
(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 1

Unit 7
Fault-Based Testing

Mr. C. R. Belavi

Assistant Professor

Dept. Of. CSE, HSIT, NIDASOSHI

contents

• Overview

• Assumption in fault Based Testing

• Mutation Analysis

• Fault Based Adequacy Criteria

• Variation on Mutation Analysis

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 2

Overview

• Study the failure how to prevent similar failure

in the future.

• Ex1: Failure of the Tacoma Narrow Bridge.

• Ex2: Airline crash.

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 3

Assumption in fault Based Testing

The basic concept of fault based testing is to

select test cases that would distinguish the

program under test from alternative program

that contains hypothetical faults.

Mutation testing is based on two assumptions:

the competent programmer hypothesis and the

coupling effect.

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 4

• The competent programmer hypothesis

assumes that competent programmers tend to

write nearly "correct" programs .

• That is programs written by experienced

programmers may not be correct, but they will

differ from the corrected version by some

relatively simple faults such as off-by-one

fault.

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 5

• The coupling effect stated that a set of test

data that can uncover all simple faults in a

program is also capable of detecting more

complex faults.

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 6

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 7

• Competent programmer hypothesis:

– Programs are nearly correct

• Real faults are small variations from the correct program

• => Mutants are reasonable models of real buggy programs

• Coupling effect hypothesis:

– Tests that find simple faults also find more complex

faults

• Even if mutants are not perfect representatives of real

faults, a test suite that kills mutants is good at finding real

faults too

Mutation Analysis

• Mutation Testing is a powerful error-based testing technique for

unit testing. It provides high test coverage and detects many

simple syntactic faults.

• A mutant is a copy of a program with a mutation

• A mutation is a syntactic change (a seeded bug)

– Example: change (i < 0) to (i <= 0)

• Run test suite on all the mutant programs

• A mutant is killed if it fails on at least one test case

• If many mutants are killed, infer that the test suite is also
effective at finding real bugs

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 8

• The goal of Mutation Testing is to assess the

quality of the test cases which should be robust

enough to fail mutant code.

• To maintain the effectiveness of test sets.

• Mutation was originally proposed in 1971 but

lost fervor due to high costs involved. Now,

again it has picked steam and is widely used for

languages such as Java and XML.

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 9

Different types of Mutants

• Stillborn mutants: Syntactically incorrect, killed by

compiler, e.g., x = a ++ b

• Trivial mutants: Killed by almost any test case

• Equivalent mutant: Always acts in the same behavior

as the original program, e.g., x = a + b and x = a – (-b)

• None of the above are interesting from a mutation

testing perspective

• Those mutants are interesting which behave

differently than the original program, and we do not

have test cases to identify them (to cover those

specific changes)

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 10

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 11

Following are the steps to execute mutation testing:

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 12

Step 1: Faults are introduced into the source code of the program by
creating many versions called mutants. Each mutant should contain a
single fault, and the goal is to cause the mutant version to fail which
demonstrates the effectiveness of the test cases.
Step 2: Test cases are applied to the original program and also to the
mutant program. A test case should be adequate, and it is tweaked to
detect faults in a program.
Step 3: Compare the results of original and mutant program.
Step 4: If the original program and mutant programs generate the same
output, then that the mutant is killed by the test case. Hence the test
case is good enough to detect the change between the original and the
mutant program.
Step 5: If the original program and mutant program generate different
output, Mutant is kept alive. In such cases , more effective test cases
need to be created that kill all mutants.

How to Create Mutant Programs?

• A mutation is nothing but a single syntactic

change that is made to the program statement.

Each mutant program should differ from the

original program by one mutation.

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 13

Original Program Mutant Program

If (x>y)

Print “Hello”

Else

Print “Hi”

If(x)

Print “Hello”

Else

Print “Hi”

Automation of Mutation Testing:

• Mutation testing is extremely time consuming and

complicated to execute manually. To speed up the

process, it is advisable to go for automation tools.

Automation tools reduce cost of testing as well.

• List of tools available -

• Ninja Turtles- .net mutation testing tool

• Mutagenesis– PHP mutation testing framework

• Heckle– Ruby Mutation Testing Tool

• Jester– Mutation Testing Tool for Java

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 14

http://www.mutation-testing.net/
https://github.com/padraic/mutagenesis
http://glu.ttono.us/articles/2006/12/19/tormenting-your-tests-with-heckle
http://jester.sourceforge.net/

Mutation Score:

• The mutation score is defined as the

percentage of killed mutants with the total

number of mutants.

• Mutation Score = (Killed Mutants / Total

number of Mutants) * 100

• The effectiveness of the test data set is

measured by the percentage of mutants killed.

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 15

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 16

Dependable Software Systems
(Mutation)

Example of a Program Mutation

1 int max(int x, int y)
2 {
3 int mx = x;
4 if (x > y)
5 mx = x;
6 else
7 mx = y;
8 return mx;
9 }

1 int max(int x, int y)
2 {
3 int mx = x;

4 if (x < y)
5 mx = x;
6 else
7 mx = y;
8 return mx;
9 }

Example of Testing By Mutation
function MAX(M<N:INTEGER)

return INTEGER is
begin

if M>N then
return M;

else
return N;

end if:

end MAX;

First test data set--M=1, N=2
•the original function returns 2
•mutants: replace”>“ operator in if statements by (>=,<,<=or=)
•executing each mutant:

Mutants Outputs Comparison
if M>=N then 2 dead
if M<N then 1 live
if M<=N then 1 live
if M=N then 2 dead
if M< >N then 1 live

•adding test data M=2, N=1 will eliminate the latter live mutant, but the former live
mutant remains live because it is equivalent to the original function. No test data
can eliminate it.

Advantages of Mutation Testing:

• It is a powerful approach to attain high coverage of the source

program.

• This testing is capable comprehensively testing the mutant

program.

• Mutation testing brings a good level of error detection to the

software developer.

• This method uncovers ambiguities in the source code, and has the

capacity to detect all the faults in the program.

• Customers are benefited from this testing by getting most reliable

and stable system.

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 19

Disadvantages of Mutant testing:

• Mutation testing is extremely costly and time consuming since

there are many mutant programs that need to be generated.

• Since its time consuming, it’s fair to say that this testing cannot be

done without an automation tool.

• Each mutation will have the same number of test cases than that

of the original program. So, a large number of mutant programs

may need to be tested against the original test suite.

• As this method involves source code changes, it is not at all

applicable for black box testing.

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 20

Estimating #Defects

• How many defects remain in our software?

• With mutation testing, we can make an

Estimate of remaining defects

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 21

Letʼ s consider a lake. How many
fish are in that lake?

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 22

Simple. We catch a number of fish
(say, 1000), tag them, and throw

them back again.

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 23

Let's assume over the next week, we ask fishermen to count the

number of tags. We find 300 untagged and 50 tagged fish.

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 24

we can thus estimate that there are about 6,000
remaining untagged fish in the lake.

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 25

Now letʼs assume our lake is not a
lake, but our program.

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 26

Simple. We catch a number of fish
(say, 1000), tag them, and throw

them back again.

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 27

Our test suite finds 50 mutants, and
300 natural faults.

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 28

we can again estimate that there are about 6,000 remaining

defects in our program. (A test suite finding only 50 out of 1,000
mutations is a real bad sign.)

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 29

(Seeded fault) (seeded fault detected)

(natural fault detected)

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 30

Let’s count marbles ... a lot of marbles

• Suppose we have a big

bowl of marbles. How

can we estimate how

many?

– I don’t want to count

every marble individually

– I have a bag of 100 other

marbles of the same size,

but a different color

– What if I mix them? Photo credit: (c) KaCey97007
on Flickr, Creative Commons
license

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 31

Estimating marbles

• I mix 100 black marbles

into the bowl

– Stir well ...

• I draw out 100 marbles

at random

• 20 of them are black

• How many marbles were

in the bowl to begin

with?

Fault Based Adequacy Criteria

• Given a program and a test suite T. Mutation

analysis consists of the following steps

1.Select mutation operator

2.Generate mutants

3.Distinguish mutants

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 32

Mutation operator

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 33

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 34

Mutation Operators

• Syntactic change from legal program to legal
program

• So: Specific to each programming language. C++ mutations
don’t work for Java, Java mutations don’t work for Python

• Examples:
– crp: constant for constant replacement

• for instance: from (x < 5) to (x < 12)

• select from constants found somewhere in program text

– ror: relational operator replacement
• for instance: from (x <= 5) to (x < 5)

– vie: variable initialization elimination
• change int x =5; to int x;

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 35

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 36

Live Mutants

• Scenario:

– We create 100 mutants from our program

– We run our test suite on all 100 mutants, plus the

original program

– The original program passes all tests

– 94 mutant programs are killed (fail at least one test)

– 6 mutants remain alive

• What can we learn from the living mutants?

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 37

How mutants survive

• A mutant may be equivalent to the original
program
– Maybe changing (x < 0) to (x <= 0) didn’t change the

output at all! The seeded “fault” is not really a
“fault”.

• Determining whether a mutant is equivalent may be easy or
hard; in the worst case it is undecideable

• Or the test suite could be inadequate
– If the mutant could have been killed, but was not, it

indicates a weakness in the test suite

– But adding a test case for just this mutant is a bad
idea. We care about the real bugs, not the fakes!

Variation in mutation Testing

• Since the number of mutants that can be

generated is large (the number is usually on the

order of N2, where N is the number of variable

references in the program), methods have been

suggested to reduce the computational

expenses of this testing technique.

• Methods proposed over the years to combat the

expensive computation problem include weak

mutation, Strong mutation, Statistical

mutation.

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 38

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 39

Variations on Mutation

• Weak mutation

• Statistical mutation

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 40

Weak mutation

• Weak mutation only requires the test data to cause a mutated

component to take on a different value in at least one execution,

instead of outputting a different value from the expected result.

• Problem: There are lots of mutants. Running each test case to

completion on every mutant is expensive

• Number of mutants grows with the square of program size

• Approach:

– Execute meta-mutant (with many seeded faults) together with

original program

– Mark a seeded fault as “killed” as soon as a difference in

intermediate state is found

• Without waiting for program completion

• Restart with new mutant selection after each “kill”

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 41

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 42

Statistical Mutation

• Problem: There are lots of mutants. Running

each test case on every mutant is expensive
• It’s just too expensive to create N2 mutants for a program of

N lines (even if we don’t run each test case separately to

completion)

• Approach: Just create a random sample of

mutants

– May be just as good for assessing a test suite

• Provided we don’t design test cases to kill particular

mutants (which would be like selectively picking out black

marbles anyway)

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 43

In real life ...

• Fault-based testing is a widely used in

semiconductor manufacturing

– With good fault models of typical manufacturing

faults, e.g., “stuck-at-one” for a transistor

– But fault-based testing for design errors is more

challenging (as in software)

• Mutation testing is not widely used in industry

– But plays a role in software testing research, to

compare effectiveness of testing techniques

• Some use of fault models to design test cases is

important and widely practiced

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 44

Summary

• If bugs were marbles ...

– We could get some nice black marbles to judge the

quality of test suites

• Since bugs aren’t marbles ...

– Mutation testing rests on some troubling assumptions

about seeded faults, which may not be statistically

representative of real faults

• Nonetheless ...

– A model of typical or important faults is invaluable

information for designing and assessing test suites

Contents

Test Execution:

• Overview from test case specifications to test

cases.

• Scaffolding.

• Generic versus specific scaffolding.

• Test oracles.

• Self-checks as oracles.

• Capture and replay.

(c) 2007 Mauro Pezzè & Michal Young Ch 16, slide 45

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 46

Automating Test Execution

• Designing test cases and test suites is creative

– Like any design activity: A demanding intellectual

activity, requiring human judgment

• Executing test cases should be automatic

– Design once, execute many times

• Test automation separates the creative human

process from the mechanical process of test

execution

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 47

Generation: From Test Case
Specifications to Test Cases

• Test design often yields test case

specifications, rather than concrete data

– Ex: “a large positive number”, not 420023

– Ex: “a sorted sequence, length > 2”, not “Alpha,

Beta, Chi, Omega”

• Other details for execution may be omitted

• Generation creates concrete, executable test

cases from test case specifications

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 48

Example Tool Chain for Test
Case Generation & Execution

• We could combine ...

– A combinatorial test case generation (like

genpairs.py) to create test data

• Optional: Constraint-based data generator to “concretize”

individual values, e.g., from “positive integer” to 42

– DDSteps to convert from spreadsheet data to JUnit

test cases

– JUnit to execute concrete test cases

• Many other tool chains are possible ...

– depending on application domain

Photo: (c) Scott Robinson (clearlyambiguous on Flickr) , creative commons attribution license

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 49

Scaffolding

• Code produced to

support development

activities (especially

testing)

– Not part of the “product”

as seen by the end user

– May be temporary (like

scaffolding in construction

of buildings

• Includes

– Test harnesses, drivers,

and stubs

Image by Kevin Dooley under Creative Commons license

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 50

Scaffolding ...

• Test driver

– A “main” program for running a test

• May be produced before a “real” main program

• Provides more control than the “real” main program

– To driver program under test through test cases

• Test stubs

– Substitute for called functions/methods/objects

• Test harness

– Substitutes for other parts of the deployed

environment

• Ex: Software simulation of a hardware device

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 51

Controllability & Observability

GUI input (MVC “Controller”)

Program Functionality

Graphical ouput (MVC “View”)

Example: We want
automated tests, but
interactive input provides
limited control and graphical
output provides limited
observability

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 52

Generic or Specific?

• How general should scaffolding be?

– We could build a driver and stubs for each test case

– ... or at least factor out some common code of the

driver and test management (e.g., JUnit)

– ... or further factor out some common support code,

to drive a large number of test cases from data (as

in DDSteps)

– ... or further, generate the data automatically from

a more abstract model (e.g., network traffic model)

• A question of costs and re-use

– Just as for other kinds of software

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 53

Comparison-based oracle

• With a comparison-based oracle, we need predicted

output for each input

– Oracle compares actual to predicted output, and reports failure

if they differ

• Fine for a small number of hand-generated test cases

– E.g., for hand-written JUnit test cases

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 54

Self-Checking Code as Oracle

• An oracle can also be written as self-checks

– Often possible to judge correctness without predicting results

• Advantages and limits: Usable with large, automatically

generated test suites, but often only a partial check

– e.g., structural invariants of data structures

– recognize many or most failures, but not all

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 55

Capture and Replay

• Sometimes there is no alternative to human

input and observation

– Even if we separate testing program functionality

from GUI, some testing of the GUI is required

• We can at least cut repetition of human testing

• Capture a manually run test case, replay it

automatically

– with a comparison-based test oracle: behavior same

as previously accepted behavior

• reusable only until a program change invalidates it

• lifetime depends on abstraction level of input and output

(c) 2007 Mauro Pezzè & Michal Young Ch 17, slide 56

Summary

• Goal: Separate creative task of test design from
mechanical task of test execution
– Enable generation and execution of large test suites

– Re-execute test suites frequently (e.g., nightly or
after each program change)

• Scaffolding: Code to support development and
testing
– Test drivers, stubs, harness, including oracles

– Ranging from individual, hand-written test case
drivers to automatic generation and testing of large
test suites

– Capture/replay where human interaction is required

