

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

MODULE – II

Multi-Threading Programming & Process Synchronization
Threads

 Process is a program that performs a single thread of execution.

 For example, when a process is running a word-processor program, a single thread of

instructions is being executed. This single thread of control allows the process to perform

only one task at one time. The user cannot simultaneously type in characters and run the

spell checker within the same process, for example.

Many modern operating systems have extended the process concept to allow a process to have

multiple threads of execution and thus to perform more than one task at a time.

A thread is a basic unit of CPU utilization; it comprises a thread ID, a program counter, a register

set, and a stack. It shares with other threads belonging to the same process its code section, data

section, and other operating-system resources, such as open files and signals. A traditional (or

heavy weight) process has a single thread of control. If a process has multiple threads of control, it

can perform more than one task at a time.

Figure 2.14 Single-threaded and multithreaded processes.

Benefits of multithreaded programming

The benefits of multithreaded programming can be broken down into four major categories:

o Responsiveness. Multithreading an interactive application may allow a program to

continue running even if part of it is blocked or is performing a lengthy operation, thereby

increasing responsiveness to the user. For instance of a multithreaded Web browser could

allow user interaction in one thread while an image was being loaded in another thread.

o Resource sharing. Processes may only share resources through techniques such as shared

memory or message passing. However, threads share the memory and the resources of the

process to which they belong by default. The benefit of sharing code and data is that it

allows an application to have several different threads of activity within the same address

space.

o Economy. Allocating memory and resources for process creation is costly. Because

threads share the resources of the process to which they belong, it is more economical to

create and context-switch threads.

o Scalability. The benefits of multithreading can be greatly increased in a multiprocessor

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

architecture, where threads may be running in parallel on different processors. A single-

threaded process can only run on one processor, regardless how many are available.

Multithreading on a multi CPU machine increases parallelism.

Multithreading Models

Support for threads may be provided either at the user level, for user threads or by the kernel, for

kernel threads. User threads are supported above the kernel and are managed without kernel

support, whereas kernel threads are supported and managed directly by the operating system.

Ultimately, a relationship must exist between user threads and kernel threads.

1. Many to One Model

Figure 2.15Many-to-one model.

 The many-to-one model (Figure 2.15) maps many user-level threads to one kernel thread.

 Thread management is done by the thread library in user One to One Model space, so it is

efficient; but the entire process will block if a thread makes a blocking system call.

 Also, because only one thread can access the kernel at a time, multiple threads are unable

to rum in parallel on multiprocessors.

 Example: Solaris

2. One to One Model

 The one-to-one model (Figure 2.16) maps each user thread to a kernel thread.

 It provides more concurrency than the many-to-one model by allowing another thread to

run when a thread makes a blocking system call; it also allows multiple threads to run in

parallel on multiprocessors.

 The only drawback to this model is that creating a user thread requires creating the

corresponding kernel thread.

 Because the overhead of creating kernel threads can burden the performance of an

application, most implementations of this model restrict the number of threads supported

by the system.

 Linux, along with the family of Windows operating systems, implement the one-to-one

model.

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

Figure 2.16 One-to-one model

3. Many to Many Model

 The many-to-many model (Figure 2.17) multiplexes many user-level threads to smaller or

equal number of kernel threads. The number of kernel threads may be specific to either a

particular application or a particular machine.

 Whereas the many-to-one model allows the developer to create as many user threads as

she wishes, true concurrency is not gained because the kernel can schedule only one

thread at a time.

 The many-to-many model suffers from neither of these shortcomings: developers can

create as many user threads as necessary, and the corresponding kernel threads can run in

parallel on a multiprocessor. Also, when a thread performs a blocking system call, the

kernel can schedule another thread for execution.

Figure 2.17 Many-to-many model.

Threading Issues

1. The fork() and exec() System Calls

 If one thread in a program calls fork(), does the new process duplicate all threads, or is

the new process single-threaded? Some UNIX systems have chosen to have two versions

of fork(), one that duplicates all threads and another that duplicates only the thread that

invoked the fork() system call.

 If a thread invokes the exec() system call, the program specified in the parameter to exec

() will replace the entire process-including all threads.

2. Cancellation

 Thread cancellation is the task of terminating a thread before it has completed. For

example, if multiple threads are concurrently searching through a database and one thread

returns the result, the remaining threads might be canceled.

 A thread that is to be canceled is often referred to as the target thread.

 Cancellation of a target thread may occur in two different scenarios:

o Asynchronous cancellation. One thread immediately terminates the target

thread.

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

o Deferred cancellation. The target thread periodically checks whether it should

terminate, allowing it an opportunity to terminate itself in an orderly fashion.

 The difficulty with cancellation occurs in situations where resources have been allocated

to a canceled thread or where a thread is canceled while in the midst of updating data it is

sharing with other threads.

3. Signal Handling

 A signal is used in UNIX systems to notify a process that a particular event has occurred.

All signals, whether synchronous or asynchronous, follow the same pattern:

o A signal is generated by the occurrence of a particular event.

o A generated signal is delivered to a process.

o Once delivered, the signal must be handled.

 Examples of synchronous signals include illegal memory access and division by 0. If a

running program performs either of these actions, a signal is generated.

 Every signal has a default signal handler that is run by the kernel when handling that

signal. This default action can be overridden by a user defined signal handler that is

called to handle the signal.

 Handling signals in single-threaded programs is straightforward: signals are always

delivered to a process. However, delivering signals is more complicated in multithreaded

programs, where a process may have several threads. Where, then, should a signal be

delivered?

 In general the following options exist:

o Deliver the signal to the thread to which the signal applies.

o Deliver the signal to every thread in the process.

o Deliver the signal to certain threads in the process.

o Assign a specific thread to receive all signals for the process.

4. Thread Pools

 The first issue concerns the amount of time required to create the thread prior to servicing

the request, together with the fact that this thread will be discarded once it has completed

its work.

 The second issue is more troublesome: if we allow all concurrent requests to be serviced

in a new thread, we have not placed a bound on the number of threads concurrently active

in the system. Unlimited threads could exhaust system resources, such as CPU time or

memory. One solution to this problem is to use a thread pool.

 The general idea behind a thread pool is to create a number of threads at process startup

and place them into a pool, where they sit and wait for work.

 Thread pools offer these benefits:

o Servicing a request with an existing thread is usually faster than waiting to create

a thread.

o A thread pool limits the number of threads that exist at any one point. This is

particularly important on systems that cannot support a large number of

concurrent threads.

5. Thread-Specific Data

 Threads belonging to a process share the data of the process. Indeed, this sharing of data

provides one of the benefits of multithreaded programming.

 However, in some circumstances, each thread might need its own copy of certain data.

We will call such data thread specific data.

 For example, in a transaction-processing system, we might service each transaction in a

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

separate thread. Furthermore, each transaction might be assigned a unique identifier. To

associate each thread with its unique identifier, we could use thread-specific data.

6. Scheduler Activations

 A final issue to be considered with multithreaded programs concerns communication

between the kernel and the thread library, which may be required by the many-to-many and

two-level models.

 Such coordination allows the number of kernel threads to be dynamically adjusted to help

ensure the best performance.

 This can be achieved with the help of scheduler activations.

Many systems implementing either the many-to-many or two-level model place an

intermediate data structure between the user and kernel threads.

 This data structure—typically known as a lightweight process, or LWP.

 The kernel provides an application with a set of virtual processors (LWPs), and the application

can schedule user threads onto an available virtual processor.

 Furthermore, the kernel must inform an application about certain events. This procedure is

known as an upcall.

 Upcalls are handled by the thread library with an upcall handler, and upcall handlers must run

on a virtual processor.

 One event that triggers an upcall occurs when an application thread is about to block.

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

Difference between Process and Thread

S.

N.

Pro

cess

Thread

1
Process is heavy weight or

resource intensive.

Thread is light weight, taking lesser

resources than a process.

2
Process switching needs

interaction with operating

system.

Thread switching does not need to interact

with operating system.

3

In multiple processing

environments, each process

executes the same code but has

its own memory and file

resources.

All threads can share same set of open

files, child processes.

4

If one process is blocked, then no

other process can execute until the

first process is unblocked.

While one thread is blocked and waiting, a

second thread in the same task can run.

5
Multiple processes without

using threads use more

resources.

Multiple threaded processes use fewer

resources.

6
In multiple processes each

process operates independently

of the others.

One thread can read, write or change

another thread's data.

Advantages of Thread

 Threads minimize the context switching time.

 Use of threads provides concurrency within a process.

 Efficient communication.

 It is more economical to create and context switch threads.

 Threads allow utilization of multiprocessor architectures to a greater scale and

efficiency.

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

Process Scheduling

5.1.1 CPU-I/O Burst Cycle:
The success of CPU scheduling depends on an observed property of processes: Process execution

consists of a cycle of CPU execution and I/O wait.

Processes alternate between these two states.

Process execution begins with a CPU burst.

That is followed by an I/O burst, which is followed by another CPU burst, then another I/O burst, and

so on.

Eventually, the final CPU burst ends with a system request to terminate execution (Figure 5.1).

5.1.2 CPU Scheduler

 Whenever the CPU becomes idle, the operating system must select one of the processes in the

ready queue to be executed.

 The selection process is carried out by the short-term scheduler (or CPU scheduler).

 The scheduler selects a process from the processes in memory that are ready to execute and

allocates the CPU to that process.

5.1.3 Preemptive Scheduling
 CPU-scheduling decisions may take place under the following four circumstances:

1. When a process switches from the running state to the waiting state (for example,

as the result of an I/0 request or an invocation of wait for the termination of one

of the child processes)

2. When a process switches from the running state to the ready state (for example,

when an interrupt occurs)

3. When a process switches from the waiting state to the ready state (for example, at

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

completion of I/0)

4. When a process terminates

 When scheduling takes place only under circumstances 1 and 4, we say that the

scheduling scheme is non-preemptive or cooperative; otherwise, it is preemptive.

5.1.4 Dispatcher

 The dispatcher is the module that gives control of the CPU to the process selected by the

short-term scheduler. This function involves the following:

o Switching context

o Switching to user mode

o Jumping to the proper location in the user program to restart that program.

 The dispatcher should be as fast as possible, since it is invoked during every process

switch. The time it takes for the dispatcher to stop one process and start another running is

known as the dispatch latency.

5.2 Scheduling Criteria

Many criteria have been suggested for comparing CPU-scheduling algorithms.

 CPU utilization. We want to keep the CPU as busy as possible. In a real system, it

should range from 40 percent (for a lightly loaded system) to 90 percent (for a heavily

used system).

 Throughput. If the CPU is busy executing processes, then work is being done. One

measure of work is the number of processes that are completed per time unit, called

throughput.

 Turnaround time. The interval from the time of submission of a process to the time of

completion is the turnaround time. Turnaround time is the sum of the periods spent

waiting to get into memory, waiting in the ready queue, executing on the CPU, and doing

I/O.

 Waiting time. Waiting time is the sum of the periods spent waiting in the ready queue.

 Response time. In an interactive system, turnaround time may not be the best criterion.

Often, a process can produce some output fairly early and can continue computing new

results while previous results are being output to the user. Hence another measure

response time used, which is the time it takes to start responding, not the time it takes to

output the response. The turnaround time is generally limited by the speed of the output

device.

5.3 Scheduling Algorithms

1. First-Come, First-Served Scheduling

 With this scheme, the process that requests the CPU first is allocated the CPU first.

 The implementation of the FCFS policy is easily managed with a FIFO queue.

 When a process enters the ready queue, its PCB is linked onto the tail of the queue. When

the CPU is free, it is allocated to the process at the head of the queue. The running

process is then removed from the queue.

 On the negative side, the average waiting time under the FCFS policy is often quite long.

 FCFS scheduling algorithm is non-preemptive. Once the CPU has been allocated to a

process, that process keeps the CPU until it releases the CPU, either by terminating or by

requesting I/0.

 The FCFS algorithm is thus particularly troublesome for time-sharing systems, where it is

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

important that each user get a share of the CPU at regular intervals. It would be disastrous

to allow one process to keep the CPU for an extended period.

 Example:

Process Burst Time

P1 24

P2 3

P3 3

 If the processes arrive in the order P1, P2, P3, and are served in FCFS order, we get the

result shown in the following Gantt chart.

P1 P2 P3

 0 24 27 30

Process Waiting Time Turnaround Time =
(Waiting Time + Burst Time)

P1 0 0 + 24 = 24

P2 24 24 + 3 = 27

P3 27 27 + 3 = 30

 Average Waiting Time = (0 + 24 + 27) / 3 = 17 milliseconds.

 Average Turnaround Time = (24 + 27 + 30) / 3 = 27 milliseconds.

 If the processes arrive in the order P2, P3 , P1, however, the results will be as shown in

the following Gantt chart:

P2 P3 P1

0 3 6 30

Process Waiting Time Turnaround Time =

(Waiting Time + Burst Time)
P1 6 6 + 24 = 30

P2 0 0 + 3 = 3

P3 3 3 + 3 = 6

 Average Waiting Time = (6 + 0 + 3) / 3 = 3 milliseconds.

 Average Turnaround Time = (24 + 27 + 30) / 3 = 27 milliseconds.

2. Shortest-Job-First Scheduling (Non Preemptive SJF)

 This algorithm associates with each process the length of the process's next CPU burst.

When the CPU is available, it is assigned to the process that has the smallest next CPU

burst. If the next CPU bursts of two processes are the same, FCFS scheduling is used to

break the tie.

 The SJF scheduling algorithm is provably optimal, in that it gives the minimum average

waiting time for a given set of processes.

 The real difficulty with the SJF algorithm is knowing the length of the next CPU request.

 Example:

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

Process Burst Time

P1 6

P2 8

P3 7

P4 3

 Using SJF scheduling, we would schedule these processes according to the following

Gantt chart:

P4 P1 P3 P2

0 3 9 16 24

Process Waiting Time Turnaround Time =

(Waiting Time + Burst Time)
P1 3 3 + 6 = 9

P2 16 16 + 8 = 24

P3 9 9 + 7 = 16

P4 0 0 + 3 = 3

 Average Waiting Time = (3 + 16 + 9 + 0) /4 = 7 milliseconds.

 Average Turnaround Time = (9 + 24 + 16 + 3)/ 4 = 13 milliseconds.

 The real difficulty with the SJF algorithm is knowing the length of the next CPU request.

3. Shortest-Remaining-Time-First scheduling - SRTF (Preemptive SJF)

 A preemptive SJF algorithm will preempt the currently executing process, whereas a non-

preemptive SJF algorithm will allow the currently running process to finish its CPU burst.

Preemptive SJF scheduling is sometimes called shortest-remaining-time-first

scheduling.

Process Arrival Time Burst Time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

 Preemptive SJF schedule is as depicted in the following Gantt chart:

P1 P2 P4 P1 P3

0 1 5 10 17 26

Process Waiting Time Turnaround Time =

(Waiting Time + Burst Time)
P1 10 – 1 - 0 = 9 9 + 8 = 17

P2 1 - 1 = 0 0 + 4 = 4

P3 17 - 2 = 15 15 + 9 = 24

P4 5 - 3 = 2 2 + 5 = 7

 The average waiting time (9 + 0 + 15 + 2) / 4 = 26 / 4 = 6.5 milliseconds.

 The average turnaround time is (17 + 4 + 24 + 7) / 4 = 52 / 4 = 13 milliseconds.

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

 Non-preemptive SJF scheduling would result in an average waiting time of 7.75

milliseconds.

4. Priority Scheduling

 The SJF algorithm is a special case of the general priority scheduling algorithm. A

priority is associated with each process, and the CPU is allocated to the process with the

highest priority. Equal-priority processes are scheduled in FCFS order.

 As an example, consider the following set of processes, assumed to have arrived at time 0

in the order P1, P2, P3, P4, P5with the length of the CPU burst given in milliseconds:

Process Burst Time Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

 Using priority scheduling, we would schedule these processes according to the following

Gantt chart:

P2 P5 P1 P3 P4

0 1 6 16 18 19

Process Waiting Time Turnaround Time =

(Waiting Time + Burst Time)
P1 6 6 + 10 =16

P2 0 0 + 1 = 1

P3 16 16 + 2 = 18

P4 18 18 + 1 = 19

P5 1 1 + 5 = 6

 The average waiting time is (6+0+16+18+1) / 5 = 8.2 milliseconds.

 The Average Turnaround Time = (16 + 1 + 18 + 19 + 6) / 5 =

 Priority scheduling can be either preemptive or non-preemptive.

 A major problem with priority scheduling algorithms is indefinite blocking, or

starvation. A process that is ready to run but waiting for the CPU can be considered

blocked. A priority scheduling algorithm can leave some low priority processes waiting

indefinitely.

 A solution to the problem of indefinite blockage of low-priority processes is aging.

 Aging is a technique of gradually increasing the priority of processes that wait in the

system for a long time. For example, if priorities range from 127 (low) to 0 (high), we

could increase the priority of a waiting process by1 every 15 minutes.

5. Round-Robin Scheduling

 The round-robin (RR) scheduling algorithm is designed especially for timesharing

systems. It is similar to FCFS scheduling, but preemption is added to enable the system

to switch between processes.

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

 A small unit of time, called a time quantum or time slice, is defined. A time quantum is

generally from 10 to 100 milliseconds in length.

 The ready queue is treated as a circular queue. The CPU scheduler goes around the ready

queue, allocating the CPU to each process for a time interval of up to 1 time quantum.

 The average waiting time under the RR policy is often long.

 Example:

Process Burst Time

P1 24

P2 3

P3 3

 If we use a time quantum of 4 milliseconds, then process P1 gets the first 4 milliseconds.

Since it requires another 20 milliseconds, it is preempted after the first time quantum, and

the CPU is given to the next process in the queue, process P2. Process P2 does not need 4

milliseconds, so it quits before its time quantum expires and so on.

 Once each process has received 1 time quantum, the CPU is returned to process P1 for an

additional time quantum.

 The resulting RR schedule is as follows:

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

Process Waiting Time Turnaround Time =

(Waiting Time + Burst Time)
P1 10 - 4 = 6 6 + 24 =30

P2 4 4 + 3 = 7

P3 7 7 + 3 = 10

 P1 waits for 6 milliseconds (10- 4), P2 waits for 4 milliseconds, and P3 waits for 7

milliseconds.

 The average waiting time is (6+4+7) = 17/3 = 5.66 milliseconds.

 The average turnaround time is now (30 + 7 + 10)/3 = 15.66 milliseconds.

 If a process's CPU burst exceeds 1 time quantum, that process is preempted and is put

back in the ready queue. The RR scheduling algorithm is thus preemptive.

 The performance of the RR algorithm depends heavily on the size of the time quantum.

 At one extreme, if the time quantum is extremely large, the RR policy is the same as the

FCFS policy.

 In contrast, if the time quantum is extremely small (say, 1 millisecond), the RR approach

is called processor sharing and (in theory) creates the appearance that each of n processes

has its own processor running at 1 / n the speed of the real processor.

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

6. Multilevel Queue Scheduling

 A multilevel queue scheduling algorithm partitions the ready queue into several separate

queues (Figure 2.19).

Figure 2.19 Multilevel Queue Schedule

 The processes are permanently assigned to one queue, generally based on some property

of the process, such as memory size, process priority, or process type. Each queue has its

own scheduling algorithm.

 Each queue has absolute priority over lower-priority queues. No process in the batch

queue, for example, could run unless the queues for system processes, interactive

processes, and interactive editing processes were all empty.

 If an interactive editing process entered the ready queue while a batch process was

running, the batch process would be preempted.

 Another possibility is to time-slice among the queues. Here, each queue gets a certain

portion of the CPU time, which it can then schedule among its various processes.

7. Multilevel Feedback Queue Scheduling

 The multilevel feedback queue scheduling algorithm allows a process to move between

queues. The idea is to separate processes according to the characteristics of their CPU

bursts. If a process uses too much CPU time, it will be moved to a lower-priority queue.

 This scheme leaves I/O-bound and interactive processes in the higher-priority queues. In

addition, a process that waits too long in a lower-priority queue may be moved to a

higher-priority queue. This form of aging prevents starvation.

 For example, consider a multilevel feedback queue scheduler with three queues,

numbered from 0 to 2 (Figure 2.20).

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

Figure 2.20 Multilevel Feedback Queue

 The scheduler first executes all processes in queue 0. Only when queue 0 is empty will it

execute processes in queue 1. Similarly, processes in queue 2 will only be executed if

queues 0 and 1 are empty. A process that arrives for queue 1 will preempt a process in

queue 2. A process in queue 1 will in turn be preempted by a process arriving for queue 0.

 A process entering the ready queue is put in queue 0. A process in queue 0 is given a time

quantum of 8 milliseconds. If it does not finish within this time, it is moved to the tail of

queue 1. If queue 0 is empty, the process at the head of queue 1 is given a quantum of 16

milliseconds. If it does not complete, it is preempted and is put into queue 2. Processes in

queue 2 are run on an FCFS basis but are run only when queues 0 and 1 are empty.

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

Process Synchronization
3.1 Introduction
The original pseudo code for producer consumer problem is,

while (true) {

 /* Produce an item */

 while (((in + 1) % BUFFER SIZE) == out)

 ; /* do nothing -- no free buffers */

 buffer[in] = item;

 in = (in + 1) % BUFFER SIZE;

}

Figure 3.1 Producer Process code

while (true) {

 while (in == out)

 ; // do nothing -- nothing to consume

 // remove an item from the buffer

 item = buffer[out];

 out = (out + 1) % BUFFER SIZE;

 return item;

}

 Figure 3.2 Consumer Process code

This solution allows at most BUFFER_SIZE-1 items in the buffer at the same time. To remove this

deficiency we can add an integer variable counter initialized to 0.Counter is incremented every time we

add (produce) new item into buffer and decremented every time we remove (consume) an item from

buffer. The modified code is as shown below.

while (true) {

 /* Produce an item */

 while (counter == BUFFER_SIZE)

 ; /* do nothing -- no free buffers */

 buffer[in] = item;

 in = (in + 1) % BUFFER SIZE;

 counter++ ;

}

Figure 3.3 Producer Process code

while (true) {

 while (counter == 0)

 ; // do nothing -- nothing to consume

 // remove an item from the buffer

 item = buffer[out];

 out = (out + 1) % BUFFER SIZE;

 counter-- ;

 return item;

}

Figure 3.4 Consumer Process code

The above codes work correct if executed separately, but may not work correct if executed

concurrently.

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

Assume the current counter value is 5 and the producer and consumer executes the statements

counter++ and counter-- concurrently.

The statement counter ++ is implemented in machine level language as follows,

register1 = counter

register1 = register1 + 1

counter= register1

And statement counter-- is implemented in machine level language as follows,

register2 = counter

register2 = register2 -1

counter= register2

Where register1 and register2 are local CPU registers.

The concurrent execution of "counter++" and "counter--" is equivalent to a sequential execution in

which the lower-level statements presented previously are interleaved in some arbitrary order. One

such interleaving is,

T0: producer execute register1=counter { register1= 5}

T1: producer execute register1= register1+ 1 { register1= 6}

T2: consumer execute register2 = counter { register2 = 5}

T3: consumer execute register2 = register2 - 1 { register2 = 4}

T4: producer execute counter= register1 { counter = 6}

T5: consumer execute counter = register2 { counter = 4}

Notice that we have arrived at the incorrect state "counter == 4", indicating that four buffers are full,

when, in fact, five buffers are full. If we reversed the order of the statements at T4 and T5, we would

arrive at the incorrect state "counter== 6".

A situation where several processes access and manipulate the same data concurrently and the outcome

of the execution depends on the particular order in which the access takes place, is called a race

condition. To guard against the race condition above, we need to ensure that only one process at a time

can be manipulating the variable counter. To make such a guarantee, we require that the processes be

synchronized in some way.

3.2 The Critical Section Problem

 Consider a system consisting of n processes {P0, P1,...Pn-1}. Each process has a segment of

code, called a critical section in which the process may be changing common variables,

updating a table, writing a file, and so on.

 The critical-section problem is to design a protocol that the processes can use to cooperate.

Each process must request permission to enter its critical section. The section of code

implementing this request is the entry section. The critical section may be followed by an exit

section. The remaining code is the remainder section. The general structure of a typical

process Pi is shown in Figure 3.5.

do{

Entry section

Critical section

Exit section

 Remainder section

}while (TRUE);

Figure 3.5 General structure of Process Pi

A solution to the critical-section problem must satisfy the following three requirements:

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

1. Mutual exclusion. If process Pi is executing in its critical section, then no other processes can

be executing in their critical sections.

2. Progress. If no process is executing in its critical section and some processes wish to enter

their critical sections, then only those processes that are not executing in their remainder

sections can participate in deciding which will enter its critical section next, and this selection

cannot be postponed indefinitely.

3. Bounded waiting. There exists a bound, or limit, on the number of times that other processes

are allowed to enter their critical sections after a process has made a request to enter its critical

section and before that request is granted.

3.3 Peterson’s Solution

 Peterson’s solution is a classic software-based solution to the critical-section problem.

 Because of the way modern computer architectures perform basic machine-language

instructions, such as load and store, there are no guarantees that Peterson's solution will work

correctly on such architectures.

 Peterson's solution is restricted to two processes that alternate execution between their critical

sections and remainder sections.

 The processes are numbered P0and P1. For convenience, when presenting Pi, we use Pjto

denote the other process; that is, j equals 1-i.

 Peterson's solution requires the two processes to share two data items:

int turn;

boolean flag[2];

 The variable turn indicates whose turn it is to enter its critical section. That is, if turn == i, then

process Pi is allowed to execute in its critical section.

 The flag array is used to indicate if a process is ready to enter its critical section. For example,

if flag [i] is true, this value indicates that Pi is ready to enter its critical section.

 To enter the critical section, process Pi first sets flag [i] to be true and then sets turn to the

value j, thereby asserting that if the other process wishes to enter the critical section, it can do

so.

do {

flag[i] = TRUE;

turn = j;

while (flag[j] && turn == j);

Critical section

flag[i] = FALSE;

Remainder section

 } while (TRUE);

Figure 3.6 The structure of process A in Peterson's solution.

 We need to show that:

o Mutual exclusion is preserved.

o The progress requirement is satisfied.

o The bounded-waiting requirement is met.

 To prove property 1, we note that each P; enters its critical section only if either flag [j] ==

false or turn == i. Also we note that, if both processes can be executing in their critical sections

at the same time, then flag [0] == flag [1] ==true. Since the value of turn can be either 0 or 1

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

but cannot be both, p0 and p1 cannot execute there while loop successfully. Hence one process

enter the critical section other is waiting in the while loop.

 To prove properties 2 and 3, we note that a process Pi can be prevented from entering the

critical section only if it is stuck in the while loop with the condition flag [j] ==true and turn ==

j; this loop is the only one possible. If Pj is not ready to enter the critical section, then flag [j]

==false, and Pi can enter its critical section. If Pj has set flag [j] to true and is also executing in

its while statement, then either turn == i or turn == j. If turn == i, then Pi will enter the critical

section. If turn== j, then Pj will enter the critical section. However, once Pj exits its critical

section, it will reset flag [j] to false, allowing Pi to enter its critical section. If Pj resets flag [j]

to true, it must also set turn to i. Thus, since Pi does not change the value of the variable turn

while executing the while statement, Pi will enter the critical section (progress) after at most

one entry by Pj (bounded waiting).

3.4 Synchronization Hardware

 Software-based solutions such as Peterson's are not guaranteed to work on modern computer

architectures. Instead, we can generally state that any solution to the critical-section problem

requires a simple tool-a lock.

 Race conditions are prevented by requiring that critical regions be protected by locks. That is, a

process must acquire a lock before entering a critical section; it releases the lock when it exits

the critical section. This is illustrated in Figure 3.7.

do{

Acquire Lock

Critical section

Release Lock

Remainder section

}while (TRUE);

Figure 3.7 Solution to critical section problem using Locks

 The critical-section problem could be solved simply in a uniprocessor environment if we could

prevent interrupts from occurring while a shared variable was being modified. In this manner,

we could be sure that the current sequence of instructions would be allowed to execute in order

without preemption.

 Unfortunately, this solution is not as feasible in a multiprocessor environment.

 Disabling interrupts on a multiprocessor can be time consuming, as the message is passed to all

the processors. This message passing delays entry into each critical section, and system

efficiency decreases.

 Many modern computer systems therefore provide special hardware instructions such as

TestAndSet () and Swap(), that allow us either to test and modify the content of a word or to

swap the contents of two words automatically.

 The TestAndSet () instruction can be defined as shown in Figure 3.8.

booleanTestAndSet(boolean *target) {

booleanrv = *target;

*target = TRUE;

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

returnrv;

}

Figure 3.8 The definition of the TestAndSet () instruction.

 The important characteristic of this instruction is that it is executed atomically. Thus, if two

TestAndSet () instructions are executed simultaneously (each on a different CPU), they will be

executed sequentially in some arbitrary order.

 If the machine supports the TestAndSet () instruction, then we can implement mutual exclusion

by declaring a Boolean variable lock, initialized to false. The structure of process Pi is shown

in Figure 3.9.

do {

while (TestAndSet(&lock)); //do nothing

//critical section

lock = FALSE;

//remainder section

} while (TRUE);

Figure 3.9Mutual-exclusion implementation with TestAndSet ().

 The Swap() instruction, in contrast to the TestAndSet () instruction, operates on the contents of

two words; it is defined as shown in Figure 3.10.

void Swap(boolean *a, boolean *b) {

boolean temp = *a;

*a = *b;

*b = temp;

}

Figure 3.10 The definition of the Swap () instruction.

 If the machine supports the swap() instruction, then mutual exclusion can be provided as

follows.

 A global Boolean variable lock is declared and is initialized to false and each process has a

local Boolean variable key. The structure of process Pi is shown in Figure 3.11.

do {

key = TRUE;

while (key == TRUE)

Swap(&lock, &key);

//critical section

lock = FALSE;

//remainder section

} while (TRUE);

Figure 3.11 Mutual-exclusion implementation with the Swap() instruction.

 Figure 3.12, shows the algorithm using TestAndSet () instruction that satisfies all the critical-

section requirements.

 The common data structures are,

boolean waiting[n];

boolean lock;

 These data structures are initialized to false.

do {

waiting[i] = TRUE;

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

key = TRUE;

while (waiting[i] && key)

key= TestAndSet(&lock);

waiting[i] = FALSE;

//critical section

j = (i + 1) % n;

while ((j != i) && !waiting[j])

j = (j + 1) % n;

if (j == i)

lock = FALSE;

else

waiting[j] = FALSE;

//remainder section

} while (TRUE);

Figure 3.12 Bounded-waiting mutual exclusion with TestAndSet ().

 To prove that the mutual exclusion requirement is met, we note that process Pi can enter its

critical section only if either waiting [i] == false or key == false. The value of key can become

false only if the TestAndSet() is executed. The first process to execute the TestAndSet () will

find key== false; all others must wait.

 The progress requirement is met, since a process exiting the critical section either sets lock to

false or sets waiting[j] to false. Both allow a process that is waiting to enter its critical section

to proceed.

 To prove that the bounded-waiting requirement is met, we note that, when a process leaves its

critical section, it scans the array waiting in the cyclic ordering (i + 1, i+ 2, ...,n-1, 0, ..., i -1). It

designates the first process in this ordering that is in the entry section (waiting[j]==true) as the

next one to enter the critical section. Any process waiting to enter its critical section will thus

do so within n - 1 turns.

 Unfortunately for hardware designers, implementing atomic TestAndSet() instructions on

multiprocessors is not a trivial task.

3.5 Semaphores

 The hardware-based solutions to the critical-section problem are complicated for application

programmers to use. To overcome this difficulty, we can use a synchronization tool called

semaphore.

 A semaphore S is an integer variable that, apart from initialization, is accessed only through

two standard atomic operations: wait () or P() and signal() or V().

wait(S) {

while (S <= 0)

// no-op

s--;

}

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

signal(S) {

S++;

}

Figure 3.13 wait() and signal() method definition.

 All modifications to the integer value of the semaphore in the wait () and signal() operations

must be executed indivisibly. That is, when one process modifies the semaphore value, no

other process can simultaneously modify that same semaphore value.

 In addition, in the case of wait (S), the testing of the integer value of S (S <= 0), as well as its

possible modification (S--), must be executed without interruption.

3.5.1 Semaphores Usage

 Operating systems often distinguish between counting and binary semaphores.

 The value of a counting semaphore can range over an unrestricted domain.

 The value of a binary semaphore can range only between 0 and 1.

 On some systems, binary semaphores are known as mutex locks, as they are locks that provide

mutual exclusion.

 We can use binary semaphores to deal with the critical-section problem £or multiple processes.

Then processes share a semaphore, mutex, initialized to 1.

 Each process Pi is organized as shown in Figure 3.14.

do {

wait (mutex) ;

//critical section

signal(mutex);

//remainder section

} while (TRUE);

Figure 3.14 Mutual-exclusion implementation with semaphores.

3.5.2 Semaphores Implementation

 The main disadvantage of the semaphore definition given here is that it requires busy

waiting. While a process is in its critical section, any other process that tries to enter its critical

section must loop continuously in the entry code. This continual looping is clearly a problem in

a real multiprogramming system, where a single CPU is shared among many processes. Busy

waiting wastes CPU cycles that some other process might be able to use productively. This

type of semaphore is also called a Spinlock.

 To overcome the need for busy waiting, we can modify the definition of the wait() and signal()

semaphore operations.

 When a process executes the wait () operation and finds that the semaphore value is not

positive, it must wait. However, rather than engaging in busy waiting, the process can

blockitself using block() operation.

 A process that is blocked, waiting on a semaphore S, should be restarted when some other

process executes a signal() operation. The process is restarted by a wakeup() operation, which

changes the process from the waiting state to the ready state.

 To implement semaphores under this definition, we define a semaphore asa "C' struct:

typedef struct {

int value;

struct process *list;

} semaphore;

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

 Each semaphore has an integer value and a list of processes list. When a process must wait on

a semaphore, it is added to the list of processes.

 A signal() operation removes one process from the list of waiting processes and awakens that

process. The wait() semaphore operation can now be defined as

wait(semaphore *S) {

Svalue--;

if (Svalue < 0) {

add this process to Slist;

block();

}

}

 The signal () semaphore operation can now be defined as

signal(semaphore *S) {

Svalue++;

if (Svalue <= 0) {

remove a process P from Slist;

wakeup(P);

}

}

 The block() operation suspends the process that invokes it. The wakeup(P) operation resumes

the execution of a blocked process P. These two operations are provided by the operating

system as basic system calls.

 Note that in this implementation, semaphore values may be negative, although semaphore

values are never negative under the classical definition of semaphores with busy waiting. If a

semaphore value is negative, its magnitude is the number of processes waiting on that

semaphore. This fact results from switching the order of the decrement and the test in the

implementation of the wait () operation.

Advantages of Semaphores

 Simple to implement

 Machine independent.

 Correctness cane be determined easily

3.6 Classical Problems of Synchronization

3.6.1. Bounded Buffer (Producer Consumer) Problem

 The bounded-buffer problem is commonly used to illustrate the power of synchronization

primitives. We assume that the pool consists of n buffers, each capable of holding one item.

 The mutex semaphore provides mutual exclusion for accesses to the buffer pool and is

initialized to the value 1. The empty and full semaphores count the number of empty and full

buffers. The semaphore empty is initialized to the value n; the semaphore full is initialized to

the value 0.

 The code for the producer process is shown in Figure 3.15; the code for the consumer process

is shown in Figure 3.16.

do {

//produce an item in nextp

…

wait(empty);

wait(mutex);

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

…

//add nextp to buffer

…

signal(mutex);

signal(full);

} while (TRUE);

Figure 3.15 producer process

do {

wait (full);

wait (mutex) ;

…

//remove an item from buffer to nextc

…

signal(mutex);

signal(empty);

…

//consume the item in nextc

…

} while (TRUE);

Figure 3.15 Consumer process

3.6.2. Readers Writers Problem

 Suppose that a database is to be shared among several concurrent processes. Some of these

processes may want only to read the database, whereas others may want to update (that is, to

read and write) the database.

 We distinguish between these two types of processes by referring to the former as readers and

to the latter as writers.

 Obviously, if two readers access the shared data simultaneously, no adverse effects will result.

However, if a writer and some other process (either a reader or a writer) access the database

simultaneously, chaos may ensue.

 To ensure that these difficulties do not arise, we require that the writers have exclusive access

to the shared database while writing to the database. This synchronization problem is referred

to as the readers-writers problem.

 The readers-writers problem has several variations, all involving priorities.

 The first readers-writers problem, requires that no reader be kept waiting unless a writer has

already obtained permission to use the shared object. In other words, no reader should wait for

other readers to finish simply because a writer is waiting.

 The second readers-writers problem requires that, once a writer is ready, that writer performs

its write as soon as possible. In other words, if a writer is waiting to access the object, no new

readers may start reading.

 A solution to either problem may result in starvation.

 In the solution to the first readers-writers problem, the reader processes share the following

data structures:

Semaphore mutex, wrt;

int readcount;

 The semaphores mutex and wrt are initialized to 1; readcount is initialized to 0. The semaphore

wrt is common to both reader and writer processes. The mutex semaphore is used to ensure

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

mutual exclusion when the variable readcount is updated. The readcount variable keeps track

of how many processes are currently reading the object.

 The code for a writer process is shown in Figure 3.16; the code for a reader process is shown in

Figure 3.17.

do {

wait(wrt);

//writing is performed

signal(wrt);

} while (TRUE);

Figure 3.16The structure of a writer process.

do {

wait (mutex);

readcount++;

if (readcount 1)

wait (wrt);

signal(mutex);

//reading is performed

wait(mutex);

readcount--;

if (readcount 0)

signal(wrt);

signal(mutex);

} while (TRUE);

Figure 3.17The structure of a reader process.

 Acquiring a reader-writer lock requires specifying the mode of the lock either read or write

access. When a process wishes only to read shared data, it requests the reader-writer lock in

read mode; a process wishing to modify the shared data must request the lock in write mode.

Multiple processes are permitted to concurrently acquire a reader-writer lock in read mode, but

only one process may acquire the lock for writing, as exclusive access is required for writers.

3.6.3. Dining Philosophers Problem

 Consider five philosophers who spend their lives thinking and eating.

 The philosophers share a circular table surrounded by five chairs, each belonging to one

philosopher.

 In the center of the table is a bowl of rice, and the table is laid with five single chopsticks

(Figure 3.18).

Figure 3.18 The situation of the dining philosophers.

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

 When a philosopher thinks, she does not interact with her colleagues. From time to time, a

philosopher gets hungry and tries to pick up the two chopsticks that are closest to her (the

chopsticks that are between her and her left and right neighbors).

 A philosopher may pick up only one chopstick at a time. Obviously, she cannot pick up a

chopstick that is already in the hand of a neighbor.

 When a hungry philosopher has both her chopsticks at the same time, she eats without

releasing her chopsticks.

 When she is finished eating, she puts down both of her chopsticks and starts thinking again.

 One simple solution is to represent each chopstick with a semaphore.

 A philosopher tries to grab a chopstick by executing await () operation on that semaphore; she

releases her chopsticks by executing the signal() operation on the appropriate semaphores.

Thus, the shared data are

semaphore chopstick[5];

where all the elements of chopstick are initialized to 1. The structure of philosopher iis shown in

Figure 3.18.

do {

wait(chopstick[i]);

wait(chopstick[(i+l) % 5]);

//eat

signal(chopstick[i]);

signal(chopstick[(i+l) % 5]);

//think

} while (TRUE);

Figure 3.18 The structure of philosopher i.

Monitors
 An abstract data type-or ADT- encapsulates private data with public methods to operate on that

data. A monitor type is an ADT which presents a set of programmer-defined operations that are

provided mutual exclusion within the monitor.

 The monitor type also contains the declaration of variables whose values define the state of an

instance of that type, along with the bodies of procedures or functions that operate on those

variables.

 The syntax of a monitor type is shown in Figure 3.19.

monitor monitor-name

{

 // shared variable declarations

procedure P1 (…) { …. }

….

 Procedure Pn (…) {……}

Initialization code (…) { … }

}

 A programmer who needs to write a tailor-made synchronization scheme can define one or

more variables of type condition:

condition x, y;

 The only operations that can be invoked on a condition variable are wait () and signal(). The

operation

x. wait();

 means that the process invoking this operation is suspended until another process invokes x.

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

signal();

 The

x. signal()

 operation resumes exactly one suspended process. If no process is suspended, then the

signal() operation has no effect; that is, the state of x is the same as if the operation had

never been executed.

Figure 3.19Monitor with condition variables.

Dining-Philosophers Solution Using Monitors

 Philosopher may in one of the state thinking, hungry or waiting. For this purpose, we introduce

the following data structure:

enum{THINKING, HUNGRY, EATING}state[5];

 Philosopher i can set the variable state [i] = EATING only if her two neighbors are not eating:

(state [i+ 4) % 5] ! = EATING) and (state [(i +1) % 5] != EATING).

 We also need to declare

conditionself[5];

in which philosopher i can delay herself when she is hungry but is unable toobtain the chopsticks

she needs.

 The solution to the dining-philosophers is shown in Figure 3.20.

monitor dp

{

enum {THINKING, HUNGRY, EATING} state[5];

condition self[5];

void pickup(inti)

{

state[i] =HUNGRY;

test(i);

if (state [i] ! = EATING)

self [i] . wait() ;

}

void putdown(inti)

{

state[i] =THINKING;

test((i + 4) % 5);

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

test((i + 1) % 5);

}

void test(inti)

{

if ((state[(i + 4) % 5] !=EATING) &&(state[i] ==HUNGRY) &&(state[(i + 1)% 5]

!=EATING))

{

state[i] =EATING;

self[i] .signal();

}

}

initialization_code()

{

for (inti = 0; i< 5; i++)

state[i] =THINKING;

}

}

Figure 3.20 A monitor solution to the dining-philosopher problem.

 Each philosopher, before starting to eat, must invoke the operation pickup(). This act may

result in the suspension of the philosopher process. After the successful completion of the

operation, the philosopher may eat. Following this, the philosopher invokes the put down()

operation.

 Thus, philosopher i must invoke the operations pickup() and put down() in the following

sequence:

DiningPhilosophers.pickup(i);

Eat

DiningPhilosophers.putdown(i);

 Think

 It is easy to show that this solution ensures that no two neighbors are eating simultaneously and

that no deadlocks will occur.

Questions from recent VTU papers

1. Define race condition. Explain reader’s Writer’s problem with semaphores. (Dec 13)

2. Define race condition. List the requirements that a solution to the critical problem must satisfy.

 (Dec 08 / June 10 / June 13)

3. What is critical section problem? What are the three requirements to be met by a solution to the

critical section problem? (June09 / Dec 09)

4. What is Peterson’s solution to the critical section problem?

5. Define mutual exclusion and critical section. Write software solution for 2 process

synchronization. (Dec 12)

6. Define an algorithms TestAndSet() & Swap(). Show that they satisfy mutual exclusion.

 (Dec 08 / June10 / Dec 11)

7. What is synchronization? Explain synchronization hardware. (June11)

8. What is busy waiting in critical section problem? How semaphore is used to solve this

problem. (Dec 12)

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

9. What are semaphores? Explain two preemptive semaphore operations. What are the advantages

of semaphores? (June10)

10. What are semaphores? Explain the solution to producer-consumer problem using semaphores.

 (Jun 11 / Dec 12)

11. Describe the bounded buffer problem & give the solution for the same using semaphores.

Write the structure of producer & consumer processes. (June09)

12. Describe how the dining philosopher problem brings out the need for synchronization & avoids

deadlocks. (Dec 09)

13. What do you mean by binary and counting semaphore? Explain the implementation of wait()

and signal() semaphore operation. (June 13)

14. What is monitor? Write the monitor solution for the dining philosopher problem.

 (Dec 09 / 12 / 13)

15. What are monitors? Explain it. (June11)

16. What are monitors? Explain with an example of program request. (June 12)

17. Describe the following: i) Semaphore ii) wait() operation iii) signal () operation. (June09)

Multi Threading & Scheduling Algorithms
1. What is multithreading? What are the benefits of multithreaded programming?

(June 10 / Dec 11)

2. Write a note on multithreaded models. (June 09 / Dec 09)

3. Consider 4 jobs with (arrival time, burst time) as (0, 5) (0.2, 2) (0.6, 8) (1.2, 4). Find the

average turnaround time and waiting time for the jobs using FCFS, SJF and RR(q=1)

scheduling algorithms. (June11)

4. Consider the following set of processes. (June10)

Process Arrival Time Burst Time

P1 0 1

P2 1 9

P3 2 1

P4 3 9

a) Draw Gantt charts showing the execution of these processes using FCFS, preemptive SJF,

non-Pre-emptive SJF and RR (Quantum 1) scheduling schemes.

b) Compute the turnaround time and waiting time for each process for each of the schemes

above.

c) Compute the average turnaround time and average waiting time in each scheme and thus

find the best scheme in this particular case.

5. Why thread is called LWP? Describe any one threading model. (Dec 08)

6. Suppose the following jobs arrive for processing at the times indicated. Each job will run the

listed amount of time.

Job 1 2 3

Arrival Time 0.0 0.4 1.0

Burst Time 8 4 1

a) Give Gantt chart illustrating the execution of these jobs using the non-preemptive FCFS

and SJF scheduling algorithms

b) What is turnaround time and waiting time of each job for the above algorithms?

c) Compute average turnaround time if CPU is left idle for 1 unit and then SJF is used.(Job1

and Job2 will wait during this time) (Dec.09)

7. Consider the following set of processor with a length of CPU burst time given in milliseconds.

Subject
Operating Systems

Module 2
Process Synchronization

Prepared
by:AAD

Process Arrival time Burst time Priority

P1 0 7 4

P2 3 2 2

P3 4 3 1

P4 4 1 4

P5 5 3 3

Find the average waiting time &average turnaround time using Gantt chart for the following

scheduling algorithms.

i. Preemptive SJF

ii. Preemptive Priority(Smaller number represents high priority)

iii. Round-Robin(time slice =1ms) (Dec 08)

