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Why Software Testing

• To get good quality product.

• To find defects



Verification and validation

• Validation: 

does the software system meets the user's real 

needs?

are we building the right software? 

• Verification: 

does the software system meets the 

requirements specifications?

are we building the software right?



Validation and Verification
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Verification or validation depends on 
the specification

Unverifiable (but validatable) spec: ... if a user 

presses a request button at floor i, an available 

elevator must arrive at floor i soon... 

1 2 3 4 5 6 7 8 

Example: elevator response

Verifiable spec: ... if a user presses a request 

button at floor i, an available elevator must 

arrive at floor i within 30 seconds...



Validation and Verification Activities
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Degrees of freedom

• Apply mathematical logic to verification of program.

• Alen Turing: some problems cannot be solved by any computer program.

• For most programs, exhaustive testing cannot be completed in any finite amount 

of time.

• You can’t always(ever) get what you want.

• Correctness properties are undecidable

• The halting problem can be embedded in almost every property of interest

Decision

Procedure

Property

Program

Pass/Fail



Getting what you need ...
Perfect verification of

arbitrary properties by

logical proof or exhaustive

testing (Infinite effort)

Model checking:

Decidable but possibly

intractable checking of

simple temporal

properties.

Theorem proving:

Unbounded effort to

verify general

properties.

Precise analysis of

simple syntactic

properties.

Typical testing

techniques

Data flow

analysis

Optimistic

inaccuracy

Pessimistic

inaccuracy

Simplified

properties

• A technique for verifying a 
property can be inaccurate in 1 
of 2 directions.

• optimistic inaccuracy: we may 
accept some programs that do 
not possess the property (i.e., it 
may not detect all violations). 

– testing

• pessimistic inaccuracy: it is not 
guaranteed to accept a program 
even if the program does possess 
the property being analyzed

– automated program analysis 
techniques

• simplified properties: reduce the 
degree of freedom for 
simplifying the property to check

Verification trade-off  dimensions



Dependability properties

1.Correctness

2.Reliability

3. Robustness

4. safety



Some Terminology

• Safe: A safe analysis has no optimistic 
inaccuracy, i.e., it accepts only correct 
programs. 

• Sound: An analysis of a program P with respect 
to a formula F is sound if the analysis returns 
true only when the program does satisfy the 
formula. 

• Complete: An analysis of a program P with 
respect to a formula F is complete if the 
analysis always returns true when the program 
actually does satisfy the formula.



Basic Definition

• Sensitivity: Better to fail every time than 

sometimes.

• Redundancy: Error detection

• Restriction: unsolved problem into simple 

solution

• Partition: also known as Divide and conquer

• Visibility: measure the progress

• Feedback: it is process improvement.
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The software process

• A structured set of activities required to develop a 

software system

– Specification;

– Design;

– Validation;

– Evolution.

• A software process model is an abstract representation of 

a process. It presents a description of a process from 

some particular perspective.



Generic software process models

• The waterfall model

– Separate and distinct phases of specification and 
development.

• Evolutionary development

– Specification, development and validation are interleaved.

• Component-based software engineering

– The system is assembled from existing components.

• There are many variants of these models e.g. formal 
development where a waterfall-like process is used but 
the specification is a formal specification that is refined 
through several stages to an implementable design.



Software Qualities and Process

• Qualities cannot be added after development

– Quality results from a set of inter-dependent activities

– Analysis and testing are crucial but far from sufficient.  

• Testing is not a phase, but a lifestyle

– Testing and analysis activities occur from early in requirements 

engineering through delivery and subsequent evolution.  

– Quality depends on every part of the software process

• An essential feature of software processes is that 

software test and analysis is thoroughly integrated and 

not an afterthought



The Quality Process

• Quality process: set of activities and 

responsibilities

– focused primarily on ensuring adequate 

dependability 

– concerned with project schedule or with product 

usability

• The quality process provides a framework for 

– selecting and arranging activities 

– considering interactions and trade-offs with other 

important goals.



Interactions and tradeoffs

example

high dependability vs. time to market

• Mass market products: 

– better to achieve a reasonably high degree of dependability on 

a tight schedule than to achieve ultra-high dependability on a 

much longer schedule

• Critical medical devices:

– better to achieve ultra-high dependability on a much longer 

schedule than a reasonably high degree of dependability on a 

tight schedule 



Properties of the Quality Process

• Completeness: Appropriate activities are 

planned to detect each important class of 

faults.  

• Timeliness: Faults are detected at a point of 

high leverage (as early as possible)

• Cost-effectiveness: Activities are chosen 

depending on cost and effectiveness

– cost must be considered over the whole 

development cycle and product life

– the dominant factor is usually the cost of repeating 

an activity through many change cycles.



Planning and Monitoring

• The quality process 

– Balances several activities across the whole 

development process

– Selects and arranges them to be as cost-effective as 

possible

– Improves early visibility

• Quality goals can be achieved only through 

careful planning

• Planning is integral to the quality process



Process Visibility

• A process is visible to the extent that one can answer 
the question
– How does our progress compare to our plan?

– Example: Are we on schedule? How far ahead or behind?

• The quality process has not achieved adequate visibility  
if one cannot gain strong confidence in the quality of 
the software system before it reaches final testing
– quality activities are usually placed as early as possible

• design test cases at the earliest opportunity (not ``just in time'') 

• uses analysis techniques on software artifacts produced before 
actual code. 

– motivates the use of “proxy” measures

• Ex: the number of faults in design or code is not a true measure of 
reliability, but  we may count faults discovered in design 
inspections as an early indicator of potential quality problems



A&T Strategy

• Identifies company- or project-wide standards 

that must be satisfied

– procedures required, e.g.,  for obtaining quality 

certificates

– techniques and tools that must be used

– documents that must be produced



A&T Plan

• A comprehensive description of the quality process that 
includes:
– objectives and scope of A&T activities

– documents and other items that must be available 

– items to be tested

– features to be tested and not to be tested

– analysis and test activities 

– staff involved in A&T

– constraints

– pass and fail criteria

– schedule

– deliverables

– hardware and software requirements

– risks and contingencies



Quality Goals

• Process qualities (visibility,....)

• Product qualities

– internal qualities (maintainability,....)

– external qualities

• usefulness qualities:

– usability, performance, security, portability, 

interoperability

• dependability

– correctness, reliability, safety, robustness



Dependability Qualities

• Correctness:

– A program is correct if it is consistent with its specification

• seldom practical for non-trivial systems

• Reliability:

– likelihood of correct function for some ``unit'' of behavior

• relative to a specification and usage profile

• statistical approximation to correctness (100% reliable = correct)

• Safety:

– preventing hazards

• Robustness

– acceptable (degraded) behavior under extreme conditions





• Analysis

• Testing

• Improving the process

• Organizational factors

contents



• analysis includes 

– manual inspection techniques

– automated analyses

• can be applied at any development stage

• particularly well suited at the early stages of 

specifications an design

Analysis



• can be applied to essentially any document 
– requirements statements

– architectural and detailed design documents

– test plans and test cases

– program source code

Drawbacks

• takes a considerable amount of time and require 
meeting.

• re-inspecting a changed component can be expensive 

• used primarily 
– where other techniques are inapplicable 

– where other techniques do not provide sufficient coverage

Inspection



Software Inspections

• People examine a source code representation 

to discover anomalies and defects

• Does not require systems execution so they may 

occur before implementation

• May be applied to any system representation 

(document, model, test data, code, etc.)



Inspection Preconditions

• A precise specification must be available

• Team members must be familiar with organization 

standards

• All representations must be syntactically correct

• An error checklist must be prepare in advance

• Management must buy into the the fact the inspections 

will increase the early development costs

• Inspections cannot be used to evaluate staff 

performance



Inspection Procedure

• System overview presented to inspection team

• Code and associated documents are distributed 

to team in advance

• Errors discovered during the inspection are 

recorded

• Product modifications are made to repair 

defects

• Re-inspection may or may not be required



Inspection Teams

• Have at least 4 team members

– product author

– inspector (looks for errors, omissions, and 

inconsistencies)

– reader (reads the code to the team)

– moderator (chairs meeting and records errors 

uncovered) 



Inspection Checklists

• Checklists of common errors should be used to 

drive the inspection

• Error checklist should be language dependent

• The weaker the type checking in the language, 

the larger the checklist is likely to become 



Inspection Fault Classes

• Data faults (e.g. array bounds)

• Control faults (e.g. loop termination)

• Input/output faults (e.g. all data read)

• Interface faults (e.g. parameter assignment)

• Storage management faults (e.g. memory leaks)

• Exception management faults (e.g. all error 

conditions trapped)



Inspection Rate

• 500 statements per hour during overview

• 125 statements per hour during individual 

preparation

• 90-125 statements per hour can be inspected 

by a team

• Including preparation time, each 100 lines of 

code costs one person day (if a 4 person 

team is used)



• More limited in applicability 

– can be applied to some formal representations of 

requirements models

– not to natural language documents

• are selected when available

– substituting machine cycles for human effort makes 

them particularly cost-effective.  

Automated Static analysis 



• Test are executed when the corresponding code 

is available, But the testing activities start 

earlier as soon as the artifacts are available.

Testing



• Test case highlight inconsistencies and 

incompleteness in software specification.

• Test case allow for early repair of software 

specification. Preventing fault from 

propagating to later stages in development

• It clarify the specification for error and 

unexpected condition.

• “EARLY IS BETTER” Rule.

Advantages of Testing



• To find cost effective counter measures for 

fault that are expensive because of

1.Occurs frequently

2.Failure that cause are expensive.

3.Expensive to repair.

Improving the process



• Raw data on faults are gathered.

• Aggregated into categories based on cause

• Remedies.

Root cause Analysis.



• Different teams for development and quality?

– separate development and quality teams is common 

in large organizations

– indistinguishable roles is postulated by some 

methodologies (extreme programming)

• Different roles for development and quality?

– test designer is a specific role in many organizations

– mobility of people and roles by rotating engineers 

over development and testing tasks among different 

projects is a possible option 

Organizational Factors



• Allocating tasks and responsibilites is a complex 
job:
we can allocate
– Unit testing 

• to the development team (requires detailed knowledge of the 
code)

• but the quality team may control the results (structural coverage)

– Integration, system and acceptance testing 
• to the quality team
• but the development team may produce scaffolding and oracles

– Inspection and walk-through 
• to mixed teams

– Regression testing
• to quality and maintenance teams 

– Process improvement related activities 
• to external specialists interacting with all teams

Example of Allocation of 
Responsibilities



• allocation of responsibilities
– Development team responsible development  m 

easured with LOC per person month

– Quality team responsible for quality 

• possible effect
– Development team tries to maximize productivity, 

without considering quality

– Quality team will not have enough resources for bad 
quality products

• result
– product of bad quality and overall project failure

Allocation of Responsibilities and 
rewarding mechanisms: case A



• allocation of responsibilities
– Development team responsible for both 

development and quality control

• possible effect
– the problem of case A is solved

– but the team may delay testing for development 
without leaving enough resources for testing

• result
– delivery of a not fully tested product and overall 

project failure

Allocation of Responsibilities and 
rewarding mechanisms: case B



summary

• A software does not fall neately into one category but rather has a 
no of relevent characteristics, that must be considered when 
planning verification.

• Most interesting properties are undecidable, thus in general we 
cannot count on tools that work without human intevention

• Assessing program qualities comprises two complementary sets of 
activities: validation (daes the software do what it is supposed to 
do?) and verification (does the system behave as specificed?)

• There is no single technique for all purposes: test designers need to 
select a suitable combination of techniques


