
Input& interaction, Curves and Computer
Animation:
Course Outcome

Explain curve generating concepts and interactive computer
graphics using the OpenGL

S J P N Trust's

Hirasugar Institute of Technology,

Nidasoshi. Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt. of Karnataka and Affiliated to VTU Belagavi.
Accredited at 'A' Grade by NAAC

Programmes Accredited by NBA: CSE, ECE, EEE & ME

Module-5

18CS62

Prof. Rahul Palakar

https://hsit.ac.in/nba-accreditation-status.php

Input and Interaction
Objectives are to learn about:

• Introducing variety of devices that are used for
interaction.

• Learn about two different perspectives from
which the input devices are considered:

1) The way that the physical devices can be
described by the real-world properties,

2) The way that these devices appear to the
application program.

Input Devices
There are two different ways to look at the
devices:

• Physical devices: keyboard or mouse, and
discuss how they work

• Logical devices: the way application programs
look at the devices.

A logical device is characterized by its high-level
interface with the user program, rather than by
its physical characteristics.

Logical Devices
The main characteristics that describes the logical
behavior of an input device:

1) what measurements the device returns to the user
program, and

2) when the device returns those measurements.

In general, there are six classes of logical input devices:

1. String – provides ASCII strings to the user program
(logical implementedvia keyboard)

2. Locator – provides a position in world coordinates to
the user program (pointing devices and conversions
may be needed)

Logical Devices

3. Pick – returns the identifier of an object to the
user program. (pointing devices and conversions
may be needed)

4. Choice – allows users to select one of the distinct
number of options (widgets – menus, scrollbars,
and graphical buttons)

5. Dial – provides analog input to the user program
(widgets –slidebars,…)

6. Stroke – it returns an array of locations (similar
to multiple use of a locator, continuous)

Measure and Trigger
• The manner by which physical and logical input

devices provide input to an application program
can be described in terms of two entities:

1) A measure process, and 2) A device trigger.

The measure of a device is what the device
returns to the user program.

The trigger of a device is a physical input on the
device with which the user can signal the
computer.

Measure and Trigger

Example1:

• The measure of a keyboard is a string,

• The trigger could be the “return” or “enter” key.

Example2:

• For a locator the measure includes the location
and

• The trigger can be the button on the pointing
device.

Input Modes
In addition to multiple types of logical input
devices, we can obtain the measure of a device in
three distinct modes:

1) Request mode,

2) Sample mode, and

3) Event mode.

• It defined by the relationship between the
measure process and the trigger.

• Normally, the initialization of an input device
starts a measure process.

Input Modes
1) Request mode: In this mode the measure of
the device is not returned to the program until
the device is triggered.

• A locator can be moved to different point of the
screen. The Windows system continuously
follows the location of the pointer, but until the
button is depressed, the location will not be
returned.

Input Modes

2) Sample mode: Input is immediate. As soon as
the function call in the user program is
encountered, the measure is returned, hence no
trigger is needed.

• For both of the above modes, the user must
identify which devices is to provide the input.

request_locator(device_id, &measure);

Input Modes

sample_locator(device_id, &measure);

identifier location

• Think of a flight simulator with many input
evices

Input Modes
3) Event mode: The previous two modes are not
sufficient for handling the variety of possible
human-computer interactions that arise in a
modern computing environment. They can be
done in three steps:

1) Show how event mode can be described as
another mode within the measure trigger
paradigm.

2) Learn the basics of client-servers when event
mode is preferred, and

3) Learn how OpenGL uses GLUT to do this.

Input Modes
• In an environment with multiple input devices, each with

its own trigger and each running a measure process.

• Each time that a device is triggered, an event is
generated. The device measure, with the identifier for
the device, is placed in an event queue. The user
program executes the events from the queue.

• When the queue is empty, it will wait until an event
appears there to execute it.

• Another approach is to associate a function called a
callback with a specific type of event. This is the
approach we are taking.

Display Lists

Display List
We can send graphical entities to a display in one of the
two ways:

1) Send the complete description of our objects to the
graphics server.

For a typical geometric primitives, this transfer consists of;
sending vertices, attributes, and primitive types, in
addition to viewing information.

2) Define the object once, then put its description in a
display list. The display list is stored in the server and
redisplayed by a simple function call issued from the client
to the server. This method is called retained mode
graphics.

Disadvantages associated with the use of display
list:

1) Display lists require memory on the server,

2) There is an overhead for creating a display list.

Definition and Execution of Display Lists:

• Each time we wish to draw the box on the server,
we execute the function: glCallList(BOX);

Note that the present state of the system determines which
transformations are applied to the primitives in the display list. Thus,
if we change the model-view or projection matrices between
executions of the display list, the box will appear in different places
or even will no longer appear.

Create one display list

GLuint index = glGenLists(1);

• // compile the display list, store a triangle in it
glNewList(index, GL_COMPILE);

glBegin(GL_TRIANGLES);
glVertex3fv(v0);
glVertex3fv(v1);
glVertex3fv(v2);

glEnd();
glEndList();
... // draw the display list
glCallList(index);
... // delete it if it is not used any more
glDeleteLists(index, 1);

Example:
glMatrixMode(GL_PROJECTION)

for(i = 1; i < 5; i++)

{

glLoadIdentity();

gluOrtho2D(-2.0*i , 2.0*i , -2.0*i , 2.0*i);

glCallList(BOX);

}

• Every time that the glCallList is executed, the
box is redrawn with a different clipping
rectangle.

Programming Event-Driven Input
Using the Pointing Device:

Two types of events are associated with the
pointing device.

• move event: is generated when the mouse is
moved with one of the buttons depressed, for a
mouse the mouse event happens when one of
the buttons is depressed or released.

• passive move event: is generated when the
mouse is moved without a button being hold
down.

The mouse callback function looks like this:
glutMouseFunc(mouse_callback_func)
void mouse_callback_func(int button, int state, int x, int y)
Within the callback function, we define what action we want
to take place if the specified event occurs. There may be
multiple actions defined in the mouse callback function
corresponding to the many possible button and state

combinations.
Using the Pointing Device
• Suppose we want the program to terminate when the left button is

depressed.
void mouse_callback_function(int button, int state, int x, int y)

{
if(button == GLUT_LEFT_BUTTON && state == GLUT_DOWN)
exit(1);

}

Keyboard Events
• We can use the keyboard event as an input

device. Keyboard events are generated when the
mouse is in the window and one of the keys is
pressed.

• In GLUT, there callback for the release of a key.

glutKeyboardFunc(keyboard);

glutKeyboardUpFunc(keyboard);

To use the keyboard to exit a program:
void keyboard(unsigned char key, int x, int y)

{
if(key == ‘q’ || key == ‘Q’)
exit(1);

}

Window Management

GLUT supports both multiple windows and
subwindows of a given window.

id = glutCreateWindow(“Second Window”);

• The returned integer value allows us to select this
window as the current window:

glutSetWindow(id);

Menus
We can use our graphics primitives and our mouse
callback to construct various graphical input
devices.

GLUT provides pop-up menus.

• Using menus involves:

1. Must define the entries in the menu,

2. must link the menu to a particular mouse
button, and

3. must define a callback function corresponding
to each menu entry.

Example – Pop-up menu
glutCreateMenu(demo_menu);
glutAddMenuEntry(“quit”, 1);
glutAddMenuEntry(“increase square size”, 2);
glutAddMenuEntry(“decrease square size”, 3);
glutAttachMenu(GLUT_RIGHT_BUTTON);

The callback function looks like this:
void demo_menu(int id)

{
if(id == 1) exit(1);
else if (id == 2) size = 2*size;
else size = size / 2;
glutPostRedisplay();

}

Hierarchical menu
Suppose we want the main menu that we create to
have two entries:

1) the first one to terminate the program

2) the second to pop-up a submenu.
Sub_menu = glutCreateMenu(size_menu);

glutAddMenuEntry(“increase square size”, 2);

glutAddMenuEntry(“decrease square size”, 3);

glutCreateMenu(top_menu);

glutAddMenuEntry(“quit”, 1);

glutAddSubMenu(“Resize”, sub_menu);

glutAttachMenu(GLUT_RIGHT_BUTTON);

Now we have to write the call back functions, size_menu and
top_menu.

Picking
• Picking is an input operation that allows the user

to identify an object on the display.

• Picking is done by a pointing device, the
information returned to the application program
is not a position.

A pick device is more difficult to implement than the
locator device. There are two ways to do this:

1) selection, involves adjusting the clipping region
and viewport such that we can keep track of which
primitives in a small clipping region are rendered
into a region near the cursor. Creates a hit list.

2) bounding rectangles or extents, this is the
smallest rectangle, aligned with the coordinates
axes, that contains the object.

Rendering Modes:

OpenGL can render in one of three modes selected by
glRenderMode(mode)

1. GL_RENDER: normal rendering to the frame buffer
(default)

2. GL_FEEDBACK: provides list of primitives rendered but
no output to the frame buffer

3. GL_SELECTION: Each primitive in the view volume
generates a hit record that is placed in a name stack
which can be examined later

Selection Mode Functions:

• glSelectBuffer(GLsizei n, GLuint *buff): specifies
name buffer

• glInitNames(): initializes name buffer

• glPushName(GLuint name): push id on name
buffer

• glPopName(): pop top of name buffer

• glLoadName(GLuint name): replace top name on
buffer

id is set by application program to identify objects

Using Selection Mode:

1. Initialize name buffer

2. Enter selection mode (using mouse)

3. Render scene with user-defined identifiers

4. Reenter normal render mode

o This operation returns number of hits

5. Examine contents of name buffer (hit records)
oHit records include id and depth information

void mouse (int button, int state, int x, int y)

{

GLUint nameBuffer[SIZE];

GLint hits;

GLint viewport[4];

if (button == GLUT_LEFT_BUTTON
&& state== GLUT_DOWN)

{ /* initialize the name stack */

glInitNames();

glPushName(0);

glSelectBuffer(SIZE, nameBuffer)

/* set up viewing for selection mode */
glGetIntegerv(GL_VIEWPORT, viewport);

//gets the current viewport
glMatrixMode(GL_PROJECTION);

/* save original viewing matrix */

glPushMatrix();

glLoadIdentity();

/* N X N pick area around cursor */

gluPickMatrix((GLdouble) x, (GLdouble)(viewport[3]-

y), N,N,viewport);

/* same clipping window as in reshape callback */

gluOrtho2D(xmin,xmax,ymin,ymax);

draw_objects(GL_SELECT);

glMatrixMode(GL_PROJECTION);

/* restore viewing matrix */

glPopMatrix();

glFlush();

/* return back to normal render mode */

hits = glRenderMode(GL_RENDER);

/* process hits from selection mode rendering*/

processHits(hits, nameBuff);

/* normal render */

glutPostRedisplay();

}

}
void draw_objects(GLenum mode)
{

if (mode == GL_SELECT)
glLoadName(1);
glColor3f(1.0,0.0,0.0)
glRectf(-0.5,-0.5,1.0,1.0);

if (mode == GL_SELECT)

glLoadName(2);

glColor3f(0.0,0.0,1.0)

glRectf(-1.0,-1.0,0.5,0.5);

}

void processHits(GLint hits, GLUint buffer[])

{

unsigned int i,j;

}

Bezier Curve
• So a Bezier curve is a mathematically defined

curve used in two-dimensional graphic
applications like abode illustrator, inkscape etc.
The curve is defined by four points: the initial
position and the terminating
position i.e P0 and P3 respectively (which are
called “anchors”) and two separate middle
points i.e P1 and P2(which are called “handles”)
in our example. Bezier curves are frequently used
in computer graphics, animation, modeling etc.

How do we Represent Bezier Curves Mathematically

Approximate tangents by using control points are
used to generate curve. The Bezier curve can be
represented mathematically as –

Where Pi is the set of points and represents the
Bernstein polynomials i.e. Blending Function which
are given by –

• Where n is the polynomial order, i is the index,
and u/t is the variable which have values
from 0 to 1.

• For cubic bezier curve order(n) of polynomial
is 3 , index(i) vary from i = 0 to i = n i.e. 3 and u
will vary from 0<=u<=1 .

Cubic Bezier Curve blending function are defined
as :

Bezier Curve Properties
• The first and last control points are

interpolated.

• The tangent to the curve at the first control
point is along the line joining the first and
second control points.

• The tangent at the last control point is along
the line joining the second last and last control
points.

• The curve lies entirely within the convex hull of
its control points.

• They can be rendered in many ways.

• The degree of the polynomial defining the curve
segment is one less that the number of defining
polygon point. Therefore, for 4 control points,
the degree of the polynomial is 3, i.e. cubic
polynomial.

