CNS.

Cuber Attacks.

1] Motives
A Hacker is a successful name br Cyber attack. Hackers are youngstess/teenagers who use attack kits designed by other which are freely downloaded from internet.

Attackers include company insiders like unsatisfied employees.

- Cuber terrorists who expose extreme religious \& political cause.

Main motives for launching Cuber attacks are:
1] Theft of Sensitive Information.
3) Disruption of Services.

13 Illegal access to or use of Resources.
1 Theft of sensitive info.
Many organisation store \& communicate sensitive info on new products to be designed.

Revenue severe can be usually advantageous to a company competitors.
Military \& Defence plan details of any nation.
port Bodies like Corps, Banks, etc \& individual's personal info. like credit, cards, passwords, etc.

Toking this i called "Identity Theft".
2] Distruption of services.
Interruption of service against an organisation server which causes unavailable or inocecsichle services

Ag: attacks being launched by business rivals of e-commerce web-sites.

3] Tlegal access to or use of resources.
The Goal is to use to obtain free access of services to paid resources.
Eg: Online digital products such as magazines, journal articles, free talk time, etc.

Common attacks.

Attempting to retrieve personal info. from individual e is one common attack which has 2 categories 1] Pharming attack. 2] Phishing attack.

1] It is a cyber attack intended to redirect a web-site's traffic to another fake site.
2] It It is an attempt to obtain sensitive info. such as user name, password \& credit card details by discussing it with a trust-worthy entity in an electronic communication.

One type of intruding into a system is through password guessing attack, side channel attack, skimming attack

All these forms are identity theft.
Password Guessing attack is done by guessing the keystrokes used by the user.

DOS [Denial of Services]
These attackers exhaust the computing power, memory capacity or communication bandwidth of the targets so they are unavailable.

Another important classes of attacks i caused by various types of malware.
\rightarrow Viruses \rightarrow Trojan.
\rightarrow Worm \rightarrow Spyware.

Virus typically infects a file. So, it spreads from one file to another.
Worms are usually stand-alone program that infects a computer 80 a worm spreads from one computer to another.

Trojan is a kind of malware which modifies the files, data theft, etc.

Spy-ware installed on a machine can be used to monitor user activities as a kay logger to recover valuable info. such as passwords/user keystrokes.

Vulnerability.
Vulnerability in procedures, protocols, h / w or s / w within an organisation that will cause damage.

There are attest -4 important vulnerability classes in the domain of security, they are
\rightarrow Human vulnerabilities. \rightarrow Software vulnerabilities.
\rightarrow Protocol vulnerabilities. \rightarrow Configuration vulnerabilities.
Human vulnerabilities includes human behaviour/action. Eq: user clicking on the link in a e-mail received from the unknown resources. This type is called phishing.

Protocol vulnerabilities includes no. of or networking protocols including ARP, ACMP, UDP, DNS and various protords have been used in a anticipated way for attacks. Eg: Pharming attack is an example. It also leads for man in the middle attack.

Software vulnerabilities is caused by weekly written system code or application s/w which normally happens at the time of uses isp's.

Configuration vulnerabilities relates to configuration settings on newly installed files, etc. By Read/hrite executable permissions on files, te providing privileges on the application, etc.

Afferent strategies
Defence Strategies.
1] Access control $[$ Authentication.
Authorisation.
Authentication
Access control is to permit or deny the entry into the system which is called as authentication process. which can be implemented by some of the trusted third party app ns $/$ s/w's \& also it may be a part of Os to protect the sim.

Authorisation.
Involves granting a specific entity the permission to access some restricted data or perform some restricted operations

2] Data Protection.

Data confidentiality. \& Data Integrity.
Date confidentiality is is protection of alata from disclosure to an unauthorised party or process.

Data Integrity, it is a assurance that data hasn't been modified, tampered with or made inconsistent in any way To perfornschin data. Dpeategtign Exons of the
oryptographic techniques are used. This is done by encryption \& decryption of data for confidentiality \& cryptography checksum is used for data integrity.
3) Prevention and detection.

Access control and message encryptions are all of preventing strategies.

Cryptographic checksum on the other hand detects tampering of messages.

The intrusion detection system also looks for certain patterns of behaviour.

Response, recovering, forensic.
Once an attack or infection hos been detected response measure should be quickly baken like shutting down all the system, or part of the system during a malware infection in which necessary actions should be taken like quarantined and necessary patches are applied.

Cyber forensic is an emerging discipline with a set of tools that helps trace back the criminals of asker crime. Guiding Principles.
$\xrightarrow{ } \rightarrow$ Secwity is as much a human problem than a technological problem \& must be addressed at different levels.
$\xrightarrow{\rightarrow}$ Security should be factored at inception not as an after thought. being
$\xrightarrow{3}$ Security Ayiunknown is often bogus.
4 Always consider the default denial policy for adoption in access control.
$\xrightarrow{5}$ In entity should be given the least amount of permissions or privileges to accomplish a given bask.
\rightarrow Use defence in depth to ane enhance the security dod n SOURCE: DIGINGTESMN
architectural design,
$\xrightarrow{7}$ Identify vulnerabilities and respond appropriately.
$\xrightarrow{8}$ Carefully study the trade of involving security before making any.

Co-prime, Congruency, Relative prime.

Modulo Arithmetic.
Let ' d ' be an integer \& let ' n ' be $a+v e$ integer. Let q and r bo quotient \& remainders obtained for by dividing d by n.

Therefore, the relationship blew d, n, q, r is

$$
\begin{aligned}
& d=(n * q)+r . \\
& n=10 \quad r=3 . \\
& q=\{0,1,2,3 .\}
\end{aligned}
$$

the set of d values

$$
\{\ldots .-27,-17,-7,3,13,23,33, \ldots \ldots\}
$$

Congruency modulo.

$$
\text { represented by } r \equiv d(\bmod x)
$$

If 2 integers are congruent modulo n then they differ by an integral multiple of n.
$a \bmod n=r \quad b \bmod n=r$.
then, $a=n * q_{1}+r$.

$$
\begin{gathered}
b=n * q_{2}+r \\
a-b=n * q_{1}+r-\left(n * q_{2}+r\right) \\
a-b=n\left(q_{1}-q_{2}\right)
\end{gathered}
$$

Since $q, \& q e$ are integers $a \& b$ differ by an integral multiple of n.

1) $(a+b) \bmod x=((a \bmod x)+(b \bmod x)) \bmod x$.

2] $(a-b) \bmod x=((a \bmod x)-(b \bmod x)) \bmod x$.
3) $(a * b) \bmod x=((a \bmod x) *(b \bmod x)) \bmod x$.

Properties of modulo arithmetic.
\rightarrow Verify property -1 for $n=8, a=27, b=34$.

$$
\begin{gathered}
(27+34) \bmod 8=61 \bmod 8=5 \\
a(27 \bmod 8)+(34 \bmod 8)=5 \operatorname{mad} 8=5 \\
3+2 \\
\therefore L_{H}=\text { CHS. }
\end{gathered}
$$

GOD
If a two integers $a \& b$, if a divides b and a divides c \& their exist number $a^{\prime}>a$ such that a^{\prime} / b and a^{\prime} / c., then a i referred to the greatest common divisor of b and c denoted ac

$$
a=\operatorname{gcd}(b, c)
$$

If ged of b, c i.e $\operatorname{god}(b, c)=1$.
(b, c) can be a prime a co-prime or relatively. prime.

$$
\operatorname{gcd}(b, c)=1 \cdots 161 \quad 120
$$

Euclid's formula.

$$
\begin{aligned}
& 161=120(1)+(41) . \\
& 120=412(2)+(38) . \\
& 41=38(1)+(3) . \\
& 38=3(12)+(2) . \\
& 3=2(1)+\sqrt{11} . \\
& 2=1(2)+(0) . \\
& \text { gad }=1 .
\end{aligned}
$$

$$
d b=(n * q)+r . \quad 4^{41}=38(1)+(3) \text {. }
$$

Gq: $(56,15)$

$$
\begin{aligned}
& 56=15(3)+(11) . \\
& 15=11(1)+(4) . \\
& 11=4(2)+(3) . \\
& 4=3(1)+11] \\
& 3=1(3)+(0) .
\end{aligned}
$$

Gey: $\operatorname{ged}(1618,112)$

$$
\begin{aligned}
& 161 \equiv 112(1)+49 \\
& 142=49(2)+14 \\
& -49=14(3)+17 \text { ged. } \\
& 14=7(2)+0 .
\end{aligned}
$$

Extended Euclid's Algorithm
GCD theorem.
Given integers b and c there exists two integers $x \& y$ such that $b x+c y=\operatorname{god}(b, c)$
$b x+c y=1$, if b and c are relatively prime or os prime numbers.

$$
\begin{aligned}
& 7=49-14 * 3 . \\
& 7=(1 \times 9-(112-49 * 2) * 3 . \\
&=49 * 7+112 *(-3) . \\
&=(161-112 * 1) * 7+112 *(-3) . \quad 4 *(-112-1 * 2) * 3 \\
&=(161 * 7)+112 *(-10) . \\
& x=7 . \\
& y= 49 * 7+112 *(-3) .
\end{aligned}
$$

$12 \bmod 79=12$.
79 mod $12=7$.

$$
\begin{aligned}
79 & =12(6)+(7) \\
12 & =7(1)+(5) \\
7 & =5(1)+(2) \\
5 & =2(2)+1) \mathrm{gcd} \\
2 & =1(2)+0 . \\
2 & =5-2 *(2) . \\
2 & =5-2 * 2 . \\
& =(15-(7-5 * 1) * 2 . \\
& =5 *(3)+7 *(-2) \\
& =(12-7 * 1) * 3+7 *(-2) . \\
& =12 * 3+7 *(-5) . \\
& =12 * 3+(79-12 * 6) *(-5) \\
& =12 * 33+79 *(-5) \\
& =x=-5 . \\
& y=33
\end{aligned}
$$

In cryptography, we often need to compute multiplicative inverse modulo prime no's i.e $b * x+c * y=1$, since $c * y$ differs from by an integral multiple of b.

$$
c x^{\prime} y \cong i \bmod b \text {. }
$$

It follows that y is actually the inverse of $c \bmod b$.
To obtain inverse of cod b we use extended Euclidean algorithm.

The inverse cob comod $b .12 \bmod 79$.
$12 \bmod 79$.
$12^{-1} \bmod 79$.
$12 * y \equiv 1 \bmod 79$.

$$
12 \times y=1 * 5 * 79 \bmod 79
$$

$12 * y \equiv 1 \bmod 79$.
or

$$
\begin{aligned}
* 33 & =1+5 * 79 \equiv 1(\bmod 79) \\
33 & =1 \bmod 79
\end{aligned}
$$

$35^{-1} \bmod 6$.
$35 y=1 \bmod 6$.
$30^{-1} \bmod 7$.
$5 y \equiv 1 \bmod 6$.
$30 y \equiv 1 \bmod 7$.
$25 y \equiv 5 \bmod 6$
$2 y \equiv 1 \bmod 7$
$1 y=5 \bmod 6$.
$8 y \equiv 4 \bmod 7$.
$y=5$.

$$
y=4
$$

$42^{-1} \bmod 5$.

$$
\begin{aligned}
& 4 y \equiv 1 \bmod 5 . \\
& 8 y \equiv 1 \bmod 5 .
\end{aligned}
$$

Chinese Remainder Theorem $[$ [CRT]
Used to solve a set of congruent with one variable but with different modulus which are relatively prime as shown below.

$$
\begin{aligned}
x \equiv a_{1}\left(\bmod m_{1}\right) \\
x \equiv a_{2}\left(\bmod m_{2}\right) \\
\vdots \\
x \equiv a_{k}\left(\bmod m_{k}\right) \\
x \equiv 2(\bmod 3) \\
x \equiv 3(\bmod 5) \\
x \equiv 2(\bmod 7)
\end{aligned}
$$

To solve set of equations, there are few stops
1] Find $M=m_{1} \times m_{2} \times m_{3} \ldots \ldots m_{k}$.
This is to find the common modulo.

2] Finding $M_{1}=\frac{M}{m_{1}}, M_{2}=\frac{M_{1}}{m_{2}}, M_{k}=\frac{M}{m_{k}}$.
$3]$ Finding the multiplicative inverse of $M_{1}, W_{2}, M_{3}, \ldots \ldots M_{k}$. using the corresponding $\left(m_{1}, m_{2}, m_{3}, \ldots . m_{k}\right)=m_{1}^{-1}, m_{2}^{-1}, \ldots . m_{k}^{-1}$.
$M_{1}^{-1} \bmod m, \quad M_{2}^{-1} \bmod m_{2} \ldots M_{k}^{-1} \bmod m_{k}$.
\#
$4]$

$$
\begin{align*}
& x=\left(a_{1} \times M_{1} \times M_{1}^{-1}+a_{2} \times M_{2} \times M_{2}^{-1}+\ldots .+a_{k} * M_{k} \times M_{k}^{-1}\right) \\
& \bmod M . \\
& x \equiv 2(\bmod 3)=(1) \tag{1}\\
& x \equiv 3(\bmod 5)=(2) \tag{2}\\
& x \equiv 2(\bmod 7)=\text { (3) } \tag{3}
\end{align*}
$$

$$
\begin{aligned}
& M_{2}=\frac{M}{m_{2}}=\frac{105}{5}=21 . \\
& M_{3}=\frac{M}{m_{3}}=\frac{105}{7}=15 .
\end{aligned}
$$

Rough

$$
M=3 \times 5 \times 7=105
$$

$$
M_{1}=\frac{M}{m_{1}}=\frac{105}{3}=35 .
$$

$$
\begin{aligned}
& 35 y \equiv 1 \bmod 3 \\
& 2 y \equiv 1 \bmod 3 \\
& y=2 \quad M_{1}^{-1}=2 .
\end{aligned}
$$

$$
\begin{aligned}
& 21 y \equiv \bmod 5 . \\
& y=1 \quad M_{2}^{-1}=1 .
\end{aligned}
$$

$15 y \equiv 1 \bmod 7$.

$$
y=1 \quad M_{3}^{-1}=1 .
$$

$x=(2 \times 35 \times 2+3 \times 21 \times 1+2 \times 15 \times 1) \bmod 105$:
$x=(140+63+30.) \bmod 105$.
$x=233 \bmod 105$.
$x=23$. \qquad
(1)
(2) (3)

TE Let $N=210 \& n_{1}=5 \quad n_{2}=6, n_{3}=7$, Compute

$$
f^{-1}(3,5,2) \quad x_{1}=3 \quad x_{2}=5 \quad x_{3}=2
$$

x^{\prime}

Find an integer that have remainder of B when divided by 7 and 13. and divisible by 12. wing CRT solve

$$
\begin{aligned}
& x \equiv 3 \bmod 7 \\
& x \equiv 3 \bmod 13 \\
& x \equiv 0 \bmod 12
\end{aligned}
$$

$$
M=7 \times 13 \times 12=84 \times 13=1092
$$

$$
M_{1}=\frac{10^{\prime} 92}{7}=156
$$

$$
156 y=1 \bmod 7
$$

$$
2 y \equiv 1 \operatorname{mad} 7
$$

$$
M_{2}=\frac{1092}{13}=84 .
$$

$$
8 y \equiv 4 \bmod 7
$$

$$
M_{3}=\frac{1092}{12}=91
$$

$$
\begin{aligned}
& x_{1}=3 \quad x_{1}=5 \quad N=210 \quad f^{-1}(3,5,2) . \\
& x_{2}=5 \quad n_{2}=6 \\
& x_{3}=2 \quad n_{3}=7 \\
& N_{1}=\frac{210}{5}=42 . \\
& N_{2}=\frac{210}{6}=35 . \\
& N_{3}=\frac{210}{7}=30 \text {. } \\
& x=(3 \times 42 \times 3+5 \times 35 \times 5+2 \times 30 \times 4) \\
& 42 y \equiv 1 \bmod 5 . \\
& 35 y \equiv 1 \bmod 5 . \\
& 30 y \equiv 1 \bmod 7 . \\
& 42 y \equiv 1 \bmod 85 . \\
& 2 y \equiv 1 \bmod 5 \text {. } \\
& y=3 \quad N_{1}^{-1}=3 \\
& \bmod 210 . \\
& x=(378+875+240) \bmod 210 \text {. } \\
& 35 y \equiv 1 \bmod 6 \text {. } \\
& 5 y \equiv 1 \bmod 6 . \\
& y \equiv 5 \quad N_{2}^{-1}=5 \\
& 9^{-1} \bmod 26 . \\
& 9 y \equiv 1 \bmod 26 \text {. } \\
& y=3 \quad(27)-(26) \\
& 30 y \equiv 1 \bmod 7 . \\
& 2 y \equiv 1 \bmod 7 \\
& 8 y \equiv 4 \bmod 7 \text {. } \\
& y=4 \quad N_{3}^{-1}=4
\end{aligned}
$$

$$
\begin{array}{ll}
84 y \equiv 1 \bmod 13 & 91 y \equiv 1 \bmod 12 . \\
6 y \equiv 1 \bmod 13 & 7 y \equiv 1 \bmod 12 . \\
y=11 & M_{2}^{-1}=11 . \\
& \\
x=(3 \times 156 \\
x & =4644 \bmod 1092 . \\
x & =276 .
\end{array}
$$

Basics of Cryptography.
Cryptography is the science of hiding messages so that only the intended recipient can decipher the received message.

The original meg to be transferred is called plain text. 6 it hidden version is cipher teat.

The process of hiding the original plain teat is called encryption.

The process of recovering the original plain teat from the cipher text is called decryption.

Encryption involves the we of encryption functions or algorithms denoted by ϵ.

Encryption key (e).
Decryption involves the use of decryption functions or algorithms denoted by D.

Decryption key (d).

$$
\begin{array}{ll}
G=E_{e}(P) . & C=\text { cipher text } . \\
P=D_{d}(C) . & P=\text { plain text } .
\end{array}
$$

Secret is. Public key Cryptography.
The two types of cryptography techniques used are secret key sopublic key DIGINOTES.IN

Secret key Buyptogeraphy.
Both sender i \& receives share a common secret for encryption \& decryption of message.

$$
\text { i.e } \quad(e=d)
$$

This is also referred as symmetric key algorithm en
Public key Guptography.
Two distinct keys are used i.e encryption key is called public key \& decryption key is called private key.

The pubkey of a receiver is used for encryption \& at the reviving end the private key is used fo decryption of message
i.e pub ky \& prot ky no doencit have any relationship also. known as asymmetric key algorithm.

$$
\begin{aligned}
& C_{1}=\epsilon_{e \cdot B p w}(P) . \\
& P=D_{d \cdot B p_{p}}\left(C_{1}\right) .
\end{aligned}
$$

[Later] Types of attacks
The attacker is known as cuyptanalysts.
Substitutional Ciphers.
\rightarrow Monoalphabetic Cipher
The m cipher is used for substituting the alphabets wist different alphabets which shifts the letters of one alphabets against another alphabet to create the secret message which is called as "Caesar Cipher", which was found by an Roman Emperor Julies Caesar.

$$
A B C D \in F G H I J K L M N O P Q R S T U V W X Y Z
$$

SOURCE: DIGINOTES.IN NT MU
for key $=5$
 CDE FGHYI JKLMNOPQRSTUVWXYZAB

The shifting is done by key no. of positions i.e encryption process is cipher text $=m+e \bmod 26$.

$$
c_{1}=m+e \bmod 26 \text { y } m=\text { message. }
$$

Decryption process is $m=C+d \bmod 26$.
if $e=3$.

$$
d=-3 \bmod 26 .
$$

$$
d=23 .
$$

Eg: Perform Cesar cipher for a key $=3 \quad m=$ what is the population of Mars?

$$
\begin{aligned}
& k=y=3 . \\
& e^{\prime}=
\end{aligned}
$$

What is the population of MARS ZKDW LV WKH SRSXODWLRQ RI PDUV

$$
k=5 .
$$

This is a secret message YMNX NXF XJHWJY RJXXFLJ.
$A B C D E F G H I J K L M N O P Q R S T U N W X Y z$ SFGHIJKLMNOPQRSTUVWXYZABCDE
\rightarrow Polyalphabetic Cipher.
In p cipher the cipher text corresponding to a particular character in tho plain text is not fired.

The plain text is broken into block of keyword size (m), the key length on the key word uses a multidigiterky ie $k_{1}, k_{2}, k_{3}, \ldots, k_{m}$ on each integers.

The first letter of each block is replaced by the better k_{1} position to its right．
The $2^{\text {nd }}$ letter is replaced by the letter k_{2} position bo it right \＆so on．
Eg ：
（1）Vigenere Cipher．
$A B C D \in F G H \perp I K L M N O P Q R \& T U V W X y z$

Key（MATH）
Key：$(12,0,19,7)$
Make It：Happen．
$12,0,19,7 \quad 12,0-19,7,12,0,19,7$ ．
\times MATH MA TH MATH

YADL U AT AHBP首U

$$
\begin{aligned}
& \text { Key }(04,19,3,22,7,12,5,-11) \\
& \text { WISHING You MUCH Success. } \\
& \text { ABY YBVDPZL SN }
\end{aligned}
$$

To decrypt a vegenere cipher we need to use the key in backward direction to the left．

$$
\begin{aligned}
& \begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c}
W & S & H & A & G & Y & 0 & U & M & U & C & H & S & U & C & C & G & S & S \\
\hline & 19 & 3 & 22 & 7 & 12 & S & 11 & 4 & 19 & 3 & 22 & 7 & 12 & 5 & 11 & 04 & 19 & 3 & 22 \\
\hline
\end{array} \\
& A B V D P Z L \quad J S N \quad P Q J T \quad X F G V H O Z
\end{aligned}
$$

(2) Hill Cipher

It is a p cipher, as vegenere cipher the plain text is broken into blocks of size m .
where m is a linear eq.
the key in hill cipher is an ($m \times m$) matrise of integers 0 to 25 .

Each alphabet i assigned with a numeric value $A=0, B=1, \ldots \quad Z=25$.

The relationship b/w block of plain text \& it cipher text is expressed by $C_{1}=P_{1} K_{11}+P_{2} K_{21}+\ldots \ldots+P_{m} \cdot K_{m 1}$ $\bmod 26$.

$$
\epsilon_{12}=e_{2} k_{2} 1=
$$

$$
\begin{aligned}
& C_{2}=P_{1} k_{12}+P_{2} k_{22}+\ldots . P_{m k_{o n 2} \bmod 26 .} \begin{array}{l}
C_{m}=P_{1} k_{1 m}+P_{2} k_{2 m}+\ldots P_{m} k_{m m} \text { mod } 26 . \\
\quad i \cdot e=C=P \cdot k . \quad K=(m \times m) \text { matrix. }
\end{array} .
\end{aligned}
$$

K represents a key comprising of (mam) square matrix.

It the receiver end "the plain text can be recovered from cipher text wing " $P=C \cdot K^{-1}$ ".

Note: K. $K^{-1}=$ Identity Matrix.
Every time the inverse of matrix doesn't exist if the matrix is random value.

Calculation of Inverse of Matrix.

Consider a in cipher using a block of $2(m=2)$ where $k_{e y}=(3,7,15,12)\left[\begin{array}{cc}3 & 7 \\ 15 & 12\end{array}\right]$.

Perform encryption of plain text $H I$.
The numerical equivalent of $\mathrm{HOT}_{\mathrm{t}}$ is H .

$$
C=p \cdot k .
$$

$$
\begin{aligned}
& C=\left[\begin{array}{lll}
7 & 8
\end{array}\right]\left[\begin{array}{cc}
3 & 7 \\
15 & 12
\end{array}\right] \\
& C=\left[\begin{array}{ll}
1621+120 & 49+96
\end{array}\right] \\
& C=\left[\begin{array}{ll}
141 & 145
\end{array}\right] \cdot \bmod 26 . \\
& C=\left[\begin{array}{ll}
L & 15
\end{array}\right) \\
& C=\left[\begin{array}{ll}
L & P
\end{array}\right]
\end{aligned}
$$

Decryption process.

$$
\begin{array}{ll}
p=\left[\begin{array}{l}
\cdot k^{-1} \\
p=C \cdot K^{-1}
\end{array}\right. & K^{-1}=\left[\begin{array}{cc}
10 & 5 \\
7 & 9
\end{array}\right] \\
p=\left[\begin{array}{ll}
11 & 15
\end{array}\right]\left[\begin{array}{cc}
10 & 5 \\
7 & 9
\end{array}\right] \\
p=\left[\begin{array}{ll}
110+105 & 55+155
\end{array}\right] \\
p=\left[\begin{array}{ll}
215 & 190
\end{array}\right] \bmod 26 . \\
p=\left[\begin{array}{ll}
7 & 8
\end{array}\right] . \\
p=\left[\begin{array}{ll}
4 & 1
\end{array}\right] .
\end{array}
$$

[OTP] One Time Pad.
It is an encryption technique in which each character of the plain text is combined with a character from a random set of kay.

In the (OTP) One Time Pad is that the encryption key has attest the same length as the actual msg (plain text) \& consists of truly random number and is not reused.

There are some rules mandatory Jor OTP 1] The OTP (key) shod consist of truly Random chars. 2] The $O T P$ (key) shed have the same length of the plain text.
3) Only 2 copies of OTP should exist.

4] The OTP shod be used only once
5] Both copies of OTP are destroyed immediately after use.
F
The key is prior sent to the receiver and the encryption is done.

To encrypt plain text data the sender uses keyetream by mixing bit by bit [XOR operation]. Again

It is XOR operation performed on decryption to get plain text.
$\begin{array}{lll:llllll}\text { Eg: } & A & 0 & 1 & 0 & 0 & 0 & 1 \\ \text { key } & 1 & 1 & 0 & 0 & 0 & 1\end{array}$
CT 10110000
Key. $\frac{1101-0101(\text { (XOR) Decryption. }}{01100101}$
PT 0110 0101

Hill cipher prob
Perform for a plain text HELP wherefthe block of 2

$$
\begin{aligned}
& H \in L P \quad m=2 . \quad\left[\begin{array}{ll}
3 & 3 \\
2 & 5
\end{array}\right] \quad \begin{array}{l}
H \in L P . \\
741115 .
\end{array} \\
& C=P \cdot K \\
& =\left[\begin{array}{ll}
7 & 4 \\
11 & 15
\end{array}\right]_{2 \times 2}\left[\begin{array}{ll}
3 & 3 \\
2 & 5
\end{array}\right]_{2 \times 2} \\
& =\left[\begin{array}{ll}
7 & 4
\end{array}\right]\left[\begin{array}{ll}
3 & 3 \\
2 & 5
\end{array}\right]=\left[\begin{array}{ll}
21+8 & 21+20
\end{array}\right] \\
& =\left[\begin{array}{ll}
29 & 41
\end{array}\right] \bmod 26 . \\
& =\left[30 U R C^{15}\right]: D \bar{T} G R O T E S .1 \mathrm{~N}
\end{aligned}
$$

$A \Rightarrow$ Decryption.

$$
\begin{aligned}
P & =C K^{-1} \quad K^{-1}=\left[\begin{array}{cc}
15 & 17 \\
20 & 9
\end{array}\right] \\
& =\left[\begin{array}{ll}
3 & 15
\end{array}\right]\left[\begin{array}{ll}
15 & 17 \\
20 & 9
\end{array}\right] \\
& =\left[\begin{array}{ll}
45+300 & 51+135
\end{array}\right] \\
& =\left[\begin{array}{ll}
345 & 186
\end{array}\right] \bmod 26 . \\
& =\left[\begin{array}{ll}
7 & 4
\end{array}\right] \\
& =H
\end{aligned} \epsilon .
$$

$$
=\left[\begin{array}{ll}
11 & 4
\end{array}\right]\left[\begin{array}{cc}
15 & 17 \\
20 & 9
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
165+80 & 187+36
\end{array}\right] \bmod 26 .
$$

$$
=\left[\begin{array}{ll}
245 & 223
\end{array}\right] \bmod 26 .
$$

$$
=\left[\begin{array}{ll}
11 & 15
\end{array}\right]
$$

SŌU ${ }^{k}$ CEE P. DIGINOTES.IN

$$
\begin{aligned}
& {\left[\begin{array}{ll}
11 & 15
\end{array}\right]\left[\begin{array}{ll}
3 & 3 \\
2 & 5
\end{array}\right]} \\
& =[33+30 \quad 4533+75] \\
& =\left[\begin{array}{ll}
63 & 108
\end{array}\right] \bmod 26 . \\
& =\left[\begin{array}{ll}
11 & 4
\end{array}\right] \\
& =\left[\begin{array}{ll}
L & \epsilon
\end{array}\right] \\
& =D \quad P \quad L \in
\end{aligned}
$$

Difference b/w Substitution \& Transposition Usher
In substitution cipher cad letter retains its position but changes its identity

In transposition cipher each letter retains its identity but changes its position.

Transposition Cipher.
Cipher shuffles, rearranges or permutes the bits in a block of plain text.

Row transposition Cipher
In Rt cipher the plain test is arranged in the form of matrix for a particular fixed column value.
Eg: "Begin operation at NooN".

$$
\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
n & e & g & i \\
r & a & p & e \\
0 & n & a & t \\
N & 0 & 0 & N
\end{array}\right] \Rightarrow\left[\begin{array}{cccc}
r & a & t & i \\
n & 0 & 0 & n \\
n & 0 & p & e \\
b & e & g & i \\
0 & n & a & t
\end{array}\right]
$$

Now, let's rearrange the rows as follows: The is $^{\text {st }}$ row is $3^{\text {ed }}$ row.
The $2^{\text {nd }}$ row is $5^{\text {th }}$ row.
The $3^{\text {rd }}$ row is $2^{\text {nd }}$ row.
The $4^{\text {th }}$ row is $1^{\text {st }}$ row.
The $5^{\text {th }}$ row is $4^{\text {th }}$ row.

Now, rearranging the column as follows:

$$
\begin{aligned}
& 1^{\text {st }}-4^{\text {rh }} \\
& 2^{\text {nd }}-8^{r d}
\end{aligned}
$$

$$
3^{\text {ad }}-1^{\text {st }}
$$

$$
\left[\begin{array}{llll}
i & t & r & a \\
n & 0 & n & 0 \\
e & p & n & 0 \\
i & g & B & e \\
t & a & 0 & n
\end{array}\right]
$$

it ra mono ep no ign Be tarn.
Decipher 1
$\chi\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ i & t & r & a \\ n & 0 & n & 0 \\ e & p & n & 0 \\ i & g & B & e \\ t & a & 0 & n\end{array}\right] \Rightarrow\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ i & g & B & e \\ e & p & n & 0 \\ i & t & r & a \\ n & 0 & n & 0 \\ t & a & 0 & n\end{array}\right]$

To decrypt the message the recipient would have to cast the cipher text in (5×4) matrix and reverse the column \& row shuffle.

In the above technique, the message can be changed by identifying some interesting keywords
Decipher $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ i & g & B & e \\ e & p & n & 0 \\ i & t & r & a \\ n & 0 & n & 0 \\ t & a & 0 & n\end{array}\right] \Rightarrow\left[\begin{array}{llll}1 & e & s & 4 \\ r & a & t & i \\ n & 0 & 0 & n \\ n & 0 & p & e \\ B & e & g & i \\ 0 & n & a & t\end{array}\right]$

$$
\left[\begin{array}{llll}
B & e & g & i \\
n & 0 & p & e \\
r & a & t & i \\
0 & n & a & t \\
n & 0 & 0 & n
\end{array}\right]
$$

Confusion.
Confusion seeks to make the relationship $b l w$ the statitics of the CIxt and the value of encryption key as complex as possible.

Even if the attacker can get some handle on the statistics of CTxt, the way in which the key was used to produce that CIXt is so complex e as to make it difficult to deduce the key.

This is achieved by complese substitution theorem.
Diffusion. [Rearrangement].
In diffusion, the strititical structure of the plainitent is dissipated into long-range statistics of the CTxt:

This is achieved by having each CTxt digit be affected by many PEat digits

$$
y_{n}=\left(\sum_{i=1}^{K} m_{n+i}\right) \bmod 26 .
$$

adding K sucassins letters to get C $T_{x} t$ letter y_{n}
In a binary block cipher, diffusion can be achieved by repeatedly performing some permutation on the data followed by applying a function to that permutation.

Block Cipher.
It is one in which a block of Prot is treated as a whole and used to produce a CTxt block of equal length, a block of 64 b or 128 b is used. A block cipher can be used to achieve the same effect as a stream cipher.

They seem applicable to a broader range of app rs than stream ciphers.

The majority of n / w based symmetric cryptographic applications make use of block ciphers.

Stream Cipher
It is one that encrypts a digital data stream one bit or one byte at a time.
Eg: Vigenere Cipher.
SOURCE : DIGINOTES.IN

If the cryptographic keystream is random, them this cipher is unbreakable by any means other than acquiring the keystream.

Product Cipher mines
It is a combination of substitution-permutation box.

Substitution Bor is a device that takes ip string of length m \& returns string of length n. con Hos where $m=n$ is cecasional not always.

Data Encryption std:
In $D \in S, m>n$
An S-Box is a easily implemented using a table or array of $2^{\text {ra }}$ rows, each row contains n-bit value. S-Box has no restrictions

Permutation Box performs permutation or rearrangement of bits in the i / p.

Permutation is more restricted than off on substitution.

Cascading P-Box \& S-Box alternatively the strength of the cipher can be greatly increased. This concept is called product cipher.

DIs

Key: 64 bit a 56 bit key.

$$
64-\text { bit phat }
$$

General: Structure of DES.

Initial Permutation

Final Permutation
$64 b C T \times t$.

Feistel Cipher Structure.
Implements Shannon's $S-P$ nw concept where a single block of $P T_{x} t$ is transformed into CTxt after passing. through the foll. stages.

- partitions isp block into two halves.
- An initial permutation.
- 16 rounds of a given function.
- A $82 b$ left-right swap and.
- Afinal permutation.

$>$ The Computation consists of 16 iterations of a calculation
$>$ The Cipher Function f operates on two blocks, one of $32 b$ and one of 48 b , and produces a block of 32 b
$>$ The I / P block is then $L R$, $32 b$ block L followed by a 32 b block R

Let L_{i-1} \& R_{i-1} be the left and right halves of the i / p to round i.

$$
\begin{aligned}
& L_{i}=R_{i-1} \\
& R_{i}=L_{i-1} \oplus f\left(R_{i-1}, K_{i}\right) .
\end{aligned}
$$

7 The function f is applied at each round is referred an the Round Junction".
\rightarrow It each iteration a diff block of key K bits is chasten from the $64 b$ kay designated $k \in y$ to a $48 b$ key.

Round Function.

Four operations.
$>$ Expansion.
$>$ Xor with round key.
$>$ Substitution.
\rightarrow Permutation.

Each Sbox uses a corresponding 4 row $\times 16$ column table i.e 8 tables. [$n^{2 n}$ array].

Given a 6 bit i / p, the $1^{\text {st }}$ and $6^{\text {th }}$ bits are used to address one of the rows and the remaining 4 bits are used to address one of the 16 columns.

Finally, the value found in the corresponding location of the table is the 4 -bit $0 / P$ of the sbox.

Substitution Box.. [Substitution and Shrink]

$$
48 \text { bits } \Rightarrow 32 \text { bits. }[8 * 6 \Rightarrow 8 * 4] \text {. }
$$

2 bits used to select amongst 4 substitutions for the rest of the 4 bit quantity.

Eq:

row
2×3
$=1000$
value $=8$

Parity Drop \& Compression Permutation
The Parity Drop module drops the parity bits bits $(8,16,24, \ldots .64)$ from the 64 -bit key \& permutes the rest of the 56 bits according to the parity drop table.

The Compression Permutation Module changes the 56 bits to 48 bits using the key Compression Table, which are used as the key for a round.

