
An Overview of Java

Prof. P. G. Patil

Asst. Prof. Dept. of CSE

HIT, Nidasoshi

Problem Solving Approaches

• Procedure Oriented Programming

• Object Oriented Programming

Procedure Oriented Programming(POP)

• It executes a series of procedures sequentially.
• The collection of data structure is related with

each other as well as with the procedures.
• This is basically a top down problem solving

approach.
• This approach characterizes a program as a series

of linear steps (that is, code).
• The process-oriented model can be thought of as
code acting on data.

• Eg: C language

Limitations of POP

• Global Data is accessible by all the functions.

• Sometimes many functions access the same
set of data.

• Program become complex to write and
maintain.

Object Oriented Programming System
(OOPS)

• It is a collection of objects.
• In OOPS we try to model real-world objects.
• Most real world objects have internal parts (Data

Members) and interfaces (Member Functions) that
enables us to operate them.

• This is basically the bottom up problem solving
approach.

• Object-oriented programming organizes a program
around its data (that is, objects) and a set of well-
defined interfaces to that data.

• An object-oriented program can be characterized as
data controlling access to code.

• Eg: C++, JAVA, C#

Difference between POP and OOP

POP OOP

Emphasis is on procedures (functions) Emphasis is on data

Programming task is divided into a
collection of data structures and
functions.

Programming task is divided into objects
(consisting of data variables and
associated member functions)

Procedures are being separated from data
being manipulated

Procedures are not separated from data,
instead, procedures and data are
combined together.

A piece of code uses the data to perform
the specific task

The data uses the piece of code to
perform the specific task

Data is moved freely from one function to
another function using parameters.

Data is hidden and can be accessed only
by member functions not by external
function.

Data is not secure Data is secure

Top-Down approach is used in the
program design

Bottom-Up approach is used in program
design

Debugging is the difficult as the code size
increases

Debugging is easier even if the code size is
more

Basic concepts (features) of Object-
Oriented Programming

1.Objects

2. Classes

3. Data abstraction

4. Data encapsulation

5. Inheritance

6. Polymorphism

7. Binding

8. Message passing

• Object:

– Everything in the world is an object.

– An object is a collection of variables that hold the
data and functions that operate on the data.

– The variables that hold data are called fields.

– The functions that operate on the data are called
methods.

Three OOP Principles

• Encapsulation

• Inheritance

• Polymorphism

Encapsulation

• The wrapping of data & methods into a single
unit(called class) is known as encapsulation.

• In Java, the basis of encapsulation is the class.

• A class defines the structure and behavior
(data and code) that will be shared by a set of
objects.

• Each object of a given class contains the
structure and behavior defined by the class.

Inheritance

• Inheritance is the process by which one object
acquires the properties of another object.

• This is important because it supports the
concept of hierarchical classification.

Polymorphism

• Polymorphism (from Greek, meaning “many
forms”) is a feature that allows one interface to
be used for a general class of actions.

• The specific action is determined by the exact
nature of the situation.

• Polymorphism plays an important role in allowing
objects having different internal structures to
share the same external interface.

• Eg: Method overloading & overriding.

Introduction to JAVA

• Java is an object-oriented programming language
developed by Sun Microsystems, a company best
known for its high-end Unix workstations.

• Java is modeled after C++ .

• It was conceived by James Gosling, Patrick
Naughton, Chris Warth, Ed Frank and Mike
Sheridan in 1991.

• They took 18 months to develop the first working
version & was initially named as “Oak” & was
renamed as “JAVA” in 1995.

• Java language was designed to be small, simple,
and portable across platforms and operating
systems, both at the source and at the binary
level (more about this later).

• Java also provides for portable programming with
applets.

• Applets appear in a Web page much in the same
way as images do, but unlike images, applets are
dynamic and interactive.

• Applets can be used to create animations, figures,
or areas that can respond to input from the
reader, games, or other interactive effects on the
same Web pages among the text and graphics.

Java Features:

(1) Compiled and Interpreted
(2) Architecture Neutral/Platform independent and

portable
(3) Object oriented
(4) Robust and secure.
(5) Distributed.
(6) Familiar, simple and small.
(7) Multithreaded and interactive.
(8) High performance
(9) Dynamic and extensible.

Java Environment:

• Java environment includes a large number of
development tools and hundreds of classes
and methods.

• The Java development tools are part of the
systems known as Java development kit (JDK)
and the classes and methods are part of the
Java standard library known as Java standard
Library (JSL) also known as application
program interface (API).

Java Development kits

• Java development kit comes with a number of
Java development tools. They are:
(1) Appletviewer: Enables to run Java applet.
(2) javac: Java compiler.
(3) java : Java interpreter.
(4) javah : Produces header files for use with native

methods.
(5) javap : Java disassembler.
(6) javadoc : Creates HTML documents for Java source

code file.
(7) jdb : Java debugger which helps us to find the error.

Java API:

• Java standard library includes hundreds of classes
and methods grouped into several functional
packages. Most commonly used packages are:

– (a) Language support Package.

– (b) Utilities packages.

– (c) Input/output packages

– (d) Networking packages

– (e) AWT packages.

– (f) Applet packages.

JVM(Java Virtual Machine)

Java Building and running Process:

Java Program structure:

It consists of 6 stages. They are:
(1) Documentation section: The documentation section

contains a set of comment lines describing about the
program.

(2) Package statement: The first statement allowed in a Java
file is a package statement. This statement declares a
package name and informs the compiler that the class
defined here belong to the package.
package student;

(3) Import statements: Import statements instruct the
compiler to load the specific class belongs to the
mentioned package.
import student.test;

(4) Interface statements: An interface is like a
class but includes a group of method
declaration. This is an optional statement.

(5) Class definition: A Java program may contain
multiple class definition The class are used to
map the real world object.

(6) Main method class: The main method
creates objects of various classes and establish
communication between them. On reaching
to the end of main the program terminates
and the control goes back to operating
system.

Simple Java Programs:

• Implementing a java program involves a series
of steps. They include:

– Creating the program

– Compiling the program

– Running the program

1. Creating the program

• We can create a program using any text editor.
Consider the following program:
/* First Java program */

Class Test

{

public static void main(String args[])

{

System.out.println(“Hello world”);

}

}

• We must save this program in a file called
Test.java

• This file is called as source file.

2. Compiling the program
• To compile the program, we must run the Java

compiler javac with the name of the source file on the
command line as shown below.
C:\jdk1.4\bin>javac Test.java

• If everything is ok, Java compiler creates a file called
Test.class containing the bytecodes of the program.

3. Running the Program
• We need to use the Java interpreter to run a stand-

alone application. At the command prompt, type
C:\jdk1.4\bin>java Test

• Now interpreter looks for the main method in the
program & begins execution from there. When
executed our program displays the following:

• Output: Hello world

Lexical Issues

• Java programs are a collection of whitespace,
identifiers, literals, comments, operators,
separators, and keywords.

• Whitespace:

– It is a free-form language. This means that you do
not need to follow any special indentation rules.

– In Java, whitespace is a space, tab, or newline.

• Identifiers:
– Identifiers are used for class names, method names,

and variable names.
– An identifier may be any descriptive sequence of only

uppercase and lowercase letters, numbers, or the
underscore and dollar-sign characters.

– Rules:
• An identifier must begin with an alphabet or underscore or

dollar-sign character.
• Second alphabet onwards can be combination of alphabets,

digits, underscore or dollar-sign.
• Java is case-sensitive, so VALUE is a different identifier than

Value.
• It must not be a keyword.
• Some examples of valid identifiers are

– eg: Avg, count, a4, basic_sal, $test etc.

• Separators:

– In Java, there are a few characters that are used as
separators.

– The most commonly used separator in Java is the
semicolon. As you have seen, it is used to
terminate statements.

– The separators are as below:

Java Keywords

• There are 50 keywords currently defined in the Java
language.

• These keywords, combined with the syntax of the
operators and separators, form the foundation of the
Java language.

• These keywords cannot be used as names for a
variable, class, or method.

• The keywords const and goto are reserved but not
used.

• In addition to the keywords, Java reserves the
following: true, false, and null. These are values
defined by Java.

Data Types in Java:

• In java, data types are classified into two
categories :

– 1. Primitive Data type

– 2. Non-Primitive Data type

• The main difference between primitive and non-
primitive data types are:
– Primitive types are predefined (already defined) in Java.

Non-primitive types are created by the programmer and is
not defined by Java (except for String).

– Non-primitive types can be used to call methods to
perform certain operations, while primitive types cannot.

– A primitive type has always a value, while non-primitive
types can be null.

– A primitive type starts with a lowercase letter, while non-
primitive types starts with an uppercase letter.

– The size of a primitive type depends on the data type,
while non-primitive types have all the same size.

Variables:

• A variable is an identifier that denotes a storage location used
to store a data value.

• A variable may have different value in the different phase of
the program.

• To declare one identifier as a variable there are certain rules.

Declaring & Initializing Variable

• One variable should be declared before using.

• The syntax is
data-type variablename1;

data-type variblaname1, ……,……,……,…, variablenameN;

• Initializing a variable: A variable can be initialize in two
ways.

• They are
– (a) Initializing by Assignment statements.

– (b) Initializing by Read statements.

• Initializing by assignment statements:

– One variable can be initialize using assignment
statements. The syntax is :

Variable-name = Value;

• Initialization of this type can be done while
declaration

• Initializing by read statements:

– Using read statements we can get the values in
the variable.

Scope of Variable:

• Java variable is classified into three types.
They are

– (a) Instance Variable

– (b) Local Variable

– (c) Class Variable

Arrays in Java

• Array which stores a fixed-size sequential collection of
elements of the same type.

• An array is used to store a collection of data, but it is
often more useful to think of an array as a collection of
variables of the same type.

• Declaring Array Variables:
– To use an array in a program, you must declare a variable

to reference the array, and you must specify the type of
array the variable can reference.

– Here is the syntax for declaring an array variable:
dataType[] arrayRefVar;

or
dataType arrayRefVar[];

• Example:

– The following code snippets are examples of this
syntax:

int[] myList;

or

int myList[];

• Creating Arrays:
– You can create an array by using the new operator

with the following syntax:
arrayRefVar = new datatype [arraySize] ;

• Declaring an array variable, creating an array, and
assigning the reference of the array to the
variable can be combined in one statement, as
shown below:

dataType[] arrayRefVar = new dataType[arraySize];

• Alternatively you can create arrays as follows:

dataType[] arrayRefVar = {value0, value1, ..., valuek};

Processing Arrays:

• When processing array elements, we often use either
for loop or foreach loop because all of the elements
in an array are of the same type and the size of the
array is known.

Array Initialization

• Arrays can be initialized when they are declared.

• The process is much the same as that used to initialize
the simple types.

• An array initializer is a list of comma-separated
expressions surrounded by curly braces.

• The commas separate the values of the array elements.

• The array will automatically be created large enough to
hold the number of elements you specify in the array
initializer.

• There is no need to use new.

class AutoArray {

public static void main(String args[]) {

int month_days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

System.out.println("April has " + month_days[3] + " days.");

}

}

Average of Array Elements

class Average {
public static void main(String args[]) {
double nums[] = {10.1, 11.2, 12.3, 13.4, 14.5};
double result = 0;
int i;
for(i=0; i<5; i++)
result = result + nums[i];
System.out.println("Average is " + result / 5);
}
}

Multidimensional Arrays

• In Java, multidimensional arrays are actually
arrays of arrays.

• These, as you might expect, look and act like
regular multidimensional arrays.

• Here is the syntax for declaring an array
variable:

– dataType[][] arrayRefVar; or

– dataType arrayRefVar[][];

• For example, the following declares a two
dimensional array variable called twoD.

int twoD [] [] = new int [4] [5];

• This allocates a 4 by 5 array and assigns it to
twoD.

// Demonstrate a two-dimensional array.
class TwoDArray {
public static void main(String args[]) {
int twoD[][]= new int[4][5];
int i, j, k = 0;
for(i=0; i<4; i++)
for(j=0; j<5; j++) {
twoD[i][j] = k;
k++;
}
for(i=0; i<4; i++) {
for(j=0; j<5; j++)
System.out.print(twoD[i][j] + " ");
System.out.println();
}
}
}

• This program generates the following output:

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

• When you allocate dimensions manually, you
do not need to allocate the same number of
elements for each dimension.

• Since multidimensional arrays are actually
arrays of arrays, the length of each array is
under your control.

• For example, the following program creates a
two-dimensional array in which the sizes of
the second dimension are unequal.

class TwoDAgain {
public static void main(String args[]) {
int twoD[][] = new int[4][];
twoD[0] = new int[1];
twoD[1] = new int[2];
twoD[2] = new int[3];
twoD[3] = new int[4];
int i, j, k = 0;
for(i=0; i<4; i++)
for(j=0; j<i+1; j++) {twoD[i][j] = k;
k++;
}
for(i=0; i<4; i++) {
for(j=0; j<i+1; j++)
System.out.print(twoD[i][j] + " ");
System.out.println();
}
}
}

• This program generates the following output:

0

1 2

3 4 5

6 7 8 9

• The array created by

this program looks like this:

• It is possible to initialize multidimensional
arrays.

• To do so, simply enclose each dimension’s
initializer within its own set of curly braces.

• The following program creates a matrix where
each element contains the product of the row
and column indexes.

class Matrix {
public static void main(String args[]) {
double m[][] = {
{ 0*0, 1*0, 2*0, 3*0 },
{ 0*1, 1*1, 2*1, 3*1 },
{ 0*2, 1*2, 2*2, 3*2 },
{ 0*3, 1*3, 2*3, 3*3 }
};
int i, j;
for(i=0; i<4; i++) {
for(j=0; j<4; j++)
System.out.print(m[i][j] + " ");
System.out.println();
}
}
}

• When you run this program, you will get the
following output:

• 0.0 0.0 0.0 0.0

• 0.0 1.0 2.0 3.0

• 0.0 2.0 4.0 6.0

• 0.0 3.0 6.0 9.0

A Second Short Program

Two Control Statements

• The if Statement
– The Java if statement works much like the IF

statement in any other language.
– Further, it is syntactically identical to the if statements

in C, C++, and C#. Its simplest form is shown here:
– if(condition) statement;
– Here, condition is a Boolean expression. If condition is

true, then the statement is executed.
– If condition is false, then the statement is bypassed.

Here is an example:
– if(num < 100)
– System.out.println("num is less than 100");

• Java defines a full complement of relational
operators which may be used in a conditional
expression. Here are a few:

The for Loop

• The simplest form of the for loop is shown here:

• for(initialization; condition; iteration) statement;

• In its most common form, the initialization portion of
the loop sets a loop control variable to an initial value.

• The condition is a Boolean expression that tests the
loop control variable.

• If the outcome of that test is true, the for loop
continues to iterate. If it is false, the loop terminates.

• The iteration expression determines how the loop
control variable is changed each time the loop iterates.

Using Blocks of Code

• Java allows two or more statements to be
grouped into blocks of code, also called code
blocks.

• This is done by enclosing the statements
between opening and closing curly braces.

• Once a block of code has been created, it
becomes a logical unit that can be used any
place that a single statement can.

The Java Class Libraries

• In Java programs, we make use of two of Java’s built-in
methods: println() and print().

• As mentioned, these methods are members of the
System class, which is a class predefined by Java that is
automatically included in your programs.

• The Java environment relies on several built-in class
libraries that contain many built-in methods that
provide support for such things as I/O, string handling,
networking, and graphics.

• The standard classes also provide support for
windowed output.

Java Is a Strongly Typed Language

• Java is a strongly typed language.
• Every variable has a type, every expression has a type,

and every type is strictly defined.
• All assignments, whether explicit or via parameter

passing in method calls, are checked for type
compatibility.

• There are no automatic coercions or conversions of
conflicting types as in some languages.

• The Java compiler checks all expressions and
parameters to ensure that the types are compatible.

• Any type mismatches are errors that must be corrected
before the compiler will finish compiling the class.

Character Escape Sequences

The Scope and Lifetime of Variables

• So far, all of the variables used have been declared at the
start of the main() method.

• However, Java allows variables to be declared within any
block.

• A block is begun with an opening curly brace and ended by
a closing curly brace.

• A block defines a scope.
• Thus, each time you start a new block, you are creating a

new scope.
• A scope determines what objects are visible to other parts

of your program.
• It also determines the lifetime of those objects.

• In Java, the two major scopes are those defined by a class
and those defined by a method.

• The scope defined by a method begins with its opening
curly brace.

• However, if that method has parameters, they too are
included within the method’s scope.

• As a general rule, variables declared inside a scope are not
visible (that is, accessible) to code that is defined outside
that scope.

• Thus, when you declare a variable within a scope, you are
localizing that variable and protecting it from unauthorized
access and/or modification.

• Scopes can be nested.

• For example, each time you create a block of code, you are
creating a new, nested scope.

• When this occurs, the outer scope encloses the inner
scope.

• This means that objects declared in the outer scope will be
visible to code within the inner scope.

• However, the reverse is not true.

• Objects declared within the inner scope will not be visible
outside it.

Lifetime of Variable

• Within a block, variables can be declared at any point, but
are valid only after they are declared.

• Thus, if you define a variable at the start of a method, it is
available to all of the code within that method.

• Conversely, if you declare a variable at the end of a block, it
is effectively useless, because no code will have access to it.

• variables are created when their scope is entered, and
destroyed when their scope is left.

• This means that a variable will not hold its value once it has
gone out of scope.

• Therefore, variables declared within a method will not hold
their values between calls to that method.

• Also, a variable declared within a block will lose its value
when the block is left.

• Thus, the lifetime of a variable is confined to its scope.

• If a variable declaration includes an initializer, then that
variable will be reinitialized each time the block in which it
is declared is entered.

• Although blocks can be nested, you cannot declare a
variable to have the same name as one in an outer scope.

// This program will not compile

class ScopeErr {

public static void main(String args[]) {

int bar = 1;

{ // creates a new scope

int bar = 2; // Compile-time error – bar
already defined!

}

}

}

Type Conversion and Casting

• It is often necessary to store a value of one type into the
variable of another type.

• In these situations the value that to be stored should be
casted to destination type.

• Assigning a value of one type to a variable of another type
is known as Type Casting.

• Type casting can be done in two ways.

– Automatic Type Conversion (Widening Casting)

– Explicit Type Conversion (Narrowing Casting)

Automatic Type Conversion

• When one type of data is assigned to another type of
variable, an automatic type conversion will take place if the
following two conditions are met:

– The two types are compatible.

– The destination type is larger than the source type.

• When these two conditions are met, a widening conversion
takes place.

• Ex : byte b = 10;

int a = b;

Explicit Type Conversion

• The conversion will not be performed automatically,
between a byte and an int.

• This kind of conversion is sometimes called a narrowing
conversion, since you are explicitly making the value
narrower so that it will fit into the target type.

• To create a conversion between two incompatible types,
you must use a cast.

• A cast is simply an explicit type conversion. It has this
general form:

(target-type) value

Here, target-type specifies the desired type to convert the
specified value to.

• Ex :

int a;

byte b;

// ...

b = (byte) a;

Automatic Type Promotion in Expressions

• In addition to assignments, there is another place where
certain type conversions may occur: in expressions.

• In an expression, the precision required of an intermediate
value will sometimes exceed the range of either operand.

• Ex:

byte a = 40;

byte b = 50;

byte c = 100;

int d = a * b / c;

• As useful as the automatic promotions are, they can cause
confusing compile-time errors.

• For example, this seemingly correct code causes a problem:

byte b = 50;

b = b * 2; // Error! Cannot assign an int to a byte!

• In cases where you understand the consequences of
overflow, you should use an explicit cast, such as

byte b = 50;

b = (byte)(b * 2);

The Type Promotion Rules

• Java defines several type promotion rules that
apply to expressions.
– All byte, short, and char values are promoted to

int.

– if one operand is a long, the whole expression is
promoted to long.

– If one operand is a float, the entire expression is
promoted to float.

– If any of the operands is double, the result is
double.

A Few Words About Strings

• The String type is used to declare string variables.
• You can also declare arrays of strings.
• A quoted string constant can be assigned to a String

variable.
• A variable of type String can be assigned to another

variable of type String.
• You can use an object of type String as an argument to

println().
• For example, consider the following fragment:

String str = "this is a test";
System.out.println(str);

