SJP N Trust's
Hirasugar Institute of Technology, Nidasoshi.

Inculcating Values, Promoting Prosperity
Approved by AICTE, Recognized by Govt. of Karnataka, Affiliatedto VTU Belagavi.
Accredited at “A” Grade by NAAC and Recognized Under Section 2(f) of UGC Act, 1956.

Module-2
18CS62

Fill area Primitives, 2D Geometric Transformations
and 2D viewing

Prof. Rahul Palakar

Fill-Area Primitives

Another useful construct, besides points, straight-line
segments, and curves, for describing components of

a picture is an area that is filled with some solid color
or pattern.

A picture component of this type is typically referred
to as a fill area or a filled area.

e are used to describe surfaces of solid objects.

* fill regions are usually planar surfaces, mainly
polygons.

* in general, there are many possible shapes for a
region in a picture that we might wish to fill with a
color option

(a) (b)

graphics libraries generally do not support
specifications for arbitrary fill shapes.

Most library routines require that a fill area be
specified as a polygon.

most curved surfaces can be approximated
reasonably well with a set of polygon patches.

Approximating a curved surface with polygon facets is
sometimes referred to as surface tessellation, or
fitting the surface with a polygon mesh.

(c)

* Objects described with a set of polygon surface
patches are usually referred to as standard
graphics objects, or just graphics objects.

* In general, we can create fill areas with any
boundary specification, such as a circle or
connected set of spline-curve sections.

Polygon Fill Areas

Mathematically defined, a polygon is a plane figure
specified by a set of three or more coordinate
positions, called vertices, that are connected in
sequence by straight-line segments, called the
edges or sides of the polygon.

* apolygon must have all its vertices within a single
plane and there can be no edge crossings.

Ex: triangles, rectangles, octagons, and decagons.

* any plane figure with a closed-polyline boundary
is called as a polygon, and one with no crossing
edges is referred to as a standard polygon or a
simple polygon.

* For a computer-graphics application, it is possible
that a designated set of polygon vertices do not
all lie exactly in one plane.

* One way to rectify this problem is simply to
divide the specified surface mesh into triangles.

* methods have been devised for approximating a
nonplanar polygonal shape with a plane figure.

Polygon Classifications

Polygon are classified in to two types:

1. Convex polygon.

2. Concave polygon.

Convex polygon: (identification convex polygon)

1. If all interior angles of a polygon are less than or
equalto 180, the polygon is convex.

2. Convex polygon is that its interior lies completely on
one side of the infinite extension line of any one of its

edges.
3. If we select any two points in the interior of a convex

polygon, the line segment joining the two points is also
in the interior.

Concave polygon: A polygon that is not convex is called a
concave polygon.

(a) (b

* Implementations of fill algorithms and other graphics
routines are more complicated for concave polygons.

* so it is generally more efficient to split a concave polygon
into a set of convex polygons before processing.

 Some graphics packages, including OpenGL, require all fill
polygonsto be convex.

Identifying Concave Polygons

A concave polygon has at least one interior angle greater
than 180°.

The extension of some edges of a concave polygon
will intersect other edges, and some pair of interior
points will produce a line segment that intersects
the polygon boundary.

If we set up a vector for each polygon edge, then
we can use the cross-product of adjacent edges to
test for concavity.

All such vector products will be of the same sign
(positive or negative) for a convex polygon.

Therefore, if some cross-products yield a positive
value and some a negative value, we have a
concave polygon.

VA
\'.I.:l'-".._..‘.q Il[l:l X]':-..:|_:-"' |..:|

k- . T
E, (E; < E;), =0
V, : .

(E; % E,), <0

E. (E,; =< E;).=0
\1? 4 AL

E, I (Es< E)).=0
' E, (E;x E), >0
» a , - B N

 Another way to identify a concave polygon is to
look at the polygon vertex positions relative to the
extension line of any edge. If some vertices are on
one side of the extension line and some vertices
are on the other side, the polygon is concave.

Splitting Concave Polygons

This can be accomplished using edge vectors and
edge cross-products; or, we can use vertex
positions relative to an edge extension line to
determine which vertices are on one side of this
line and which are on the other.

we assume that all polygons are in the xy plane.
we first need to form the edge vectors.

Given two consecutive vertex positions, V, and
V.., we define the edge vector between them as

E,= Vi — Vi

* Next we calculate the cross-products of successive
edge vectorsin order around the polygon perimeter.

EX:

b

.I.,'

e

— I;_-L.,B-_ — -'i'.-B:,l.] I = I:.-_i.l B'_ — -_l'.B.I) ,I' L I;-_l.l -B:,l — -_L\IB.I) k

* |If the zcomponent of some cross-products is positive
while other cross-products have a negative z
component, the polygon is concave.

* |f any cross-product has a negative z component, the
polygon is concave and we can split it along the line
of the first edge vector in the cross-product pair.

Example for identifying type of polygon
using vector cross product

Calculate edge vector using formula E, =V,,, - V,.
E1=(1,0,0)-(0,0,0) V1=(1,0,0)& V0=(0,0,0)
=(1,0,0)
E2=(2,1,0)-(1,0,0) V2=(2,1,0) & V1=(1,0,0)
=(1,1,0)

Similarly
E3=(1,-1,0) E4 = (0, 2, 0)
E5=(-3, 0, 0) E6=(0,-2,0)

where the z component is 0, since all edges are in the
xy plane.

* The cross product E; x E, for two successive edge
vectors is a vector perpendicular to the xy plane

with z component equal to E,E,, - E\,E;,:

Calculate cross product using formula:
.- 7 7 T
|t.{|||.B - .-i.B”l JI - ||..-il| .B - .-1B| | J T |u'-i.| .B” - --LII'Bl | ;ll

Ex: E1 X E2=(1,0,0) X (1,1,0)
=(0x0-0x1)i-(1x0-0x1)j-(1x1-0x1)k
=(0-0)i-(0-0)j-(1-0)k
=(0)i-(0)j-(1)k
=(0,0,1)

Similarly
E2xE3=(0,0, -2)
E3xE4=(0,0, 2)
E4xE5=(0, 0O, 6)
E5xE6=(0, 0, 6)
E6xE1=(0,0, 2)

* Since the cross-product E2 x E3 has a negative z
component, we split the polygon along the line of
vector E2.

Example

Q)Use cross product to find normal vector of a polygon with the
following vertices: (0.2, -0.4, 0.2), (0.6, 0.7, 0.5), (-0.3, 0.4, -0.3),
(-0.4,-0.3,-0.4)

Answer:

Ek =Vk+1 - Vk

El =(al, a2, a3), E2=(b1, b2, b3)

El x E2 =(a2b3 — a3b2, a3bl — alb3, alb2 — a2bl)

V1=(0.2,-04,0.2), V2= (0.6,0.7, 0.5), V3 = (-0.3, 0.4, -0.3)

F1=V2-V1

— (0.6,0.7,0.5) - (0.2,-0.4, 0.2)

~ (04, 1.1,0.3)

F2=V3-V2

—(-0.3,0.4,-0.3) - (0.6, 0.7, 0.5)

~ (0.9, -0.3,-0.8)

E1 x E2 = (1.1*-0.8-0.3*-0.3, 0.3*-0.9-0.4*-0.8, 0.4*-0.3-1.1*-0.9) = (-0.79, 0.05, 0.87)

We can also split a concave polygon using a
rotational method.

* Proceeding counterclockwise around the polygon
edges, we shift the position of the polygon so that
each vertex V. in turn is at the coordinate origin.

* Then, we rotate the polygon about the origin in a
clockwise direction so that the next vertex V,, is
on the x axis.

* If the following vertex, V,,,, is below the x axis, the
polygon is concave.

* We then split the polygon along the x axis to form
two new polygons, and we repeat the concave test
for each of the two new polygons.

* These steps are repeated until we have tested
all vertices in the polygon list.

2l

Splitting a Convex Polygon into a Set of Triangles

Once we have a vertex list for a convex polygon, we
could transform it into a set of triangles.

* first define any sequence of three consecutive
vertices to be a new polygon (a triangle).

* The middle triangle vertex is then deleted from
the original vertex list.

* Then the same procedure is applied to this
modified vertex list to strip off another triangle.

* We continue forming triangles in this manner
until the original polygon is reduced to just three
vertices, which define the last triangle in the set.

Example

o V,,V,,V3,Vy, Ve, Vs

o Vy,V,,V; = 15t triangle
8V, Vs,V Ve, Vi

o Vy,V5,V, = 2" triangle
o V,,V,, Vs, Vs

o V,,V,,Vs = 3" triangle
o Vy,Vs, Ve = 41 triangle

Inside-Outside Tests

» Itis not clear which regions of the xyplane we
should call interior and which regions we should
designate as exterior for a complex polygon with

Intersecting regions.

» algorithms:
d odd-even rule
Jd nonzero winding-number rule

odd-even rule

» Draw a reference linefrom any position to a
distant point outside a closed polyline

» The line must not pass through any endpoints

» Count the number of line segments crossed along
this line

» If the number is odd then the
region considered to be
interior

» Otherwise, the region is
exterior Odd-Even Rule

Nonzero Winding Number Rule :

Another method of finding whether a point is inside or outside
of the polygon. In this every point has a winding number, and
the interior points of a two-dimensional object are defined to
be those that have a nonzero value for the winding number.

Initializing the winding number to 0.

Imagine a line drawn from any position P to a distant point
beyond the coordinate extents of the object.

Count the number of edges that cross the line in each
direction. We add 1 to the winding number every time we
intersect a polygon edge that crosses the line from right to
left, and we subtract 1 every time we intersect an edge that
crosses from left to right.

. If the winding number i1s nonzero, then

P 1s defined to be an interior point
Else
P 1s taken to be an exterior point.

Nonzero Winding-Number Rule

Example

Q) Use nonzero winding number rule to determine the
interior and exterior regions of the following polygon ?

Answer:

Interior

luterior Interior
WNs=].0=] WN=1.0=]

Iaterior
WN=2.0=]
Exterior
WN=].1=0
Iuterior
WN=1.0=]

Interior
WN=0.]=.]

* One way to determine directional boundary
crossings is to set up vectors along the object
edges (or boundary lines) and along the reference
line.

* Then we compute the vector cross-product of the
vector u, along the line from P to a distant point,
with an object edge vector E for each edge that
crosses the line.

* Assuming that we have a two-dimensional object
in the xy plane, the direction of each vector cross-
product will be either in the +z direction or in the
-z direction.

e |f the z component of a cross-product u x E for
a particular crossing is positive, that segment
crosses from right to left and we add 1 to the
winding number.

 Otherwise, the segment crosses from left to
right and we subtract 1 from the winding
number.

Polygon Tables

* the objects in a scene are described as sets of
polygon surface facets.

e graphics packages often provide functions for
defining a surface shape as a mesh of polygon
patches.

* The description for each object includes
coordinate information specifying the geometry
for the polygon facets and other surface
parameters such as color, transparency, and light-
reflection properties.

* the data are placed into tables that are to be used
in the subsequent processing, display, and
manipulation of the objects in the scene.

* These polygon data tables can be organized into
two groups: geometric tables and attribute
tables.

Geometric data tables contain vertex coordinates
and parameters to identify the spatial orientation of
the polygon surfaces.

Attribute information for an object includes
parameters specifying the degree of transparency of
the object and its surface reflectivity and texture
characteristics.

* Geometric data for the objects in a scene are
arranged conveniently in three lists: a vertex
table, an edge table, and a surface-facet table.

V:li X1 M1 D Ey Vi. Va 8- E,, E; E5
Vi X3.¥3. 25 ! Va. Vs S: ELE,.E.FE,
Vi x5, %325 F L
Vi X4 ¥4 Z4 F Vi Vy
Vs X5.¥s.25 ! Va. Vs
Ee Vs V'

* Additional geometric information that is usually
stored in the data tables includes the slope for
each edge and the coordinate extents for polygon
edges, polygon facets, and each object in a scene.

* The more information included in the data tables,
the easier it is to check for errors.

Some of the tests that could be performed by a
graphics package are:

1. that every vertex is listed as an endpoint for at
least two edges.

2. that every edge is part of at least one polygon.

3. that every polygon is closed.
4. that each polygon has at least one shared edge.

5. that if the edge table contains pointers to
polygons.

Plane Equations

Graphics system processes the input data through
several procedures:

1. Transformation of the modeling and world-
coordinate.

2. identification of visible surfaces.

3. application of rendering routines to the
individual surface facets.

For some of these processes, information about
the spatial orientation of the surface components
of objects is needed.

This information is obtained from the vertex
coordinate values and the equations that describe
the polygon surfaces.

 The general equation of a plane is
A+B,+(C,+D=0

where (x, y, z) is any point on the plane, and the

coefficients A, B, C, and D(called plane parameters)

are constants describing the spatial properties of
the plane.

* A, B, C, and D can be obtained by solving a set of
three plane equations using the coordinate
values for three noncollinear points in the plane.

For this purpose, we can select three successive
convex-polygon vertices, (x1, y1, z1), (x2, y2, z2),
and (x3, y3, z3), in a counterclockwise order and
solve the following set of simultaneous linear plane
equations for the ratios A/D, B/D, and C/D:

(A/D)x, .+ (B/D)y, + (C/D)z = -1,

k=1,2,3

* The solution to this set of equations can be
obtained in determinant form, using Cramer’s

rule, as
ﬂ:

I wn =z
I w» =
1 3 z3

X1 y] 1

xn w1
oy 1

X1 1 Z1 |

B =|x 1 Eg:

x1 1 za|
X1 W
D=—|x2 1 =
X3 13 23

Expanding the determinants, we can write the
calculations for the plane coefficients in the form.

A=nn-n)+pEz-2)+pE-2)
B = N —-n)+nx-x)+nx-xn
C=x(p -1 +x00s-1n)+x01 -1
D = -x1(pz - pm) — (B2 - nz3) - B(nzn - pu)

* When vertex coordinates and other information
are entered into the polygon data structure, values
for A, B, C, and D can be computed for each

polygon facet and stored with the other polygon
data.

Example

x+2yv4+3s — —5H
Ix + v—3=z — 4
Ix Ay T== 7
e coefficientmatrix D= |1 2 3
31-3
34 7
 X— matrix A =5 23
4 1 -3
-7 4 7

1 53
3 4
-3

-3

-7 7

-5

1 4

3

-3 4 7

B=

e Y- matrix

C=11 2

e 7Z— matrix

 Determinants of each matrix
D=40 A =40 B =40 C =-80

Front and Back Polygon Faces

The side of a polygon that faces into the object
interior is called the back face.

The visible, or outward, side is the front face.

Any point that is not on the plane and that is
visible to the front face of a polygon surface
section is said to be in front of (or outside) the
plane, and, thus, outside the object.

And any point that is visible to the back face of
the polygon is behind (or inside) the plane.

For any point (x, y, z) not on a plane with
parameters A, B, C, D, we have

Ax+By+Cz+D!=0

ifAx+By+Cz+D<0, the point (x, y, z) is behind
the plane

ifAx+ By+ Cz+ D >0, the point (x, y, z) is in
front of the plane

These inequality tests are valid in a right-handed
Cartesian system, provided the plane parameters
A, B, C, and D were calculated using coordinate
positions selected in a strictly counterclockwise
order when viewing the surface along a front-to-
back direction.

L

e any point outside (in front of) the plane of the
shaded polygon satisfies the inequality x-1 > O,
while any point inside (in back of) the plane has
an x-coordinate value less than 1.

* Orientation of a polygon surface in space can be
described with the normal vector for the plane
containing that polygon.

¥

N=(A.B.C)

-
— X
o
Z

* This surface normal vector is perpendicular to the
plane and has Cartesian components (A, B, (),
where parameters A, B, and C are the plane
coefficients calculated.

DIRECTION IS from the back face of the polygon to the front face.

* The elements of a normal vector can also be
obtained using a vector crossproduct calculation.

 we again select any three vertex positions,V1,V2,
and V3, taken in counterclockwise order when
viewing from outside the object toward the
inside.

* Form two vectors, one from V1 to V2 and the
second from V1 to V3, we calculate N as the
vector cross-product:

N=(V2-V1)x(V3-V1)

This generates values for the plane parameters A, B,
and C.

* The plane equation can be expressed in vector
form using the normal N and the position P of any
point in the plane as:

N-P=-D

Fill-Area Attributes

Most graphics packages limit fill areas to polygons
because they are described with linear equations.

* Fill Styles

We can display a region with a single color, a
specified fill pattern, or in a “hollow” style by
showing only the boundary of the region.

Hollow

Patterned

OpenGL Fill-Area Attribute Functions

We generate displays of filled convex polygons in
four steps:

1. Define a fill pattern.

2. Invoke the polygon-fill routine.

3. Activate the polygon-fill feature of OpenGL.
4. Describe the polygons to be filled.

* we use a 32 x 32 bit mask.

e A value of 1 in the mask indicates that the
corresponding pixel is to be set to the current
color, and a O leaves the value of that frame-
buffer position unchanged.

OpengGL Fill-Pattern Function

* To fill the polygon with a pattern in OpenGL, we use
a 32 x 32 bit mask.

* A value of 1 in the mask indicates that the
corresponding pixel is to be set to the current color,
and a 0 leaves the value of that frame-buffer
position unchanged.

example,

* GLubyte fillPattern [] = { Oxff, 0x00, Oxff, 0x00, ... };

* The bits must be specified starting with the bottom
row of the pattern, and continuing up to the
topmost row (32) of the pattern.

* glPolygonStipple (fillPattern);
e glEnable (GL_POLYGON_STIPPLE);
e glDisable (GL_POLYGON_STIPPLE);

SCANLINE POLYFILL ALGORITHM

Assume:

Pixels are not at the center of the grid, but at the

intersection of two orthogonal scan lines (on the
grid intersection points).

Conceptual Scan Line Polygon Fill Algorithm:

* Find minimum enclosed rectangle

* No.ofscanlines=Y__ —-Y..,+1

* Foreachscanline do
eObtain intersection points of scan line with polygon edges.
eSort intersections from left to right

* Form pairs of intersections from the list§

* Fill within pairs

* Intersection points are updated for each scan line

e Stop when scan line has reached Y

max

Two different cases of scan lines passing through the vertex
of a polygon

CASE-1:

e Add one more intersection: 3 -> 4

CASE-2:

Add one more
intersection:

5->6

How?

Do not add
intersection,
keep 4;

What is the difference between the intersection
of the scan lines Y and Y’, with the vertices?

For Y, the edges at the vertex are on the same side
of the scan line.

Whereas for Y’, the edges are on either/both sides
of the vertex.

In this case, we require additional processing.

Vertex counting in a scan line

* Traverse along the polygon boundary clockwise
(or counter- clockwise) and

* Observe the relative change in Y-value of the
edges on either side of the vertex (i.e. as we
move from one edge to another).

Check the condition:

* If end-point Y values of two consecutive edges
monotonically increase or decrease, count the
middle vertex as a single intersection point for the
scan line passing through it.

 Else the shared vertex represents a /local
maximum (or minimum) on the polygon
boundary. Increment the intersection count.

To implement the above:

 Shorten the lower edge to ensure only one
intersection point at the vertex.

Before
processing After Before After_
processing Processing processing

Scan line Poly Fill Algorithm

Intersect scan line with polygon edges.

Fill between pairs of intersections

Basic Structure:

Fory=Y_..,toY_ .,

1) intersect scan line with each edge

2) sort intersections by increasing X

3) fill pairwise (int0 -> intl, int2 -> int3, ...)
4) Update intersections for next scan line

This is the basic structure, but we are going to
handle some special cases to make sure it works
correctly and fast.

Two important features of scan line-based polygon
filling are:

* scanline coherence - values don't change much
from one scanline to the next — the coverage (or

visibility) of a face on one scanline typically differs
little from the previous one.

 edge coherence - edges intersected by scanline
“i” are typically intersected by scanline “i+1".

(xk+11r Yk+ 1).
L

(Ve = Y + 1)

. (Y,) Slope of the line L
(Xr Yy) (polygon edge) is:

If, Y,, = Y, + 1;

Then, X, .,=X . +1/m

Thus the intersection for the next scanline
is obtained as:

X, 41 = round (X, + 1/m), where m = AY/AX.

Data Structure Used (typical example):
SET (Sorted Edge table):

Contains all information necessary to process the
scanlines efficiently.

SET is typically built using a bucket sort, with a
many buckets as there are scan lines.

All edges are sorted by their Y . coordinate,
with a separate Y bucket for each scanline.

Within each bucket, edges sorted by increasing X
of Y . point.

Only non-horizontal edges are stored. Store
these edges at the scanline position in the SET.

Edge structure

(sample record for each scanline):

(Y, a0 Ximins AX/AY, pointer to next edge)
AEL (Active edge List):

* Contains all edges crossed by a scanline at the
current stage of iteration.

* This is a list of edges that are active for this
scanline, sorted by increasing X intersections.

* Also called: Active Edge Table (AET).

Bucket-sorted Edge Table
for Polygon

How to implement this using integer arithmetic ?
Take an example: m = AY/AX = 7/3.

Set Counter, C=0

and counter-increment, AC = AX = 3;

For the next scan lines,
successive values of Care: 3, 6, 9.

Thus only at scanline C >= AY.

Then, X, is incremented by 1 only at 3
scanlineandsetas:C&€¢ C-AY=9-7 = 2.

Repeat the above step(s) till Y, reaches Y___, .

After more scanlines: 2 +3+3=8; 8-7=1;
After morescanlines: 1+ 3 + 3 = 7;

= sv15% = 219 HHEI S

Set Counter,
counter-increment, AC = min (AX, AY) = 2 (= AY);
Update for AB (-ve m), when Y, = 2; Y = 1:

For the next three left (-ve) vertical (Y) scan lines,
successive valuesofCare: 2,4,6; X=7-3=4;

Thus only at 3 ijteration: C >= AX.

Then, Y is incremented by 1 only at 3" scanline
andset: C€¢C-AX=6-5=1; Y=1+1=2;

S o DGR
AB

o = 1135 = /) BHEI S

Set Counter,
counter-increment, AC = min (AX, AY) = 4 (= AY);

Update for BC (+ve m), when Y, = 2; Y = 1:
For the next two right vertical (Y) scan lines,
successive valuesofCare:4,8;, X=7+2=09;

Thus only at 2" jteration: C >= AX.
Then, Yis incremented by 1 only at 2"d scanline
andset:C&€C-AX=8-6=2; Y=1+1=2;

St Y =Y,.
s e HBEHE
> BC
Eﬂl 59 F &

: AB BC
m=sv/ix = a6 DI » DIOEAE

Counter (from earlier iteration), C=2; and

counter-increment, AC = min (AX, AY) = 4 (= AY);

Update for BC (+ve m), when Y, = 3; Y = 2:
For the next right vertical (Y) scan line, the
successive valueof Cis:6; X =9+ 1=10;

Thus only at 1st iteration: C >= AX.
Then, Yis incremented by 1 only at 1st scanline

andset:C&€C-AX=6-6 ' Y=2+1=3;

e GEIEN
. BC
HHI Hﬂll
<< - Is this OK ??

After post-processing (update from SET) at 37 scanline:

FA BC
920/ 5 104 | h
* What are the vales at scanline 5

FA BC
RE0E: BN

o120 {2t 202

OpenGL Polygon Fill-area Functions

® In OpenGL, specifying fill polygons are similar to those

for describing a point or 901}-*]1'1:1&.

ng egin(SYMBOLIC CONSTANT) //setred color
glColor3f(1.0, 0.0, 0.0);

/ /specify 2D square
glVertex*(...); glBegin(GL_QUADS);
glVertex2i(-2, 2);
glVertex2i(2, 2);
glVertex2i(2, -2);
glVertex2i(-2, -2};

glEnd();

glVertex*®(...);

glEnd();

* By default, a polygon interior is displayed in a solid

color, determined by the current color settings

Define Rectangle in OpenGL

* A special rectangle function of DPE]]GL (x2,¥2)3) @D

glRect*" (x1,v1,x2,v2);
)) ' D(xL,y1)
' the coordinate data type: i (integer), s (short), f (float),d (double), and v

(vector)
. . glR@cti (200, 100, 50, 250); intvertex! []= { 200, 100 };
I int vertex2 [] = { 50, 250 };

o I T gleCtV{ vertexl, vertexl);

ML 1M 3N

This function is equivalent to :

glBegin (GL_POLYGON); glBegin (GL_QUADS);
glVertex2* (x1, y1); and glVertex2* (x1, y1);
glVertex2* (x2, y1); gl‘vﬂtﬂ?‘: (x2, y1);
slVertex2* (x2, y2); gliertex2* (x2, y2);
alVertex?* (x1, v2): glVertex2* (x1, y2);

¢lEnd (); ? glind ()

@ g]Rect* is more efficient than using the above glVertex speciﬁcations
N

Six OpenGL Polygon Fill Primitives

To use the symbolic constant in the glEegin TN -
function, along with a list of glVertex commands. . ‘ }
GL POLYGON - closed P]{}}Fggn o o

GL_TRIANGLES -- disconnected triangles . .
GL TRIANGLE STRIP -- connected triangles an—y =
GL_TRIANGLE_FAN - triangles sharing ‘ ‘
common point . LT :
GL_QUADS -- disconnected quadrilaterals u
GL_QUAD_STRIP -- connected quadrilaterals NN,

Same vertices in different order, and with different symbolic constant

OpenGL Polygon Fill-area Functions

¢ GL_POLYGON and GL_TRIANGLES

] ™] s
pl . ; pl { } 9‘
P2 P P [
(a) (b

glBegin (GL_POLYGON); glBegin (GL_TRIANGLES);
glVertex2iv (pl); glVertex2iv (pl);
glVertex2iv (p2); glVertex2iv (p2);
glVertex2iv (p3); glVertex2iv (p6);
glVertex2iv (p4); glVertex2iv (p3);
glVertex2iv (p5); glVertex2iv (p4);
glVertex2iv (p6); glVertex2iv (p5);

glEnd (); glEnd ();

The orders of the vertices in (a) and (b) between the glBegin()
and glEnd() pair are different.

'\.‘_,'

'\‘:'

'\I‘:’

OpenGL Polygon Fill-area Functions

* GL TRIANGLE_STRIP

pi p5 glBegin (GL_TRIANGLE_STRIP);
glVertexZiv (pl); -= n=1
glVertex2iv (pl); -= n=1

o glVertex2iv (p6); -= n=3
glVertexZiv (p3); -= n=4
glVertex2iv (p3);
glVertex2iv (p4);

p2 p3
(c) glEnd ();
For N vertices, we obtain N-2 triangles. Each successive triangle shares an edge with the
previously defined triangle.

The first three points form the first triangle (counterclockwise viewing from the
outside), points 2-4 form the second, points 3-5 form the third, and so on.
The ordering of the vertex list is important to ensure a consistent display.
Define each position n in the vertex listin the order 1, 2, ... N-2.
» Ifnis odd, the triangle vertices are in the order: n, n+1, n+2; -= (pl, p2, p6)
» If nis even, the triangle vertices are in the order: n+1, n, n+2_ -= (p6, p2, p3)

'\'lq_:'

'\lq_?'

'\'lq_?'

OpenGL Polygon Fill-area Functions

* GL_TRIANGLE_FAN

pé pa glBegin (GL_TRIANGLE_FAN);
slVertex2iv (pl); -= n=1
slVertex2iv (pl); -> n=2

pd slVertex2iv (p3); -=
slVertex2iv (p4); -=
slVertex2iv (p5);
P2 ni glVertex2iv (p6);
W glEnd ();
For N vertices, we obtain N-2 triangles.

The first point 1s shared by every friangle. Points 182&3 define the first one, points 1&38&4
define the second, and so on.

Define each position n in the vertex list in the order 1, 2, ... N-2.
= Verticesl, n+1, n+2 define n“‘i:ri:mgle; -=(pl, p2, p3); (pl, p3, p4); ---

3
4

Il
Il

OpenGL Polygon Fill-area Functions

* GL_QUADS

glBegin (GL_QUADS)
glVertex2iv (pl);
glVertex2iv (p2);
glVertex2iv (p3);
glVertex2iv (p4);
glVertex2iv (p5);
glVertex2iv (p6);
glVertex2iv (p7);

o glVertex2iv (p8);

glEnd ();

> The first four points form a quadrilateral, the next four points form the
second, and so on.

> At least four points should be listed, otherwise, nothing is displayed.

OpenGL Polygon Fill-area Functions

* GL_QUAD_STRIP

glBegin (GL_QUAD_STRIP);
glVertex2iv (pl); -> n=1
glVertex2iv (p2); - n=2
glVertex2iv (p4); -> n=3
glVertex2iv (p3);
glVertex2iv (p5);
glVertex2iv (pb6);
glVertex2iv (p8);
glVertex2iv (p7);

glEnd ();

‘f

Rearrange the vertex list, we can obtain the set of connected quadrilaterals.

> Define each position n in the vertex list in the order n=1, n=2, ... n=(N/2)-1.

» The vertices 2n-1, 2n, 2n+2, 2n+1 define n® quadrilateral -> (pl, p2, p3, p4); (pt,
p3, p6, p)

Two-Dimensional Geometric Transformations

Operations that are applied to the geometric
description of an object to change its position,
orientation, or size are called geometric
transformations.

Geometric transformations, on the other hand, can
be used to describe how objects might move
around in a scene during an animation sequence or
simply to view them from another angle.

OVERVIEW

Three most basic transformations:
* Rotation
« Scaling (i.e., resizing the object)
* Translation (i.e., moving/placing the object)

Other transformations: shear, reflection, etc.

We're going to start with 2D transformations first

Then, later, we'll move on to 3D transformations

Keep in mind, we will be building simple transformations (with certain implicit assumptions)

* However, we will combine these to make more powerful transformations

ROTATION: INTRODUCTION

* To rotate an object, we need:

* Rotation angle > how much to rotate
« (Counterclockwise in plane we’re rotating

» Rotation axis > what we're rotating around

« |n2D, just use z axis
* WARNING: Rotation performed around ORIGIN
* Origin (0,0) = rotation point (or pivot point)

* (We'll talk later about how to rotate around an arbitrary rotation point)

cost A+ B)=cos Acos B=sin Asm B

sin{ A+ B)=cos Asn B+sin Acos B

ROTATION: DERIVIN

P =(x,y) 2 original point

P’ =(xy’) 2 transformed point
(x’y’) =2 transformed poin .\'=I‘COS¢

@ = original angle of point (x,y) from x axis y=rsin ¢

8 = difference in angle between old and new point

So, our original point (x,y) and transformed point (x}y') B34 COS(¢ +6) =r COS(I’ cosé - r'sin ¢sin 0
in polar coordinates are as follows =2 ; . :
V'=rsin(g+60)=rcosgsiné +rsingcosd
After substitution, we can express the transformed point in terms of 6 only: | FXSECFRY Y EEETIRYY

V'=xsmé+ yeost

ROTATION MATRIX

We have:
x'=xcosf - vsind

V'=xsiné+ ycost

* Therefore, our 2D rotation matrix is:

cosd —sind

sinf cosé

cosd —sin@| x| |xcosd-ysind
I S [=] ' =
sin cosf || y| |xsnf+ycosd

SCALING: INTRODUCTION

* Scaling an object = altering the size of an object

» The scaling we will be doing here = simply multiplying each coordinate by a scaling factor:

* The corresponding scaling matrix transformation 2

SCALING: FACTORS

Scaling factor > 1.0 = enlarge
Scaling factor < 1.0 =2 shrink

Scaling factor < 0 = negative scaling =2 resizes AND reflects object

Uniform scaling = scaling factors are all the same (e.g., 5, =5s,)
Otherwise, called differential scaling

SCALING: ASSUMPTIONS

* WARNING: Because of the way we are doing scaling:
* Only scalingin X or Y direction (or both), but NOT in arbitrary direction!
* Scaling relative to ORIGIN!
* ORIGIN = fixed point (point unaffected by scaling)

v (We'll talk later about how to use a different fixed point)

|/

Line scaled by 0.5
inxandy:
changes size AND
moves line closer
to origin

TRANSLATION: INTRODUCTION

+ Translation = moving a point by a certain distance (t,, t,)

* (t,,t)=translation distances = translation vector = shift vector

TRANSLATION: PROBLEM

* At some point, we would like to be able to combine multiple transformations into a single matrix:
P=F-E-D-("B-A4-P
=(F:-E-D-C-B-4)-P
=M P

* This means we can multiply all our transformations together first (M), and then apply it to each point
we want

* HOWEVER, because translation is handled as addition, we need to compute intermediate steps:

P=(R-P)+T

HOMOGENEOUS COORDINATES

* Tofix this, we will extend our 2x2 matrices (and our 2x1 vectors) to 3x3 matrices (and to 3x1 vectors)
* Homogeneous coordinates = for 2D coordinates, extension to (x, , y;.,)
* h=homogeneous parameter -> nonzero value such that:

* QOftenjustseth=1-> (x, y) becomes (x, y,

* QOften use “w” instead of “h” (especially for 3D vectors =2 (x,y,zw))

* Aswe'll see, this allows us to represent translation as a matrix multiplication!

TRANSLATION MATRIX WITH
HOMOGENEOUS COORDINATES

¥ x| (10 £ | [x] [x+

Y

VIETp =0 1t fy =,
l L1100 L1 | |

* The 2D translation matrix is sometimes represented as T, , t,)

ROTATION MATRIX WITH HOMOGENEOQUS
COORDINATES

¥ {cosd -sm@ 0f|x
V'[=|smd cosd Oy
| 0 0 [[[]

* The 2D rotation matrix is sometimes represented as R(6)

SCALING MATRIX WITH HOMOGENEQOUS
COORDINATES

* The 2D scaling matrix is sometimes represented as (s, , 5,)

PATTERN WITH HOMOGENEOQOUS
COORDINATE MATRICES

« With the translation matrix, we purposely use the additional elements of the matrix (in this case, the extra
column):

* For rotation, scaling, and shear matrices (discussed later), the original matrix is augmented with an extra row
and column of zeros (except for the last (row,column) position, which is set to 1):

My, My My,
my, iy 0 -

M=\m, m, 0 M=

My, Ny 1y
0 0 |1 e

0 0 0

0
My m, m, 0
0
l

HOMOGENEQUS COORDINATES: POINTS
V3. VECTORS

* Recall a vector can also be
interpreted as:
* Location (w=1)
* Direction (w =0)
30 Direction

* .nspace

* Note: sometimes, location = called “point” and direction 2 called “vector”

+ Depending on how we want to interpret the vector, we will set a different value for w

HOMOGENEOUS COORDINATES: POINTS
VS. VECTORS

* Points =2 all transformations should have an effect (translation, rotation, scaling, etc.)

* wsettol

* Direction =2 translation has no meaning (other transformation should work though)

« wsetto0

Composing Transformation

* Composing Transformation — the process of applying
several transformation in succession to form one overall
transformation

* |f we apply transforming a point P using M1 matrix first,
and then transforming using M2, and then M3, then we
have:

(M3 x (M2 x (M1 xP)))

(M3 x (M2 x (M1 xP))) =M3IxM2xM1xP
l |

(pre-multiply) +
M

* Matrix multiplication is associative
M3 x M2 x M1 = (M3 x M2) x M1 = M3 x (M2 x M1)

* Transformation products may not be commutative AxB 1=B x A

* Some caseswhere AxB=BxA

A B
translation translation
scaling scaling
rotation rotation
uniform scaling rotation

[sx=sy)

= SJP N Trust's
Hirasugar Institute of Technology, Nidasoshi.

1€/

e Inculcating Values, Promoting Prosperity
Approved by AICTE, Recognized by Govt. of Karnataka and Affiliated to VTU Belagavi.
Accreditedat'A’' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME

Fill area Primitives, 2D Geometric Transformations
and 2D viewing

Prof. Rahul Palakar |

https://hsit.ac.in/nba-accreditation-status.php

INVERSE TRANSFORMATIONS

« Fortunately, the inverses of the translation, rotation, and scaling matrices can be computed directly:

cos@ sind ()

-siné cosd ()
! () () ld

« Applying an inverse transformation - does the opposite transformation

* T%-) translate object (-, -t,)

QUICK ASIDE: INVERSE OF ROTATION
MATRIX

* We computed the inverse directly by using the negative angle (-8) - only sine was affected by this

« [t turns out, any rotation matrix is ORTHOGONAL -3 inverse = transpose = swapping rows and columns

s =sind 0 st smd 0
R=lsin0 cos0 0] R =R"=|-sm0 cos0 0
0 0 | |) |

2D Pivot(Arbitrary) point rotation

'

‘xr.yr)

')

* So we can generate a 2D rotation about any other

pivot point (X, y) by performing the following

sequence of translate-rotate-translate operations

1. Translate the object so that the pivot-point position
is moved to the coordinate origin

2. Rotate the object about the coordinate origin

3. Translate the object so that the pivot point is
returned to its original position

10 x [[cs@ -and 0L 0 —x] [cosf —smé x(1-cos6)+y, ané |
01 v fsme cosg 0)0 1 -y |=/smé ¢t 3 (I-cost)-x sné
0 0140 () Lo 01 (0 () |

e =

= s =

I(x.v)oR@)eT(~x .~y)=R(x.y.0)

SCALING AROUND AN ARBITRARY FIXED
POINT

* Say we want to scale an object relative a T(p x’p ",)‘S(.S'_\,,S) i (p\ P x)
fixed point (py, py) -l 0 p'\.- --S 0 0 l 0 -p\.-
s, 0110 1 -p,
]

» Basic idea:

* Translate (-px,-pv)-)(p,,pv) is now at origin O l p‘, s '

0
* Scale points _O 0 l_ - O

+ Translate backto (p, , p,)

ORDER MATTERS!

* What order you apply your matrices will affect what transformations you perform!!!

* Example: rotation then scale vs. scale then rotation

* First transformation = RIGHT-most matrix when multiplying!

Other transformations

» Reflection is a transformation that produces a mirror image of
an object. It is obtained by rotating the object by 180 deg about

the reflection axis

1 Original position

Reflected position

Reflection about the line y=0, the
X- axis , is accomplished with the
transformation matrix

1 0 0
0 10
0 0 1

Reflection

Original position Reflected position
2 2’ Reflection about the line x=0, the
: Y- axis , is accomplished with the
1 1 : .
transformation matrix
3 3
-1 0 0
0 1 0
0 0 1

Reflection of an object relative to an axis perpendicular to the
Xy plane and passing through the coordinate origin

Y-axis
-1 0 0
Reflected position 0 -1 0
3’
0 0 1
’ >
1 The above reflection matrix is
1 Origin_ O X-axis the -rotation matrix with
(0,0) angle=180 degree.
2 (This can be generalized to any
reflection point in the xy plane.
3 This reflection is the same as a
- » 180 degree rotation in the xy
Original position

plane using the reflection point
as the pivot point.

Reflection of an object w.r.t the
straight line y=x

Y-axi 0 1 0
-axis
Origi%al position 1 0 O
0 0 1
2 1,7
. 3’
Reflected position
2' :
Ongln O',"‘ X-axis

(0,0)

Reflection of an object w.r.t the

Y“aXis . -
straight line y=-x
0O -1 O
-1 0 O
O 0 1
o X-axis
Origin O | ™ 2
(0.0) 3
Original position
2’4 ~ LineY=-X

3'
Reflected position

Reflection of an arbitrary axis
v=mx+b

Origiraal position

-
”
r
’
-
.
”
”
.
.
-
.
’
L
’
*
”
e
v
v
L4
’
’
”

Origi%al position Translation o that it passes through origin

Rotate so that it coincides with x-

Original position axis and reflect also about x-axis
2 1.
Original position
L
Rotate back l
|Original position
2 1/

1 Reflected position
o‘ 3’

> ¢ Reflected position

. Shear: Deform the shape like shifted slices.

x'=xtsh-y y'=y

lshIO

0 1 0
0 0 1

Shearin x:

Sh, =

Sheariny:

Sh, =

1 sh,

Raster Methods for Geometric Transformations

» All bit settings in the rectangular area shown are copied as a block into
another part of the frame buffer

1 (S TR

(a) (b}

» Rotate a two-dimensional object or pattern 90° counterclockwise by
reversing the pixel values in each row of the array, then interchanging

rows and columns
|:J 2] 17 11 10
PRI ERE {]
] B9 >R B 1 AR5 4
w11 12 I 4 7 10 ER I |

() L) Ic|

s« For array rotations that are not multiples of
90°, we need to do some extra processing

» Similar methods to scale a block of pixels

TTTTTTTT T =T 1~
I [[| |
I : I I I I | Testmation
[[(. Figel Array
B A
T4 Trestination ' ' I
Botated f) I | [I I
" pixal S ot Pzl Areas | ERER |-~
ATy F :_ , !E.!I.I-E'l:l._ . : i I I
] o Array || L
___ Desunation : | : :
Fixel Array Bl I
(| R Ll
-__________“__1______ ':'.'IH_"I_“'
FIGURE 5-28 A raster rotation fora rectangular FIGUHE 5-20 Map 111*—'d-:'tn'|'|hxnl.w.] arens onto
blod . rr-w ale cam b accomp slighsad |:'-1 r'n1]"-]"-|1".u; tha ecalad array N'r-l v values. So I1n|1r'| ctore £, =¢, = .5

1I‘~J:IIII|II."I'I| ixel areas onto the rotated bloc are af |~|||+,| relative to fixe |F1|||||f1 I.rﬂ

OpenGL Raster Transformations

* Copying pixels from one buffer area to another
can be accomplished with

glCopyPixel(xmin, ymin, width, height,GL_COLOR);

* GL COLOR says what is to be copied (color
values)

* Copied to refresh buffer at same loc

To read into an array:
glReadPixels(xmin, ymin, width, height,
GL_RGB, GL_UNSIGNED_BYTE, colorArray);

 To do a 90 degree rotation could rearrange rows
and columns of array, then place back to refresh
buffer at current raster position

glDrawPixels(width, height, GL_RGB,
GL_UNSIGNED_BYTE, colorArray);

To scale an area use:
glPixelZoom(sx,sy);

* where sx and sy are any nonzero floating-point
values. (Negative values cause reflections).

Then use glCopyPixels or glDrawPixels to
get/draw the pixels with the given scaling.

OpenGL Transformations Functions

Translation

Offset (tx, ty, tz) is applied to all subsequent
coordinates. Effectively moves the origin of

coordinate system.
X'=x+tx,y'=y+ty, z2'=z+1z
* OpenGL function is glTranslate

glTranslatef(tx, ty, tz);

Rotation

* Expressed as rotation through angle 6 about an
axis direction (x,y,z) .

 OpenGL function — glRotatef (0, x,y,z). So

glRotatef(30.0, 0.0, 1.0, 0.0) rotates by 30° about y-

axis.

* Note carefully: — glRotate wants angles in
degrees. C math library (sin, cos etc.) wants angles
in radians.

degs = rads * 180/; rads = degs * m / 180

* Positive angle? Right hand rule: if the thumb
points along the vector of rotation, a positive
angle has the fingers curling towards the palm.

Scaling

* Multiply subsequent coordinates by scale factors
sx, sy, sz. (Note: these are not a point, not a
vector, just 3 numbers)

X=sx*x,y'=sy*y, z'=sz*z7
e Often sx = sy = sz for a uniform scaling effect. If

the factors are different, the scaling is called
anamorphic.

* OpenGL function — glScale For example,
glScalef(0.5,0.5,0.5);

* would cause all objects drawn subsequently to be
half as big.

OpenGL 2D Viewing Functions

¥ 'DpenGL F'r{:-jectin:}n Mode

g]MatriandE (GL_PROJECTION); //projection matrix
glLoadldentity ();

* GLU Clipping-Window Function
g]uﬂr‘thnZD (XWmin, XWmax, YWIin, yWwInax);
2D parallel projection.

* OpenGL Viewport Function
glViewport (xvmin, yvmin, vpWidth, vpHeight);
glGetIntegerv (GL_VIEWPORT, vpArray);

To obtain the parameters for the currently active viewport: xvmin,

yvmin, vpWidth, vpHeight.

OpenGL Viewport Function

® The r&ctangle area has an aspect ratio: width / height
Windows o —m——
glutlnitWindowSize (width, height);

eight.

2D -:‘lippin g window

gluOrtholD (left, right, bottom, top); wha

.

Viewport

glViewport (x, v, width, height);

® In general, the clipping window (viewing volume) and

viewport need to have the same ratio.

AN

e i

SCIeEn

Thank you

