
Unit 6
A Framework for Testing and

Analysis

Mr. C. R. Belavi

Asst. Professor, HSIT, Nidasoshi

TOPICS IN UNIT 6

• Process Framework: Validation and

verification, Degrees of freedom, Varieties of

software. Basic principles: Sensitivity,

redundancy, restriction, partition, visibility,

Feedback. The quality process, Planning and

monitoring Quality goals, Dependability

properties, Analysis, Testing, Improving the

process, Organizational factors.

contents

• Validation and verification

• Degree of freedom

• Verities of software

• Basic Definition

Why Software Testing

• To get good quality product.

• To find defects

Verification and validation

• Validation:

does the software system meets the user's real

needs?

are we building the right software?

• Verification:

does the software system meets the

requirements specifications?

are we building the software right?

Validation and Verification

Actual

Requirements

SW

Specs
System

Validation Verification
Includes usability

testing, user

feedback

Includes testing,

inspections, static

analysis

Verification or validation depends on
the specification

Unverifiable (but validatable) spec: ... if a user

presses a request button at floor i, an available

elevator must arrive at floor i soon...

1 2 3 4 5 6 7 8

Example: elevator response

Verifiable spec: ... if a user presses a request

button at floor i, an available elevator must

arrive at floor i within 30 seconds...

Validation and Verification Activities

Actual Needs and

Constraints

Unit/

Component

Specs

System Test

Integration Test

Module Test

User Acceptance (alpha, beta test)

R
e

v
ie

w

Analysis /

Review

Analysis /

Review

User review of external behavior as it is

determined or becomes visible

Unit/

Components

Subsystem

Design/Specs
Subsystem

System

Specifications

System

Integration

Delivered

Package

validation

verification

Sketches the relation

of verification &

validation activities

With Respect To

artifacts produced in

a software

development project.

Degrees of freedom

• Apply mathematical logic to verification of program.

• Alen Turing: some problems cannot be solved by any computer program.

• For most programs, exhaustive testing cannot be completed in any finite amount

of time.

• You can’t always(ever) get what you want.

• Correctness properties are undecidable

• The halting problem can be embedded in almost every property of interest

Decision

Procedure

Property

Program

Pass/Fail

Getting what you need ...
Perfect verification of

arbitrary properties by

logical proof or exhaustive

testing (Infinite effort)

Model checking:

Decidable but possibly

intractable checking of

simple temporal

properties.

Theorem proving:

Unbounded effort to

verify general

properties.

Precise analysis of

simple syntactic

properties.

Typical testing

techniques

Data flow

analysis

Optimistic

inaccuracy

Pessimistic

inaccuracy

Simplified

properties

• A technique for verifying a
property can be inaccurate in 1
of 2 directions.

• optimistic inaccuracy: we may
accept some programs that do
not possess the property (i.e., it
may not detect all violations).

– testing

• pessimistic inaccuracy: it is not
guaranteed to accept a program
even if the program does possess
the property being analyzed

– automated program analysis
techniques

• simplified properties: reduce the
degree of freedom for
simplifying the property to check

Verification trade-off dimensions

Dependability properties

1.Correctness

2.Reliability

3. Robustness

4. safety

Some Terminology

• Safe: A safe analysis has no optimistic
inaccuracy, i.e., it accepts only correct
programs.

• Sound: An analysis of a program P with respect
to a formula F is sound if the analysis returns
true only when the program does satisfy the
formula.

• Complete: An analysis of a program P with
respect to a formula F is complete if the
analysis always returns true when the program
actually does satisfy the formula.

Basic Definition

• Sensitivity: Better to fail every time than

sometimes.

• Redundancy: Error detection

• Restriction: unsolved problem into simple

solution

• Partition: also known as Divide and conquer

• Visibility: measure the progress

• Feedback: it is process improvement.

content

• Quality process

• Planning and monitoring

• Quality goals

• Dependability properties

The software process

• A structured set of activities required to develop a

software system

– Specification;

– Design;

– Validation;

– Evolution.

• A software process model is an abstract representation of

a process. It presents a description of a process from

some particular perspective.

Generic software process models

• The waterfall model

– Separate and distinct phases of specification and
development.

• Evolutionary development

– Specification, development and validation are interleaved.

• Component-based software engineering

– The system is assembled from existing components.

• There are many variants of these models e.g. formal
development where a waterfall-like process is used but
the specification is a formal specification that is refined
through several stages to an implementable design.

Software Qualities and Process

• Qualities cannot be added after development

– Quality results from a set of inter-dependent activities

– Analysis and testing are crucial but far from sufficient.

• Testing is not a phase, but a lifestyle

– Testing and analysis activities occur from early in requirements

engineering through delivery and subsequent evolution.

– Quality depends on every part of the software process

• An essential feature of software processes is that

software test and analysis is thoroughly integrated and

not an afterthought

The Quality Process

• Quality process: set of activities and

responsibilities

– focused primarily on ensuring adequate

dependability

– concerned with project schedule or with product

usability

• The quality process provides a framework for

– selecting and arranging activities

– considering interactions and trade-offs with other

important goals.

Interactions and tradeoffs

example

high dependability vs. time to market

• Mass market products:

– better to achieve a reasonably high degree of dependability on

a tight schedule than to achieve ultra-high dependability on a

much longer schedule

• Critical medical devices:

– better to achieve ultra-high dependability on a much longer

schedule than a reasonably high degree of dependability on a

tight schedule

Properties of the Quality Process

• Completeness: Appropriate activities are

planned to detect each important class of

faults.

• Timeliness: Faults are detected at a point of

high leverage (as early as possible)

• Cost-effectiveness: Activities are chosen

depending on cost and effectiveness

– cost must be considered over the whole

development cycle and product life

– the dominant factor is usually the cost of repeating

an activity through many change cycles.

Planning and Monitoring

• The quality process

– Balances several activities across the whole

development process

– Selects and arranges them to be as cost-effective as

possible

– Improves early visibility

• Quality goals can be achieved only through

careful planning

• Planning is integral to the quality process

Process Visibility

• A process is visible to the extent that one can answer
the question
– How does our progress compare to our plan?

– Example: Are we on schedule? How far ahead or behind?

• The quality process has not achieved adequate visibility
if one cannot gain strong confidence in the quality of
the software system before it reaches final testing
– quality activities are usually placed as early as possible

• design test cases at the earliest opportunity (not ``just in time'')

• uses analysis techniques on software artifacts produced before
actual code.

– motivates the use of “proxy” measures

• Ex: the number of faults in design or code is not a true measure of
reliability, but we may count faults discovered in design
inspections as an early indicator of potential quality problems

A&T Strategy

• Identifies company- or project-wide standards

that must be satisfied

– procedures required, e.g., for obtaining quality

certificates

– techniques and tools that must be used

– documents that must be produced

A&T Plan

• A comprehensive description of the quality process that
includes:
– objectives and scope of A&T activities

– documents and other items that must be available

– items to be tested

– features to be tested and not to be tested

– analysis and test activities

– staff involved in A&T

– constraints

– pass and fail criteria

– schedule

– deliverables

– hardware and software requirements

– risks and contingencies

Quality Goals

• Process qualities (visibility,....)

• Product qualities

– internal qualities (maintainability,....)

– external qualities

• usefulness qualities:

– usability, performance, security, portability,

interoperability

• dependability

– correctness, reliability, safety, robustness

Dependability Qualities

• Correctness:

– A program is correct if it is consistent with its specification

• seldom practical for non-trivial systems

• Reliability:

– likelihood of correct function for some ``unit'' of behavior

• relative to a specification and usage profile

• statistical approximation to correctness (100% reliable = correct)

• Safety:

– preventing hazards

• Robustness

– acceptable (degraded) behavior under extreme conditions

• Analysis

• Testing

• Improving the process

• Organizational factors

contents

• analysis includes

– manual inspection techniques

– automated analyses

• can be applied at any development stage

• particularly well suited at the early stages of

specifications an design

Analysis

• can be applied to essentially any document
– requirements statements

– architectural and detailed design documents

– test plans and test cases

– program source code

Drawbacks

• takes a considerable amount of time and require
meeting.

• re-inspecting a changed component can be expensive

• used primarily
– where other techniques are inapplicable

– where other techniques do not provide sufficient coverage

Inspection

Software Inspections

• People examine a source code representation

to discover anomalies and defects

• Does not require systems execution so they may

occur before implementation

• May be applied to any system representation

(document, model, test data, code, etc.)

Inspection Preconditions

• A precise specification must be available

• Team members must be familiar with organization

standards

• All representations must be syntactically correct

• An error checklist must be prepare in advance

• Management must buy into the the fact the inspections

will increase the early development costs

• Inspections cannot be used to evaluate staff

performance

Inspection Procedure

• System overview presented to inspection team

• Code and associated documents are distributed

to team in advance

• Errors discovered during the inspection are

recorded

• Product modifications are made to repair

defects

• Re-inspection may or may not be required

Inspection Teams

• Have at least 4 team members

– product author

– inspector (looks for errors, omissions, and

inconsistencies)

– reader (reads the code to the team)

– moderator (chairs meeting and records errors

uncovered)

Inspection Checklists

• Checklists of common errors should be used to

drive the inspection

• Error checklist should be language dependent

• The weaker the type checking in the language,

the larger the checklist is likely to become

Inspection Fault Classes

• Data faults (e.g. array bounds)

• Control faults (e.g. loop termination)

• Input/output faults (e.g. all data read)

• Interface faults (e.g. parameter assignment)

• Storage management faults (e.g. memory leaks)

• Exception management faults (e.g. all error

conditions trapped)

Inspection Rate

• 500 statements per hour during overview

• 125 statements per hour during individual

preparation

• 90-125 statements per hour can be inspected

by a team

• Including preparation time, each 100 lines of

code costs one person day (if a 4 person

team is used)

• More limited in applicability

– can be applied to some formal representations of

requirements models

– not to natural language documents

• are selected when available

– substituting machine cycles for human effort makes

them particularly cost-effective.

Automated Static analysis

• Test are executed when the corresponding code

is available, But the testing activities start

earlier as soon as the artifacts are available.

Testing

• Test case highlight inconsistencies and

incompleteness in software specification.

• Test case allow for early repair of software

specification. Preventing fault from

propagating to later stages in development

• It clarify the specification for error and

unexpected condition.

• “EARLY IS BETTER” Rule.

Advantages of Testing

• To find cost effective counter measures for

fault that are expensive because of

1.Occurs frequently

2.Failure that cause are expensive.

3.Expensive to repair.

Improving the process

• Raw data on faults are gathered.

• Aggregated into categories based on cause

• Remedies.

Root cause Analysis.

• Different teams for development and quality?

– separate development and quality teams is common

in large organizations

– indistinguishable roles is postulated by some

methodologies (extreme programming)

• Different roles for development and quality?

– test designer is a specific role in many organizations

– mobility of people and roles by rotating engineers

over development and testing tasks among different

projects is a possible option

Organizational Factors

• Allocating tasks and responsibilites is a complex
job:
we can allocate
– Unit testing

• to the development team (requires detailed knowledge of the
code)

• but the quality team may control the results (structural coverage)

– Integration, system and acceptance testing
• to the quality team
• but the development team may produce scaffolding and oracles

– Inspection and walk-through
• to mixed teams

– Regression testing
• to quality and maintenance teams

– Process improvement related activities
• to external specialists interacting with all teams

Example of Allocation of
Responsibilities

• allocation of responsibilities
– Development team responsible development m

easured with LOC per person month

– Quality team responsible for quality

• possible effect
– Development team tries to maximize productivity,

without considering quality

– Quality team will not have enough resources for bad
quality products

• result
– product of bad quality and overall project failure

Allocation of Responsibilities and
rewarding mechanisms: case A

• allocation of responsibilities
– Development team responsible for both

development and quality control

• possible effect
– the problem of case A is solved

– but the team may delay testing for development
without leaving enough resources for testing

• result
– delivery of a not fully tested product and overall

project failure

Allocation of Responsibilities and
rewarding mechanisms: case B

summary

• A software does not fall neately into one category but rather has a
no of relevent characteristics, that must be considered when
planning verification.

• Most interesting properties are undecidable, thus in general we
cannot count on tools that work without human intevention

• Assessing program qualities comprises two complementary sets of
activities: validation (daes the software do what it is supposed to
do?) and verification (does the system behave as specificed?)

• There is no single technique for all purposes: test designers need to
select a suitable combination of techniques

