
Fill area Primitives, 2D Geometric Transformations
and 2D viewing

Prof. Rahul Palakar

S J P N Trust's

Hirasugar Institute of Technology, Nidasoshi.
Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt. of Karnataka, Affiliated to VTU Belagavi .
Accredited at “A” Grade by NAAC and Recognized Under Section 2(f) of UGC Act, 1956.

Module-2

18CS62

Fill-Area Primitives
Another useful construct, besides points, straight-line
segments, and curves, for describing components of
a picture is an area that is filled with some solid color
or pattern.

A picture component of this type is typically referred
to as a fill area or a filled area.

• are used to describe surfaces of solid objects.

• fill regions are usually planar surfaces, mainly
polygons.

• in general, there are many possible shapes for a
region in a picture that we might wish to fill with a
color option

• graphics libraries generally do not support
specifications for arbitrary fill shapes.

• Most library routines require that a fill area be
specified as a polygon.

• most curved surfaces can be approximated
reasonably well with a set of polygon patches.

• Approximating a curved surface with polygon facets is
sometimes referred to as surface tessellation, or
fitting the surface with a polygon mesh.

• Objects described with a set of polygon surface
patches are usually referred to as standard
graphics objects, or just graphics objects.

• In general, we can create fill areas with any
boundary specification, such as a circle or
connected set of spline-curve sections.

Polygon Fill Areas
Mathematically defined, a polygon is a plane figure
specified by a set of three or more coordinate
positions, called vertices, that are connected in
sequence by straight-line segments, called the
edges or sides of the polygon.

• a polygon must have all its vertices within a single
plane and there can be no edge crossings.

Ex: triangles, rectangles, octagons, and decagons.

• any plane figure with a closed-polyline boundary
is called as a polygon, and one with no crossing
edges is referred to as a standard polygon or a
simple polygon.

• For a computer-graphics application, it is possible
that a designated set of polygon vertices do not
all lie exactly in one plane.

• One way to rectify this problem is simply to
divide the specified surface mesh into triangles.

• methods have been devised for approximating a
nonplanar polygonal shape with a plane figure.

Polygon Classifications
Polygon are classified in to two types:

1. Convex polygon.

2. Concave polygon.

Convex polygon: (identification convex polygon)

1. If all interior angles of a polygon are less than or
equal to 180◦, the polygon is convex.

2. Convex polygon is that its interior lies completely on
one side of the infinite extension line of any one of its
edges.

3. If we select any two points in the interior of a convex
polygon, the line segment joining the two points is also
in the interior.

Concave polygon: A polygon that is not convex is called a
concave polygon.

• Implementations of fill algorithms and other graphics
routines are more complicated for concave polygons.

• so it is generally more efficient to split a concave polygon
into a set of convex polygons before processing.

• Some graphics packages, including OpenGL, require all fill
polygons to be convex.

Identifying Concave Polygons
• A concave polygon has at least one interior angle greater

than 180◦.
• The extension of some edges of a concave polygon

will intersect other edges, and some pair of interior
points will produce a line segment that intersects
the polygon boundary.

• If we set up a vector for each polygon edge, then
we can use the cross-product of adjacent edges to
test for concavity.

• All such vector products will be of the same sign
(positive or negative) for a convex polygon.

• Therefore, if some cross-products yield a positive
value and some a negative value, we have a
concave polygon.

• Another way to identify a concave polygon is to
look at the polygon vertex positions relative to the
extension line of any edge. If some vertices are on
one side of the extension line and some vertices
are on the other side, the polygon is concave.

Splitting Concave Polygons
• This can be accomplished using edge vectors and

edge cross-products; or, we can use vertex
positions relative to an edge extension line to
determine which vertices are on one side of this
line and which are on the other.

• we assume that all polygons are in the xy plane.

• we first need to form the edge vectors.

• Given two consecutive vertex positions, Vk and
Vk+1, we define the edge vector between them as

Ek = Vk+1 − Vk

• Next we calculate the cross-products of successive
edge vectors in order around the polygon perimeter.

Ex:

• If the z component of some cross-products is positive
while other cross-products have a negative z
component, the polygon is concave.

• If any cross-product has a negative z component, the
polygon is concave and we can split it along the line
of the first edge vector in the cross-product pair.

Example for identifying type of polygon
using vector cross product

E5

Calculate edge vector using formula Ek = Vk+1 − Vk .

E1=(1,0,0)-(0,0,0) V1=(1,0,0)& V0=(0,0,0)

=(1,0,0)

E2=(2,1,0)-(1,0,0) V2=(2,1,0) & V1=(1,0,0)

=(1,1,0)

Similarly

E3 = (1, −1, 0) E4 = (0, 2, 0)

E5 = (−3, 0, 0) E6 = (0, −2, 0)

where the z component is 0, since all edges are in the
xy plane.

• The cross product Ej × Ek for two successive edge
vectors is a vector perpendicular to the xy plane
with z component equal to EjxEky − EkxEjy:

Calculate cross product using formula:

Ex: E1 X E2=(1,0,0) X (1,1,0)

=(0x0-0x1)i-(1x0-0x1)j-(1x1-0x1)k

=(0-0)i-(0-0)j-(1-0)k

=(0)i-(0)j-(1)k

=(0,0,1)

Similarly

E2 × E3 = (0, 0, −2)

E3 × E4 = (0, 0, 2)

E4 × E5 = (0, 0, 6)

E5 × E6 = (0, 0, 6)

E6 × E1 = (0, 0, 2)

• Since the cross-product E2 × E3 has a negative z
component, we split the polygon along the line of
vector E2.

Example

We can also split a concave polygon using a
rotational method.

• Proceeding counterclockwise around the polygon
edges, we shift the position of the polygon so that
each vertex Vk in turn is at the coordinate origin.

• Then, we rotate the polygon about the origin in a
clockwise direction so that the next vertex Vk+1 is
on the x axis.

• If the following vertex, Vk+2, is below the x axis, the
polygon is concave.

• We then split the polygon along the x axis to form
two new polygons, and we repeat the concave test
for each of the two new polygons.

• These steps are repeated until we have tested
all vertices in the polygon list.

Splitting a Convex Polygon into a Set of Triangles

Once we have a vertex list for a convex polygon, we
could transform it into a set of triangles.

• first define any sequence of three consecutive
vertices to be a new polygon (a triangle).

• The middle triangle vertex is then deleted from
the original vertex list.

• Then the same procedure is applied to this
modified vertex list to strip off another triangle.

• We continue forming triangles in this manner
until the original polygon is reduced to just three
vertices, which define the last triangle in the set.

Example

Example

• One way to determine directional boundary
crossings is to set up vectors along the object
edges (or boundary lines) and along the reference
line.

• Then we compute the vector cross-product of the
vector u, along the line from P to a distant point,
with an object edge vector E for each edge that
crosses the line.

• Assuming that we have a two-dimensional object
in the xy plane, the direction of each vector cross-
product will be either in the +z direction or in the
−z direction.

• If the z component of a cross-product u × E for
a particular crossing is positive, that segment
crosses from right to left and we add 1 to the
winding number.

• Otherwise, the segment crosses from left to
right and we subtract 1 from the winding
number.

Polygon Tables
• the objects in a scene are described as sets of

polygon surface facets.

• graphics packages often provide functions for
defining a surface shape as a mesh of polygon
patches.

• The description for each object includes
coordinate information specifying the geometry
for the polygon facets and other surface
parameters such as color, transparency, and light-
reflection properties.

• the data are placed into tables that are to be used
in the subsequent processing, display, and
manipulation of the objects in the scene.

• These polygon data tables can be organized into
two groups: geometric tables and attribute
tables.

Geometric data tables contain vertex coordinates
and parameters to identify the spatial orientation of
the polygon surfaces.

Attribute information for an object includes
parameters specifying the degree of transparency of
the object and its surface reflectivity and texture
characteristics.

• Geometric data for the objects in a scene are
arranged conveniently in three lists: a vertex
table, an edge table, and a surface-facet table.

• Additional geometric information that is usually
stored in the data tables includes the slope for
each edge and the coordinate extents for polygon
edges, polygon facets, and each object in a scene.

• The more information included in the data tables,
the easier it is to check for errors.

Some of the tests that could be performed by a
graphics package are:

1. that every vertex is listed as an endpoint for at
least two edges.

2. that every edge is part of at least one polygon.

3. that every polygon is closed.

4. that each polygon has at least one shared edge.

5. that if the edge table contains pointers to
polygons.

Plane Equations
Graphics system processes the input data through
several procedures:

1. Transformation of the modeling and world-
coordinate.

2. identification of visible surfaces.

3. application of rendering routines to the
individual surface facets.

For some of these processes, information about
the spatial orientation of the surface components
of objects is needed.

This information is obtained from the vertex
coordinate values and the equations that describe
the polygon surfaces.

• The general equation of a plane is

Ax + By + Cz + D = 0

where (x, y, z) is any point on the plane, and the
coefficients A, B, C, and D(called plane parameters)
are constants describing the spatial properties of
the plane.

• A, B, C, and D can be obtained by solving a set of
three plane equations using the coordinate
values for three noncollinear points in the plane.

For this purpose, we can select three successive
convex-polygon vertices, (x1, y1, z1), (x2, y2, z2),
and (x3, y3, z3), in a counterclockwise order and
solve the following set of simultaneous linear plane
equations for the ratios A/D, B/D, and C/D:

(A/D)xk + (B/D)yk + (C/D)zk = −1, k = 1, 2, 3

• The solution to this set of equations can be
obtained in determinant form, using Cramer’s
rule, as

Expanding the determinants, we can write the
calculations for the plane coefficients in the form.

• When vertex coordinates and other information
are entered into the polygon data structure, values
for A, B, C, and D can be computed for each
polygon facet and stored with the other polygon
data.

Example

• coefficient matrix D= 1 2 3

3 1 -3

-3 4 7

• X – matrix A = -5 2 3

4 1 -3

-7 4 7

• Y – matrix B= 1 -5 3

3 4 -3

-3 -7 7

• Z – matrix C= 1 2 -5

3 1 4

-3 4 7

• Determinants of each matrix

D = 40 A =-40 B =40 C =-80

Front and Back Polygon Faces

• The side of a polygon that faces into the object
interior is called the back face.

• The visible, or outward, side is the front face.

• Any point that is not on the plane and that is
visible to the front face of a polygon surface
section is said to be in front of (or outside) the
plane, and, thus, outside the object.

• And any point that is visible to the back face of
the polygon is behind (or inside) the plane.

• For any point (x, y, z) not on a plane with
parameters A, B, C, D, we have

Ax + B y + C z + D != 0

• if Ax + B y + C z + D < 0, the point (x, y, z) is behind
the plane

• if Ax + B y + C z + D > 0, the point (x, y, z) is in
front of the plane

• These inequality tests are valid in a right-handed
Cartesian system, provided the plane parameters
A, B, C, and D were calculated using coordinate
positions selected in a strictly counterclockwise
order when viewing the surface along a front-to-
back direction.

• any point outside (in front of) the plane of the
shaded polygon satisfies the inequality x−1 > 0,
while any point inside (in back of) the plane has
an x-coordinate value less than 1.

• Orientation of a polygon surface in space can be
described with the normal vector for the plane
containing that polygon.

• This surface normal vector is perpendicular to the
plane and has Cartesian components (A, B, C),
where parameters A, B, and C are the plane
coefficients calculated.

• DIRECTION IS from the back face of the polygon to the front face.

• The elements of a normal vector can also be
obtained using a vector crossproduct calculation.

• we again select any three vertex positions,V1,V2,
and V3, taken in counterclockwise order when
viewing from outside the object toward the
inside.

• Form two vectors, one from V1 to V2 and the
second from V1 to V3, we calculate N as the
vector cross-product:

N = (V2 − V1) × (V3 − V1)

This generates values for the plane parameters A, B,
and C.

• The plane equation can be expressed in vector
form using the normal N and the position P of any
point in the plane as:

N· P = −D

Fill-Area Attributes

Most graphics packages limit fill areas to polygons
because they are described with linear equations.

• Fill Styles

We can display a region with a single color, a
specified fill pattern, or in a “hollow” style by
showing only the boundary of the region.

OpenGL Fill-Area Attribute Functions
We generate displays of filled convex polygons in
four steps:

1. Define a fill pattern.

2. Invoke the polygon-fill routine.

3. Activate the polygon-fill feature of OpenGL.

4. Describe the polygons to be filled.

• we use a 32 × 32 bit mask.

• A value of 1 in the mask indicates that the
corresponding pixel is to be set to the current
color, and a 0 leaves the value of that frame-
buffer position unchanged.

OpenGL Fill-Pattern Function
• To fill the polygon with a pattern in OpenGL, we use

a 32 × 32 bit mask.

• A value of 1 in the mask indicates that the
corresponding pixel is to be set to the current color,
and a 0 leaves the value of that frame-buffer
position unchanged.

example,

• GLubyte fillPattern [] = { 0xff, 0x00, 0xff, 0x00, ... };

• The bits must be specified starting with the bottom
row of the pattern, and continuing up to the
topmost row (32) of the pattern.

• glPolygonStipple (fillPattern);

• glEnable (GL_POLYGON_STIPPLE);

• glDisable (GL_POLYGON_STIPPLE);

SCANLINE POLYFILL ALGORITHM

Assume:

Pixels are not at the center of the grid, but at the
intersection of two orthogonal scan lines (on the
grid intersection points).

Conceptual Scan Line Polygon Fill Algorithm:
• Find minimum enclosed rectangle
• No. of scan lines = Ymax – Ymin + 1
• For each scan line do

•Obtain intersection points of scan line with polygon edges.
•Sort intersections from left to right

• Form pairs of intersections from the list§
• Fill within pairs
• Intersection points are updated for each scan line
• Stop when scan line has reached Ymax

Two different cases of scan lines passing through the vertex
of a polygon

CASE-1:

• Add one more intersection: 3 -> 4

1 2 3 4

CASE-2:

How?

What is the difference between the intersection
of the scan lines Y and Y’, with the vertices?

For Y, the edges at the vertex are on the same side
of the scan line.

Whereas for Y’, the edges are on either/both sides
of the vertex.

In this case, we require additional processing.

Vertex counting in a scan line

• Traverse along the polygon boundary clockwise
(or counter- clockwise) and

• Observe the relative change in Y-value of the
edges on either side of the vertex (i.e. as we
move from one edge to another).

Check the condition:

• If end-point Y values of two consecutive edges
monotonically increase or decrease, count the
middle vertex as a single intersection point for the
scan line passing through it.

• Else the shared vertex represents a local
maximum (or minimum) on the polygon
boundary. Increment the intersection count.

To implement the above:

• Shorten the lower edge to ensure only one
intersection point at the vertex.

Scan line Poly Fill Algorithm

Intersect scan line with polygon edges.

Fill between pairs of intersections

Basic Structure:

For y = Ymin to Ymax

1) intersect scan line with each edge

2) sort intersections by increasing X

3) fill pairwise (int0 -> int1, int2 -> int3, ...)

4) Update intersections for next scan line

This is the basic structure, but we are going to
handle some special cases to make sure it works
correctly and fast.

Two important features of scan line-based polygon
filling are:

• scanline coherence - values don't change much
from one scanline to the next – the coverage (or
visibility) of a face on one scanline typically differs
little from the previous one.

• edge coherence - edges intersected by scanline
“i” are typically intersected by scanline “i+1”.

Data Structure Used (typical example):

SET (Sorted Edge table):

• Contains all information necessary to process the
scanlines efficiently.

• SET is typically built using a bucket sort, with a
many buckets as there are scan lines.

• All edges are sorted by their Ymin coordinate,
with a separate Y bucket for each scanline.

• Within each bucket, edges sorted by increasing X
of Ymin point.

• Only non-horizontal edges are stored. Store
these edges at the scanline position in the SET.

Edge structure

(sample record for each scanline):

(Ymax, Xmin, ΔX/ΔY, pointer to next edge)

AEL (Active edge List):

• Contains all edges crossed by a scanline at the
current stage of iteration.

• This is a list of edges that are active for this
scanline, sorted by increasing X intersections.

• Also called: Active Edge Table (AET).

• What are the vales at scan line 5

Two-Dimensional Geometric Transformations

Operations that are applied to the geometric
description of an object to change its position,
orientation, or size are called geometric
transformations.

Geometric transformations, on the other hand, can
be used to describe how objects might move
around in a scene during an animation sequence or
simply to view them from another angle.

Fill area Primitives, 2D Geometric Transformations
and 2D viewing

S J P N Trust's

Hirasugar Institute of Technology, Nidasoshi.
Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt. of Karnataka and Affiliated to VTU Belagavi.
Accredited at 'A' Grade by NAAC

Programmes Accredited by NBA: CSE, ECE, EEE & ME

Module-2

18CS62

Prof. Rahul Palakar

https://hsit.ac.in/nba-accreditation-status.php

2D Pivot(Arbitrary) point rotation

y

yshx

y

xsh
Sh

xx

x
10

1

Shear in x:

yxsh

x

y

x

sh
Sh

yy

y .1

01

Shear in y:

Raster Methods for Geometric Transformations

OpenGL Raster Transformations

• Copying pixels from one buffer area to another
can be accomplished with

glCopyPixel(xmin, ymin, width, height,GL_COLOR);

• GL_COLOR says what is to be copied (color
values)

• Copied to refresh buffer at same loc

To read into an array:

glReadPixels(xmin, ymin, width, height,

GL_RGB, GL_UNSIGNED_BYTE, colorArray);

• To do a 90 degree rotation could rearrange rows
and columns of array, then place back to refresh
buffer at current raster position

glDrawPixels(width, height, GL_RGB,
GL_UNSIGNED_BYTE, colorArray);

To scale an area use:

glPixelZoom(sx,sy);

• where sx and sy are any nonzero floating-point
values. (Negative values cause reflections).

Then use glCopyPixels or glDrawPixels to
get/draw the pixels with the given scaling.

OpenGL Transformations Functions
Translation

Offset (tx, ty, tz) is applied to all subsequent
coordinates. Effectively moves the origin of
coordinate system.

x' = x + tx , y' = y + ty, z' = z + tz

• OpenGL function is glTranslate

glTranslatef(tx, ty, tz);

Rotation
• Expressed as rotation through angle θ about an

axis direction (x,y,z) .
• OpenGL function – glRotatef (θ, x,y,z). So
glRotatef(30.0, 0.0, 1.0, 0.0) rotates by 30° about y-
axis.
• Note carefully: – glRotate wants angles in

degrees. C math library (sin, cos etc.) wants angles
in radians.

degs = rads * 180/π; rads = degs * π / 180
• Positive angle? Right hand rule: if the thumb

points along the vector of rotation, a positive
angle has the fingers curling towards the palm.

Scaling

• Multiply subsequent coordinates by scale factors
sx, sy, sz. (Note: these are not a point, not a
vector, just 3 numbers)

x' = sx * x , y' = sy * y, z' = sz * z

• Often sx = sy = sz for a uniform scaling effect. If
the factors are different, the scaling is called
anamorphic.

• OpenGL function – glScale For example,

glScalef(0.5,0.5,0.5);

• would cause all objects drawn subsequently to be
half as big.

Thank you

