
super(s, a, t);
sal = v;
inc = k;
}
void cal()
{
sal = sal + inc;
}
void print()
{
show();
System.out.println(“increment = ”+inc);
System.out.println(“New salary = ”+sal);
}}

class STUDENT extends PERSON

{

int m1, m2, m3;

double avg;

STUDENT() { }

STUDENT(String s, int a, String t, int i, int j, int k)

{

super(s, a, t);

m1 = i;

m2 = j;

m3 = k;

}

void display()

{

show();

System.out.println(“M1 = ”+m1);

System.out.println(“M2 = ”+m2);

System.out.println(“M3 = ”+m3);

System.out.println(“avg = ”+avg);

}

void average()

{

avg = (double) m1+m2+m3/3;

}

}

class PES

{

public static void main(String args[])

{

EMP E1 = new EMP(“Sagar”, 10, “Delhi”, 10000, 2000);

E1.cal();

E1.print();
STUDENT S1=new STUDENT(“laxmi”,1, “ Belgaum”, 23,25, 24);

S1.average();

S1.display();

}

}

3. Multilevel Inheritance:

• The process of deriving new class from the
derived class is called as Multilevel
inheritance.

class STUDENT
{
String name;
int rollno;
STUDENT() { }
STUDENT(String s, int r)
{
name = s;
rollno = r;
}
void show()
{
System.out.println(“Name = ”+name);
System.out.println(“Roll No = ”+rollno);
}}

class TEST extends STUDENT
{
int m1,m2;
TEST() { }
TEST(String s, int r, int x, int y)
{
super(s, r);
m1=x;
m2=y;
}
void display()
{
show();
System.out.println(“M1 = ”+m1);
System.out.println(“M2 = ”+m2);
}}

class RESULT extends TEST
{
double avg;
RESULT() { }
RESULT(String s, int r, int x int y)
{
super(s,r,x,y);
}
void cal()
{
avg = (double) m1+m2 / 2;
}
void Print()
{
display();
System.out.println(“avg = “+avg);
}}

class MSTUDENT

{

public static void main(String args[])

{

RESULT R1=new RESULT(“abc”,1,23,25);

R1.cal();

R1.Print();

}}

4. Multiple Inheritance :

• The process of deriving a single subclass from
more than one superclasses is called as
Multiple inheritance.

• This type of inheritance is not directly
implemented by Java because of

– Complexity

– Large Memory Requirement

– Security

• Same property is achieved in Java by a
concept called as “Interface”.

Method Overriding

• In a class hierarchy, when a method in a subclass
has the same name and type signature as a
method in its superclass, then the method in the
subclass is said to override the method in the
superclass.

• When an overridden method is called from within
a subclass, it will always refer to the version of
that method defined by the subclass.

• The version of the method defined by the
superclass will be hidden

// Method overriding.
class A {
int i, j;
A(int a, int b) {
i = a;
j = b;
}
// display i and j
void show() {
System.out.println("i and j: " + i + " "

+ j);
}
}
class B extends A {
int k;
B(int a, int b, int c) {
super(a, b);
k = c;
}

// display k – this overrides show() in
A

void show() {
System.out.println("k: " + k);
}
}
class Override {
public static void main(String args[]) {
B subOb = new B(1, 2, 3);
subOb.show(); // this calls show() in

B
}
}

Output:
k: 3

Dynamic Method Dispatch

• Dynamic method dispatch is the mechanism
by which a call to an overridden method is
resolved at run time, rather than compile
time.

• Dynamic method dispatch is important
because this is how Java implements run-time
polymorphism.

• A superclass reference variable can refer to a subclass
object.

• Java uses this fact to resolve calls to overridden
methods at run time.

• When an overridden method is called through a
superclass reference, Java determines which version of
that method to execute based upon the type of the
object being referred to at the time the call occurs.

• Thus, this determination is made at run time. When
different types of objects are referred to, different
versions of an overridden method will be called.

// Dynamic Method Dispatch
class A {
void callme() {
System.out.println("Inside A's callme

method");
}
}
class B extends A {
// override callme()
void callme() {
System.out.println("Inside B's callme

method");
}
}
class C extends A {
// override callme()
void callme() {
System.out.println("Inside C's callme

method");
}
}
class Dispatch {
public static void main(String args[]) {

A a = new A(); // object of type A
B b = new B(); // object of type B
C c = new C(); // object of type C
A r; // obtain a reference of type A
r = a; // r refers to an A object
r.callme(); // calls A's version of callme
r = b; // r refers to a B object
r.callme(); // calls B's version of callme
r = c; // r refers to a C object
r.callme(); // calls C's version of callme
}
}

Output :
Inside A’s callme method
Inside B’s callme method
Inside C’s callme method

Why Overridden Methods?

• Polymorphism is essential to object-oriented programming
for one reason: it allows a general class to specify methods
that will be common to all of its derivatives, while allowing
subclasses to define the specific implementation of some
or all of those methods.

• Overridden methods are another way that Java implements
the “one interface, multiple methods” aspect of
polymorphism.

• Dynamic, run-time polymorphism is one of the most
powerful mechanisms that object oriented design brings to
bear on code reuse and robustness.

• The ability of existing code libraries to call methods on
instances of new classes without recompiling while
maintaining a clean abstract interface is a profoundly
powerful tool.

Applying Method Overriding
class Figure {
double dim1;
double dim2;
Figure(double a, double b) {
dim1 = a;
dim2 = b;
}
double area() {
System.out.println("Area for Figure is undefined.");
return 0;
}
}
class Rectangle extends Figure {
Rectangle(double a, double b) {
super(a, b);
}
// override area for rectangle
double area() {
System.out.println("Inside Area for Rectangle.");
return dim1 * dim2;
}
}
class Triangle extends Figure {
Triangle(double a, double b) {
super(a, b);
}

// override area for right triangle
double area() {
System.out.println("Inside Area for Triangle.");
return dim1 * dim2 / 2;
}
}
class FindAreas {
public static void main(String args[]) {
Figure f = new Figure(10, 10);
Rectangle r = new Rectangle(9, 5);
Triangle t = new Triangle(10, 8);
Figure figref;
figref = r;
System.out.println("Area is " + figref.area());
figref = t;
System.out.println("Area is " + figref.area());
figref = f;
System.out.println("Area is " + figref.area());
}
}
Output:
Inside Area for Rectangle.
Area is 45
Inside Area for Triangle.
Area is 40
Area for Figure is undefined.
Area is 0

Using Abstract Classes
• There are situations in which you will want to define a superclass

that declares the structure of a given abstraction without providing
a complete implementation of every method.

• That is, sometimes you will want to create a superclass that only
defines a generalized form that will be shared by all of its
subclasses, leaving it to each subclass to fill in the details.

• Such a class determines the nature of the methods that the
subclasses must implement.

• One way this situation can occur is when a superclass is unable to
create a meaningful implementation for a method.

• This is the case with the class Figure used in the preceding example.
• The definition of area() is simply a placeholder. It will not compute

and display the area of any type of object.

• Java’s solution to this problem is the abstract
method.

• You can require that certain methods be
overridden by subclasses by specifying the
abstract type modifier.

• These methods are sometimes referred to as
subclasser responsibility because they have no
implementation specified in the superclass.

• Thus, a subclass must override them—it cannot
simply use the version defined in the superclass.

• To declare an abstract method, use this general
form:

abstract type name(parameter-list);
• As you can see, no method body is present.

• Any class that contains one or more abstract methods
must also be declared abstract.

• To declare a class abstract, you simply use the abstract
keyword in front of the class keyword at the beginning
of the class declaration.

• There can be no objects of an abstract class. That is, an
abstract class cannot be directly instantiated with the
new operator.

• Such objects would be useless, because an abstract
class is not fully defined.

• Also, you cannot declare abstract constructors, or
abstract static methods. Any subclass of an abstract
class must either implement all of the abstract
methods in the superclass, or be itself declared
abstract.

// A Simple demonstration of abstract.
abstract class A {
abstract void callme();
// concrete methods are still allowed in abstract classes
void callmetoo() {
System.out.println("This is a concrete method.");
}
}
class B extends A {
void callme() {
System.out.println("B's implementation of callme.");
}
}
class AbstractDemo {
public static void main(String args[]) {
B b = new B();
b.callme();
b.callmetoo();
}
}

abstract class Figure {
double dim1;
double dim2;
Figure(double a, double b) {
dim1 = a;
dim2 = b;
}
// area is now an abstract method
abstract double area();
}
class Rectangle extends Figure {
Rectangle(double a, double b) {
super(a, b);
}
// override area for rectangle
double area() {
System.out.println("Inside Area for Rectangle.");
return dim1 * dim2;
}
}
class Triangle extends Figure {
Triangle(double a, double b) {
super(a, b);
}

// override area for right triangle
double area() {
System.out.println("Inside Area for Triangle.");
return dim1 * dim2 / 2;
}
}
class AbstractAreas {
public static void main(String args[]) {
// Figure f = new Figure(10, 10); // illegal now
Rectangle r = new Rectangle(9, 5);
Triangle t = new Triangle(10, 8);
Figure figref; // this is OK, no object is created
figref = r;
System.out.println("Area is " + figref.area());
figref = t;
System.out.println("Area is " + figref.area());
}
}

Using final with Inheritance

• The keyword final has three uses.

– First, it can be used to create the equivalent of a
named constant.

– Using final to Prevent Overriding

– Using final to Prevent Inheritance

To create the equivalent of a named
constant.

• A variable can be declared as final. Doing so
prevents its contents from being modified.

final int FILE_NEW = 1;

final int FILE_OPEN = 2;

• Variables declared as final do not occupy
memory on a per-instance basis.

• Thus, a final variable is essentially a constant.

Using final to Prevent Overriding

• To disallow a method from being overridden, specify final as a modifier at
the start of its declaration.

• Methods declared as final cannot be overridden.
• The following fragment illustrates final:
class A {
final void meth() {
System.out.println("This is a final method.");
}
}
class B extends A {
void meth() { // ERROR! Can't override.
System.out.println("Illegal!");
}
}

Using final to Prevent Inheritance

• Sometimes you will want to prevent a class from being
inherited.

• To do this, precede the class declaration with final.
• Declaring a class as final implicitly declares all of its

methods as final, too.
final class A {
// ...
}
// The following class is illegal.
class B extends A
{ // ERROR! Can't subclass A
// ...
}

The Object Class

• There is one special class, Object, defined by Java.

• All other classes are subclasses of Object.

• That is, Object is a superclass of all other classes.
This means that a reference variable of type

• Object can refer to an object of any other class.

• Also, since arrays are implemented as classes, a
variable of type Object can also refer to any array.

