
S. J. P. N. TRUST’S
HIRASUGAR INSTITUTE OF TECHNOLOGY, NIDASOSHI

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME.

Department of Computer Science & Engineering

Course: Programming in Java(18CS653)

Module 2: Operators and Control Statements

Prof. Prasanna Patil
Asst. Prof. , Dept. of Computer Science & Engg.,

Hirasugar Institute of Technology, Nidasoshi

• Operators are classified as

– Arithmetic Operators

– Relational Operators

– Logical Operators

– Bitwise Operators

7/2/2022 2
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Arithmetic Operators

7/2/2022 3
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

• Arithmetic operators are used in
mathematical expressions.

• The operands of the arithmetic operators
must be of a numeric type.

• You cannot use them on boolean types, but
you can use them on char types, since the
char type in Java is, essentially, a subset of int.

7/2/2022 4
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

7/2/2022 5
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Output of the Program

7/2/2022 6
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

The Modulus Operator :

• The modulus operator, %, returns the
remainder of a division operation.

• It can be applied to floating-point types as
well as integer types.

• The following example program demonstrates
the %:

7/2/2022 7
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

7/2/2022 8
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Arithmetic Compound Assignment Operators :

• Java provides special operators that can be
used to combine an arithmetic operation with
an assignment.

• The syntax is

var op= expression;

• This version uses the += compound
assignment operator.

• Ex : a = a % 2; which can be expressed as

a %= 2;

7/2/2022 9
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

• The compound assignment operators provide
two benefits.

– First, they save you a bit of typing, because they
are “shorthand” for their equivalent long forms.

– Second, they are implemented more efficiently by
the Java run-time system than are their equivalent
long forms.

7/2/2022 10
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

7/2/2022 11
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Increment and Decrement

• The ++ and the – – are Java’s increment and decrement
operators.

• The increment operator increases its operand by one.

• The decrement operator decreases its operand by one.

• For example, this statement:
x = x + 1; can be rewritten like this by use of the increment operator:

x++;

Similarly, this statement:

x = x - 1; is equivalent to

x--;

7/2/2022 12
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

• These operators are unique in that they can
appear both in postfix form, where they follow
the operand as just shown, and prefix form,
where they precede the operand.

• Ex: x = 42;

y = ++x; In this case, y is set to 43.

x = 42;

y = x++; In this case, y is set to 42.

7/2/2022 13
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

7/2/2022 14
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Relational Operators

• The relational operators determine the
relationship that one operand has to the other.

• Specifically, they determine equality and
ordering.

• The outcome of these operations is a boolean
value.

• The relational operators are most frequently used
in the expressions that control the if statement
and the various loop statements.

7/2/2022 15
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

• Any type in Java, including integers, floating-point
numbers, characters, and Booleans can be
compared using the equality test, ==, and the
inequality test, !=.

• Only numeric types can be compared using the
ordering operators.

7/2/2022 16
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Class RelationOp {
public static void main(String args[]) {

int a = 4;
int b = 1;
boolean c = a < b;
System.out.println(“c = " + c);
if(a <= b)

System.out.println(“a is smaller”);
Else

System.out.println(“b is smaller);
}

}

7/2/2022 17
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Boolean Logical Operators

• The Boolean logical operators shown here
operate only on boolean operands.

• All of the binary logical operators combine
two boolean values to form a resultant
boolean value.

7/2/2022 18
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

7/2/2022 19
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

• The following table shows the effect of each
logical operation:

7/2/2022 20
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

7/2/2022 21
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Short-Circuit Logical Operators
• Java will not bother to evaluate the right-hand operand

when the outcome of the expression can determined by
the left operand alone.

• This is very useful when the right-hand operand depends
on the value of the left one in order to function properly.

• For example, the following code fragment shows how you
can take advantage of short-circuit logical evaluation to be
sure that a division operation will be valid before evaluating
it:

if (denom != 0 && num / denom > 10)
• Since the short-circuit form of AND (&&) is used, there is no

risk of causing a run-time exception when denom is zero.
• If this line of code were written using the single & version

of AND, both sides would be evaluated, causing a run-time
exception when denom is zero.

7/2/2022 22
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

The Assignment Operator

• The assignment operator is the single equal sign, =.
• It has this general form:

var = expression;
• Here, the type of var must be compatible with the type

of expression.
• The assignment operator does have one interesting

attribute that you may not be familiar with: it allows
you to create a chain of assignments.

• For example, consider this fragment:
int x, y, z;
x = y = z = 100; // set x, y, and z to 100

7/2/2022 23
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

The ? Operator

• Java includes a special ternary (three-way) operator that
can replace certain types of if-then-else statements.

• This operator is the ?.
• The ? has this general form:

expression1 ? expression2 : expression3
• Here, expression1 can be any expression that evaluates to a

boolean value.
• If expression1 is true, then expression2 is evaluated;

otherwise, expression3 is evaluated.
• The result of the ? operation is that of the expression

evaluated.
• Both expression2 and expression3 are required to return

the same type, which can’t be void.

7/2/2022 24
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

7/2/2022 25
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Bitwise Operators

• Java defines several bitwise operators that can
be applied to the integer types, long, int,
short, char, and byte.

• These operators act upon the individual bits of
their operands.

• They are summarized in the following table:

7/2/2022 26
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

7/2/2022 27
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

• Since the bitwise operators manipulate the
bits within an integer, it is important to
understand what effects such manipulations
may have on a value.

7/2/2022 28
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Decimal to Binary Conversion

128 64 32 16 8 4 2 1

27 26 25 24 23 22 21 20

4 0 0 0 0 0 1 0 0

11 0 0 0 0 1 0 1 1

26 0 0 0 1 1 0 1 0

97 0 1 1 0 0 0 0 1

7/2/2022 29
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

• The Bitwise NOT
• Also called the bitwise complement, the unary

NOT operator, ~, inverts all of the bits of its
operand.

• For example, the number 42, which has the
following bit pattern:

00101010
• becomes

11010101
• after the NOT operator is applied.

7/2/2022 30
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

• The Bitwise AND

• The AND operator, &, produces a 1 bit if both
operands are also 1. A zero is produced in all
other cases. Here is an example:

00101010 42

& 00001111 15

00001010 10

7/2/2022 31
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

• The Bitwise OR

• The OR operator, |, combines bits such that if
either of the bits in the operands is a 1, then
the resultant bit is a 1, as shown here:

00101010 42

| 00001111 15

00101111 47

7/2/2022 32
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

• The Bitwise XOR

• The XOR operator, ^, combines bits such that
if exactly one operand is 1, then the result is 1.
Otherwise, the result is zero. Here is an
example:

00101010 42

^ 00001111 15

00100101 37

7/2/2022 33
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

7/2/2022 34
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

• The Left Shift :

• The left shift operator, <<, shifts all of the bits in a
value to the left a specified number of times.

• It has this general form:

value << num

• Here, num specifies the number of positions to
left-shift the value in value.

• That is, the << moves all of the bits in the
specified value to the left by the number of bit
positions specified by num.

• For each shift left, the high-order bit is shifted out
(and lost), and a zero is brought in on the right.

7/2/2022 35
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

// Left shifting a byte value.

class ByteShift {

public static void main(String args[]) {

byte a = 64, b;

int i;

i = a << 2; // 01000000

b = (byte) (a << 2);

System.out.println("Original value of a: " + a);

System.out.println("i and b: " + i + " " + b);

}

}

7/2/2022 36

Output: Original value of a: 64
i and b: 256 0

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

• The Right Shift :

• The right shift operator, >>, shifts all of the bits in
a value to the right a specified number of times.
Its general form is shown here:

value >> num

• Here, num specifies the number of positions to
right-shift the value in value.

• That is, the >> moves all of the bits in the
specified value to the right the number of bit
positions specified by num.

• The >> operator automatically fills the high-order
bit with its previous contents each time a shift
occurs.

7/2/2022 37
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

• The following code fragment shifts the value 32
to the right by two positions, resulting in a being
set to 8:

Ex 1: int a = 32;

a =a >> 2;

00100000 32>>2

00001000 8

Ex 2 : int a = -8

a=a>>1

11111000 -8>>1

11111100 -4

7/2/2022 38
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

• The Unsigned Right Shift :

• The >>> operator automatically fills the high-
order bit with Zero each time a shift occurs.

• Ex : int a = -8

a=a>>>1

11111000 -8>>>1

01111100 124

7/2/2022 39
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Bitwise Operator Compound
Assignments

• All of the binary bitwise operators have a
compound form similar to that of the
algebraic operators, which combines the
assignment with the bitwise operation.

• Ex : a = a >> 4;

a >>= 4;

• Ex : a = a | b;

a |= b;

7/2/2022 40
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

class OpBitEquals {
public static void main(String args[]) {

int a = 1;
int b = 2;
int c = 3;
a |= 4;
b >>= 1;
c <<= 1;
a ^= c;
System.out.println("a = " + a);
System.out.println("b = " + b);
System.out.println("c = " + c);

}
}

7/2/2022 41
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Operator Precedence

7/2/2022 42
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Using Parentheses
• Parentheses raise the precedence of the operations that

are inside them.
• This is often necessary to obtain the result you desire.
• For example, consider the following expression:

a >> b + 3
• This expression first adds 3 to b and then shifts a right by

that result.
• That is, this expression can be rewritten using redundant

parentheses like this:
a >> (b + 3)

• If you want to first shift a right by b positions and then add
3 to that result, you will need to parenthesize the
expression like this:

(a >> b) + 3

7/2/2022 43
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Control Statements

7/2/2022 44
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Introduction
• A programming language uses control statements to

cause the flow of execution to advance and branch
based on changes to the state of a program.

• Java’s program control statements can be put into the
following categories: selection, iteration, and jump.

• Selection statements allow your program to choose
different paths of execution based upon the outcome
of an expression or the state of a variable.

• Iteration statements enable program execution to
repeat one or more statements (that is, iteration
statements form loops).

• Jump statements allow your program to execute in a
nonlinear fashion.

7/2/2022 45
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Java’s Selection Statements

• Java supports two selection statements: if and
switch.

• These statements allow you to control the
flow of your program’s execution based upon
conditions known only during run time.

7/2/2022 46
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

if statement
• The if statement is Java’s conditional branch statement.
• It can be used to route program execution through two different

paths.
• Here is the general form of the if statement:

if (condition)
statement1;

else
statement2;

• Here, each statement may be a single statement or a compound
statement enclosed in curly braces (that is, a block).

• The condition is any expression that returns a boolean value.
• The else clause is optional.
• The if works like this:
• If the condition is true, then statement1 is executed. Otherwise,

statement2 (if it exists) is executed. In no case will both statements
be executed.

7/2/2022 47
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

• consider the following:

int a, b;

// ...

if(a < b)

a = 0;

else

b = 0;

7/2/2022 48
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

• Some programmers find it convenient to include
the curly braces when using the if, even when
there is only one statement in each clause.

int bytesAvailable;
// ...
if (bytesAvailable > 0)
{

ProcessData();
bytesAvailable -= n;

}
else

waitForMoreData();
bytesAvailable = n;

7/2/2022 49
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Program to check the eligibility of
voting

class Vote
{

public static void main(String args[])
{

int age= 20;
if(age >= 18)

System.out.println(“Person is Eligible to vote”);
else

System.out.println(“Person is not Eligible to vote”);
}

}

7/2/2022 50
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Nested ifs
• A nested if is an if statement that is the target of another if or else. Nested

ifs are very common in programming.
• When you nest ifs, the main thing to remember is that an else statement

always refers to the nearest if statement that is within the same block as
the else and that is not already associated with an else.

• Here is an example:
if(i == 10)
{

if(j < 20)
a = b;

if(k > 100)
c = d; // this if is

else
a = c; // associated with this else

}
else

a = d;

7/2/2022 51
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Program to find largest of 3 numbers
using nested if statement

class Vote
{
public static void main(String args[])
{
int a=10,b=20,c=15;
if(a > b)
{

if(a > c)
System.out.println(a + “is greater ”);

else
System.out.println(c + “is greater ”);

}

else
{
if(b > c)

System.out.println(b + “is greater ”);
else

System.out.println(c + “is greater ”);
}
}
}

7/2/2022 52

Output :
20 is greater

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

The if-else-if Ladder

• A common programming construct that is based upon
a sequence of nested ifs is the if-else-if ladder.

• It looks like this:
if(condition)

statement;
else if(condition)

statement;
else if(condition)

statement;
...

else
statement;

7/2/2022 53
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

• The if statements are executed from the top down.

• As soon as one of the conditions controlling the if is true, the
statement associated with that if is executed, and the rest of
the ladder is bypassed.

• If none of the conditions is true, then the final else statement
will be executed.

• The final else acts as a default condition; that is, if all other
conditional tests fail, then the last else statement is
performed.

• If there is no final else and all other conditions are false, then
no action will take place.

7/2/2022 54
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

program that uses an if-else-if ladder to determine

which season a particular month is in.

class IfElse {
public static void main(String args[]) {

int month = 4; // April

String season;

if(month == 12 || month == 1 ||
month == 2)

season = "Winter";

else if(month == 3 || month == 4 ||
month == 5)

season = "Spring";

else if(month == 6 || month == 7 ||
month == 8)

season = "Summer";

else if(month == 9 || month == 10 ||
month == 11)

season = "Autumn";

else

season = "Bogus Month";

System.out.println("April is in the " +
season + ".");

}

}

7/2/2022 55

Output :
April is in the Spring.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

Switch statement

• The switch statement is Java’s multiway
branch statement.

• It provides an easy way to dispatch execution
to different parts of your code based on the
value of an expression.

• Here is the general form of a switch
statement:

7/2/2022 56
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

switch (expression) {
case value1:

// statement sequence
break;

case value2:
// statement sequence
break;

...
case valueN:

// statement sequence
break;

default:
// default statement sequence

}

7/2/2022 57
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

• The expression must be of type byte,
short, int, or char.

• Each of the values specified in the
case statements must be of a type
compatible with the expression.

• Each case value must be a unique
literal (that is, it must be a constant,
not a variable).

• Duplicate case values are not
allowed.

• The switch statement works like this:
• The value of the expression is

compared with each of the literal
values in the case statements.

• If a match is found, the code
sequence following that case
statement is executed.

• If none of the constants matches the
value of the expression, then the
default statement is executed.

• However, the default statement is
optional.

• If no case matches and no default is
present, then no further action is
taken.

• The break statement is used inside
the switch to terminate a statement
sequence.

• When a break statement is
encountered, execution branches to
the first line of code that follows the
entire switch statement.

7/2/2022 58
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

A simple example of the switch

class SampleSwitch {
public static void main(String args[]) {
for(int i=0; i<6; i++)
switch(i) {
case 0:

System.out.println("i is zero.");
break;

case 1:
System.out.println("i is one.");
break;

case 2:
System.out.println("i is two.");
break;

case 3:
System.out.println("i is three.");
break;

default:
System.out.println("i is greater than 3.");

}
}
}

7/2/2022 59

The output produced by this program is shown here:
i is zero.
i is one.
i is two.
i is three.
i is greater than 3.
i is greater than 3.

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

• The break statement is optional. If you omit
the break, execution will continue on into the
next case.

• It is sometimes desirable to have multiple
cases without break statements between
them.

7/2/2022 60
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

class MissingBreak {

public static void main(String args[]) {

for(int i=0; i<12; i++)

switch(i) {

case 0:

case 1:

case 2:

case 3:

case 4:

System.out.println("i is less than 5");

break;

case 5:

case 6:

case 7:

case 8:

case 9:

System.out.println("i is less than 10");

break;

default:

System.out.println("i is 10 or more");

}

}

}

7/2/2022 61

output:
i is less than 5
i is less than 5
i is less than 5
i is less than 5
i is less than 5
i is less than 10
i is less than 10
i is less than 10
i is less than 10
i is less than 10
i is 10 or more
i is 10 or moreProf. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

An improved version of the season
program.

class Switch {
public static void main(String args[]) {
int month = 4;
String season;
switch (month) {
case 12:
case 1:
case 2:
season = "Winter";break;
case 3:
case 4:
case 5:
season = "Summer"; break;
case 6:
case 7:

case 8:
season = “Spring";break;
case 9:
case 10:
case 11:
season = "Autumn";break;
default:
season = "Bogus Month";
}
System.out.println("April is in the " + season + ".");
}
}

7/2/2022 62

Output:
April is in the Summer

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

Nested switch Statements

• You can use a switch as part of the statement
sequence of an outer switch. This is called a
nested switch.

• Since a switch statement defines its own
block, no conflicts arise between the case
constants in the inner switch and those in the
outer switch.

7/2/2022 63
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

switch(count) {
case 1:
switch(target) { // nested switch
case 0:
System.out.println("target is zero");
break;

case 1: // no conflicts with outer switch
System.out.println("target is one");
break;

}
break;
case 2: // ...

• Here, the case 1:
statement in the inner
switch does not conflict
with the case 1:
statement in the outer
switch.

• The count variable is only
compared with the list of
cases at the outer level.

• If count is 1, then target is
compared with the inner
list cases.

7/2/2022 64
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

• In summary, there are three important
features of the switch statement to note:
– The switch differs from the if in that switch can

only test for equality, whereas if can evaluate any
type of Boolean expression. That is, the switch
looks only for a match between the value of the
expression and one of its case constants.

– No two case constants in the same switch can
have identical values. Of course, a switch
statement and an enclosing outer switch can have
case constants in common.

– A switch statement is usually more efficient than a
set of nested ifs.

7/2/2022 65
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Iteration Statements

• A loop repeatedly executes the same set of
instructions until a termination condition is
met.

• iteration statements are for, while, and do-
while.

7/2/2022 66
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

While loop
• The while loop is Java’s most fundamental loop statement.
• It repeats a statement or block while its controlling

expression is true.
• Here is its general form:

while(condition) {
// body of loop

}
• The condition can be any Boolean expression.
• The body of the loop will be executed as long as the

conditional expression is true. When condition becomes
false, control passes to the next line of code immediately
following the loop.

• The curly braces are unnecessary if only a single statement
is being repeated.

7/2/2022 67
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Demonstrate the while loop

class While {
public static void main(String args[]) {

int n = 10;
while(n > 0) {

System.out.println("tick " + n);
n--;

}
}

}

Output :
tick 10
tick 9
tick 8
tick 7
tick 6
tick 5
tick 4
tick 3
tick 2
tick 1

7/2/2022 68
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

• Since the while loop evaluates its conditional
expression at the top of the loop, the body of
the loop will not execute even once if the
condition is false to begin with.

int a = 10, b = 20;

while(a > b)

System.out.println("This will not be displayed");

7/2/2022 69
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

• The body of the while (or any other of Java’s
loops) can be empty. This is because a null
statement (one that consists only of a
semicolon) is syntactically valid in Java.

7/2/2022 70
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

While loop without body

class NoBody {

public static void main(String args[]) {

int i, j;

i = 100;

j = 200;

// find midpoint between i and j

while(++i < --j)

; // no body in this loop

System.out.println("Midpoint is " + i);

}

}

7/2/2022 71

Output
Midpoint is 150

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

do-while loop

• The do-while loop always executes its body at least once,
because its conditional expression is at the bottom of the
loop.

• Its general form is
do {

// body of loop
} while (condition);

• Each iteration of the do-while loop first executes the body
of the loop and then evaluates the conditional expression.
If this expression is true, the loop will repeat. Otherwise,
the loop terminates.

• As with all of Java’s loops, condition must be a Boolean
expression.

7/2/2022 72
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

class DoWhile {
public static void main(String args[]) {

int n = 10;
do {

System.out.println("tick " + n);
n--;

} while(n > 0);
}

}

• Output :
tick 10
tick 9
tick 8
tick 7
tick 6
tick 5
tick 4
tick 3
tick 2
tick 1

7/2/2022 73
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

• The do-while loop is especially useful when
you process a menu selection, because you
will usually want the body of a menu loop to
execute at least once.

7/2/2022 74
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

// Using a do-while to process a menu selection
class Menu {

public static void main(String args[])
throws java.io.IOException {
char choice;

do {

System.out.println("Help on:");
System.out.println(" 1. if");
System.out.println(" 2. switch");
System.out.println(" 3. while");
System.out.println(" 4. do-while");
System.out.println(" 5. for\n");
System.out.println("Choose one:");
choice = (char) System.in.read();

} while(choice < '1' || choice > '5’);

System.out.println("\n");
switch(choice) {
case '1':
System.out.println("The if:\n");
System.out.println("if(condition) statement;");
System.out.println("else statement;");
break;
case '2':
System.out.println("The switch:\n");
System.out.println("switch(expression) {");
System.out.println(" case constant:");

System.out.println(" statement sequence");
System.out.println(" break;");
System.out.println(" // ...");
System.out.println("}");
break;
case '3':
System.out.println("The while:\n");
System.out.println("while(condition) {
System.out.println (“statement; }");
break;
case '4’:
System.out.println("The do-while:\n");
System.out.println("do {");
System.out.println(" statement;");
System.out.println("} while (condition);");
break;
case '5':
System.out.println("The for:\n");
System.out.print("for(init; condition; iteration)");
System.out.println(" statement;");
break;
}}}

7/2/2022 75
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

• Output
Help on:
1. if
2. switch
3. while
4. do-while
5. For

Choose one:
4
The do-while:
do {
statement;
} while (condition);

7/2/2022 76
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

For loop
• Here is the general form of the traditional for statement:

for(initialization; condition; iteration) {

// body

}

• If only one statement is being repeated, there is no need for the curly braces.

• The for loop operates as follows. When the loop first starts, the initialization
portion of the loop is executed. Generally, this is an expression that sets the
value of the loop control variable, which acts as a counter that controls the
loop. It is important to understand that the initialization expression is only
executed once.

• Next, condition is evaluated. This must be a Boolean expression. It usually
tests the loop control variable against a target value. If this expression is true,
then the body of the loop is executed. If it is false, the loop terminates.

• Next, the iteration portion of the loop is executed. This is usually an expression
that increments or decrements the loop control variable. The loop then
iterates, first evaluating the conditional expression, then executing the body of
the loop, and then executing the iteration expression with each pass. This
process repeats until the controlling expression is false.

7/2/2022 77
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Demonstrate the for loop.

class ForTick {

public static void main(String args[]) {

int n;

for(n=10; n>0; n--)

System.out.println("tick " + n);

}

}

7/2/2022 78
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Program to Test the Prime Number

class FindPrime {

public static void main(String args[])

{

int num;

boolean isPrime = true;

num = 14;

for(int i=2; i <= num/i; i++) {

if((num % i) == 0) {

isPrime = false;

break;

}

}

if(isPrime)
System.out.println("Prime");

else System.out.println("Not
Prime");

}

}

7/2/2022 79
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Using the Comma

• There will be times when you will want to include more than one
statement in the initialization and iteration portions of the for loop.

class Sample {
public static void main(String args[]) {
int a, b;
b = 4;
for(a=1; a<b; a++) {
System.out.println("a = " + a);
System.out.println("b = " + b);
b--;
}
}
}

7/2/2022 80
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

class Comma {
public static void main(String args[]) {
int a, b;
for(a=1, b=4; a<b; a++, b--)
{
System.out.println("a = " + a);
System.out.println("b = " + b);
}
}
}
Output:
a = 1
b = 4
a = 2
b = 3

7/2/2022 81
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Some for Loop Variations

• One of the most common variations involves the
conditional expression.

• Specifically, this expression does not need to test the loop
control variable against some target value.

• In fact, the condition controlling the for can be any Boolean
expression.

• For example, consider the following fragment:
boolean done = false;
for(int i=1; !done; i++) {
// ...
if(interrupted()) done = true;
}

7/2/2022 82
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

• Here is another interesting for loop variation.
• Either the initialization or the iteration expression or both

may be absent, as in this next program:

// Parts of the for loop can be empty.
class ForVar {
public static void main(String args[]) {
int i; boolean done = false;
i = 0;
for(; !done;) {
System.out.println("i is " + i);
if(i == 10) done = true;
i++;
}
}
}
7/2/2022 83

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

• Here is one more for loop variation. You can
intentionally create an infinite loop (a loop
that never terminates) if you leave all three
parts of the for empty.

• For example:

for(; ;) {

// ...

}

7/2/2022 84
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

The For-Each Version of the for Loop
• The advantage of this approach is that no new keyword is

required, and no preexisting code is broken.
• The for-each style of for is also referred to as the enhanced

for loop.
• The general form of the for-each version of the for is shown

here:
for(type itr-var : collection) statement-block

• Here, type specifies the type and itr-var specifies the name
of an iteration variable that will receive the elements from
a collection, one at a time, from beginning to end.

• The collection being cycled through is specified by
collection.

• With each iteration of the loop, the next element in the
collection is retrieved and stored in itr-var. The loop repeats
until all elements in the collection have been obtained.

7/2/2022 85
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = 0;
for(int i=0; i < 10; i++) sum += nums[i];
• The for-each style for automates the preceding loop.
• Specifically, it eliminates the need to establish a loop

counter, specify a starting and ending value, and
manually index the array.

• Instead, it automatically cycles through the entire
array, obtaining one element at a time, in sequence,
from beginning to end.

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = 0;
for(int x: nums) sum += x;

7/2/2022 86
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Example of a for-each style for loop.

class ForEach {
public static void main(String args[]) {
int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = 0;
// use for-each style for to display and sum the values
for(int x : nums) {
System.out.println("Value is: " + x);
sum += x;
}
System.out.println("Summation: " + sum);
}
}

7/2/2022 87

• Output
Value is: 1
Value is: 2
Value is: 3
Value is: 4
Value is: 5
Value is: 6
Value is: 7
Value is: 8
Value is: 9
Value is: 10
Summation: 55

Prof. Prasanna Patil, Dept of CSE, HIT
Nidasoshi

• There is one important point to understand
about the for-each style loop.

• Its iteration variable is “read-only” as it relates
to the underlying array.

• An assignment to the iteration variable has no
effect on the underlying array.

7/2/2022 88
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

The for-each loop is essentially read-only.

class NoChange {

public static void main(String
args[]) {

int nums[] = { 1, 2, 3, 4, 5, 6, 7,
8, 9, 10 };

for(int x : nums) {

System.out.print(x + " ");

x = x * 10; // no effect on nums

}

System.out.println();

for(int x : nums)

System.out.print(x + " ");

System.out.println();

}

}

• The output, shown here,
proves this point:

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

7/2/2022 89
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Iterating Over Multidimensional
Arrays

• In Java, multidimensional arrays consist of
arrays of arrays.

• This is important when iterating over a
multidimensional array, because each
iteration obtains the next array, not an
individual element.

• Furthermore, the iteration variable in the for
loop must be compatible with the type of
array being obtained.

7/2/2022 90
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Use for-each style for on a two-
dimensional array.

class ForEach3 {

public static void main(String args[]) {

int sum = 0;

int nums[][] = new int[3][5];

// give nums some values

for(int i = 0; i < 3; i++)

for(int j=0; j < 5; j++)

nums[i][j] = (i+1)*(j+1);

for(int x[] : nums) {

for(int y : x) {

System.out.println("Value is: " + y);

sum += y;

}

}

System.out.println("Summation: " +
sum);

}

}

7/2/2022 91
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

• Output :
Value is: 1
Value is: 2
Value is: 3
Value is: 4
Value is: 5
Value is: 2
Value is: 4
Value is: 6
Value is: 8
Value is: 10
Value is: 3
Value is: 6
Value is: 9
Value is: 12
Value is: 15
Summation: 90

7/2/2022 92
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Search an array using for-each style
for.

class Search {
public static void main(String args[]) {
int nums[] = { 6, 8, 3, 7, 5, 6, 1, 4 };
int val = 5;
boolean found = false;
// use for-each style for to search nums for val
for(int x : nums) {
if(x == val) {
found = true;
break;
}
}
if(found)
System.out.println("Value found!");
}
}

7/2/2022 93
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Nested Loops

• Java allows loops to be nested. That is, one loop may be inside another.
• For example, here is a program that nests for loops:

// Loops may be nested.
class Nested {
public static void main(String args[]) {
int i, j;
for(i=0; i<5; i++) {
for(j=i; j<5; j++)
System.out.print(“*");
System.out.println();
}
}
}

7/2/2022 94
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Jump Statements

• Java supports three jump statements: break,
continue, and return.

• These statements transfer control to another
part of your program.

7/2/2022 95
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Using break

• In Java, the break statement has three uses.

– First, as you have seen, it terminates a statement
sequence in a switch statement.

– Second, it can be used to exit a loop.

– Third, it can be used as a “civilized” form of goto.

7/2/2022 96
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Using break to Exit a Loop

• By using break, you can force immediate
termination of a loop, bypassing the
conditional expression and any remaining
code in the body of the loop.

• When a break statement is encountered inside
a loop, the loop is terminated and program
control resumes at the next statement
following the loop.

7/2/2022 97
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

• // Using break to exit a loop.

class BreakLoop {

public static void main(String args[]) {

for(int i=0; i<10; i++) {

if(i == 6) break; // terminate loop if i is 6

System.out.println("i: " + i);

}

System.out.println("Loop complete.");

}

}

7/2/2022 98
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Using break as a Form of Goto

• The break statement can also be employed by itself to
provide a “civilized” form of the goto statement.

• Java does not have a goto statement because it
provides a way to branch in an arbitrary and
unstructured manner.

• There are, however, a few places where the goto is a
valuable and legitimate construct for flow control.

• To handle such situations, Java defines an expanded
form of the break statement.

• By using this form of break, you can, for example,
break out of one or more blocks of code.

7/2/2022 99
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

• The general form of the labeled break statement is shown
here:

break label;
• Most often, label is the name of a label that identifies a

block of code.
• This can be a stand-alone block of code but it can also be a

block that is the target of another statement.
• When this form of break executes, control is transferred

out of the named block.
• The labeled block must enclose the break statement, but it

does not need to be the immediately enclosing block.
• To name a block, put a label at the start of it.
• A label is any valid Java identifier followed by a colon.
• Once you have labeled a block, you can then use this label

as the target of a break statement.
• Doing so causes execution to resume at the end of the

labeled block

7/2/2022 100
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

// Using break as a civilized form of goto.
class Break {
public static void main(String args[]) {
boolean t = true;
first: {
second: {
third: {
System.out.println("Before the break.");
if(t) break second; // break out of second block
System.out.println("This won't execute");
}
System.out.println("This won't execute");
}
System.out.println("This is after second block.");
}
}
}

7/2/2022 101
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

Using continue

• Sometimes it is useful to force an early iteration of a
loop. That is, you might want to continue running the
loop but stop processing the remainder of the code in
its body for this particular iteration.

• The continue statement performs such an action.
• In while and do-while loops, a continue statement

causes control to be transferred directly to the
conditional expression that controls the loop.

• In a for loop, control goes first to the iteration portion
of the for statement and then to the conditional
expression.

• For all three loops, any intermediate code is bypassed.

7/2/2022 102
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

• // Demonstrate continue.
class Continue {
public static void main(String args[]) {
for(int i=0; i<10; i++) {
System.out.print(i + " ");
if (i%2 == 0) continue;
System.out.println("");
}
}
}

7/2/2022 103
Prof. Prasanna Patil, Dept of CSE, HIT

Nidasoshi

