
Unit 5

SYSTEM TESTING AND INTERACTION
TESTING

Content

• Threads, Basic concepts for requirements
specification, Finding threads, Structural
strategies and functional strategies for thread
testing, SATM test threads, System testing
guidelines, ASF (Atomic System Functions)
testing example. Context of interaction, A
taxonomy of interactions, Interaction,
composition, and determinism, Client/Server
Testing,

Contents

• Threads.

• Basic concepts for requirements specification.

• Finding threads.

Threads

• A scenario of normal usage

• A system level test case

Threads Possibilities

• Four candidate threads in our SATM system

1.Entry of a digit

2.Entry of a pin

3.A simple transaction

4.An session containing two or more transaction.

ASF: An atomic system function is an action that is
observable at the system level in terms of port
input and output events.

Basic concepts for requirements
specification

• Data: it is described in terms of variable,
records, data structure.

1.Account and PIN

2. System developed in terms of CRUD

3.Relationship between data entities

• Action: it have input and output

• Device

Every system has port devices.

A port is the point at which an IO device is
attached to a system.

Ex: Display screen, Withdraw doors, card and
receipt slot.

• Event: An event is a system level input that
occurs on a port device.

Finding Threads

System Testing

Beyond unit testing

16

System Testing

• Of the three levels of testing, system level testing is
closest to everyday experience

– We evaluate a product with respect to our expectations

• Concerned with the application’s externals

• We tend to approach system testing from a
functional standpoint rather than from a structural
one

17

System Testing

• Functional testing

– Objective: Assess whether the application does
what it is supposed to do

– Basis: Behavioral/functional specification

– Test case: A sequence of Atomic System Functions

18

Atomic System Function

• Atomic System Function (ASF): is an action
that is observable at the system level in terms
of port input and output events.

– It begins with a port input event,

– traverses one or more MM-Paths,

– and terminates with a port output event.

19

Atomic System Function

• When viewed from the system level, there is no
compelling reason to decompose an ASF into lower
levels of detail (hence the atomicity)

• For example in an ATM system

– Digit entry

– Card entry

– Cash dispensing

– PIN entry is probably too big

20

Atomic System Function

• ASFs are an upper limit for MM-Paths:

– MM-Paths should not cross ASF boundaries

• ASFs represent the seam between integration
and system testing:

– they are the largest item to be tested during
integration testing,

– and the smallest item for system testing

21

ASF Example

A B C

MM-path: Interleaved sequence of module exec path and messages

Module exec path: entry-exit path in the same module

Atomic System Function: port input, … {MM-paths}, … port output

Test cases: exercise ASFs

22

Threads

• We view system testing in terms of threads of system
level behavior.

• Many possible views of a thread:
– a scenario of normal usage

– a system level test case

– a stimulus/response pair

– behavior that results from a sequence of system level
inputs

– an interleaved sequence of port input and output events

23

Threads

– a sequence of transitions in a state machine
description of a system

– an interleaved sequence of object messages and
method executions

– a sequence of machine instructions

– a sequence of source instructions

– a sequence of atomic system functions

24

Thread Levels

• Threads have distinct levels:

– Unit level thread is understood as an execution-time path
of instructions or some path on a flow graph

– Integration level thread is a sequence of MM-paths that
implement some atomic function. Usually denoted as a
sequence of module executions and messages

– System level thread is a sequence of atomic system
functions

25

Thread Levels

• Since ASFs have port events as their inputs and
outputs, the sequence of ASFs implies an interleaved
sequence of port input/port output events.

• Threads provide a unifying view of the three levels of
testing:

– Unit testing tests individual functions

– Integration tests examine interaction among units

– System testing examines interactions among ASFs.

26

Thread Definitions

• ASF Graph: a directed graph in which nodes are ASFs
and edges represent sequential flow.

• Source ASF: an ASF that appears as a source node in
the ASF graph of a system

• Sink ASF: an ASF that appears as sink node in the ASF
graph.

• System thread: a path from a source ASF to a sink
ASF in the ASF graph of a system.

27

Basis Concepts for Requirements
Specification

• The objective is to discuss system testing with
respect to a basis set of requirements specification
constructs

• Every system can be specified in terms of the
following requirements specification constructs:
– Data

– Actions

– Ports

– Events

– Threads

28

Data

• For a system that is described in terms of its data,
– the focus is on the information used/created by the system

(described in terms of variables, data structures, fields,
records, data stores, and files)

• The data centered view is also starting point for
many OO analysis methods.

• Data refers to information that is either initialized,
stored, updated or possibly destroyed.

29

Data

• Data-centric systems are often specified in terms of
CRUD actions (Create, Retrieve, Update, Delete)

• Often, threads can be identified directly from the
data model

• Also possible to have read-only data (i.e. expected
PIN pairs, etc.)
– this must be part of system initialization process

• if not, then there must be threads that create the data.

• Hence read-only data is an indicator of source ASFs.

30

Actions

• Action-centered modeling is the most common
requirements specification form.

– Actions have inputs and outputs and these can be either
data or port events.

– Actions can also be decomposed in to lower level actions
(i.e. typical data flow diagrams).

• The input/output view of actions is the basis of
functional testing

31

Devices

• Every system has ports (and port devices):
– Sources and destinations of system level inputs

and outputs.

• If no physical port devices in system, much of
system testing can be accomplished by moving
the port boundary inward to the logical
instances of port events.

32

Events

• Events have some characteristics of data and some of
actions

• An event is a system level input which occurs at a
port.

• Events can be inputs to or outputs of actions:

– Can be either discrete or continuous

– Discrete events have a time duration and this can be
critical in real-time systems.

33

Threads

• Threads are the least frequently used of the
fundamental constructs.

– Since threads are tested, it is up to the tester to find them
in the interactions of the data, events, and actions.

• Finding Threads

– A finite state machine model of the system is a good
starting point to find threads since the paths are easily
converted to threads.

34

Finding Threads

• Usually, one deals with a hierarchy of state
machines i.e. the card entry state of an ATM
may be decomposed into lower levels that
deal with details like:

– jammed cards,

– cards that are upside-down,

– checking the card against the list of cards for
which service is offered, etc.).

35

Finding Threads

• At this level, states correspond to states of
processing, and transitions are caused by logical
(rather than port) events.

• Once the details of a macro-state are tested we
continue with the next macro-state

• Within the decomposition of the macro state we
need to identify the port input and port output
events

36

Finding Threads

• The hierarchy of finite state machines multiplies the
number of threads

• Ideal to reach a state machine in which transitions
are caused by actual port input events, and the
actions on transitions are port output events
– Ggenerating the test cases for these threads is mechanical

– Just follow a path of transitions noting the inputs and
outputs as they occur along the path

37

Structural Strategies for Thread Testing

• Generating the threads may be easy, but to
decide which one to test is complex

• Encounter the same path explosion problem
at system level as at unit level

• Bottom Up Threads
– When state machines are organized in a hierarchy,

it is possible to work bottom up

38

Structural Strategies for Thread Testing

• As seen in unit testing, structural testing can
be misleading
– The assumption is that path traversal uncovers

faults and traversing a variety of paths reduces
redundancy

• A more serious flaw with these threads is that
it is not really possible to execute them “by
themselves” due to the hierarchical state
machines.

39

Coverage Metrics

• Since FSMs are directed graphs, use same test
coverage metrics as at the unit level

• The hierarchical relationship indicates that the
upper level machine treats the lower level
machine as a procedure that is entered and
returned from

40

Coverage Metrics

• Two fundamental choices are node coverage
and edge coverage

– Node coverage is similar to statement coverage at
unit level: bare minimum .

– Edge (state transition) coverage is more
acceptable

INTERACTION TESTING
• It is a relationship Interacts With among

• Data

• Events

• Threads

• Actions

• Ports

• The relationship is reflexive It is binary
relation between Data & events Data &
threads Events & threads

23-Nov-18

Properties of threads and
processors

• Textbook has two meanings for event Causes confusion,
ambiguity, wordy explanations Use two words Use event for
instant Use state or activity for duration Occurs between two
e

• Properties of threads and processors

• Threads have duration

• They are activities

• At one time a processor can execute only one thread Events.

• A processor is in a state of executing a thread Timesharing,
multiprocessing interleaves thread execution Processor
changes state for each thread Here thread durations overlap
in time

23-Nov-18

• On one processor events can be simultaneous within
the minimum resolution of time-grain markers .

• BUT reality (hardware) puts an order on those
events – puts them in a sequence.

- As far as we can tell it is a random choice

- At another occurrence the events may be
ordered in a different sequence

- That is an essential difficulty of interaction testing

23-Nov-18

• On different processors, events can occur
simultaneously

• Common events by definition must occur at
the same time

• Consider a two people colliding – the collision
is a common event to the two people
(processors)

• Synchronous communication for processors
start and end with common events

23-Nov-18

• For a single processor

• Input and output events occur during thread
execution

• From the perspective of a thread they cannot
occur simultaneously, because they occur at
instructions and instructions are executed
sequentially

• From the perspective of devices port events
can be simultaneous

• For each port events occur in time sequence
23-Nov-18

• Threads occur only within one processor

• Do not cross processor boundaries

• Have trans-processor quiescence when
threads reach processor boundaries

• Analogous to crossing unit boundaries in
integration testing

23-Nov-18

• What we want is sane behaviour

• This results from considering events to be in a
linear sequence

• For example synchronous communications
takes into account message transmission time
Break the communication into events such as
Sender starts sending

• Receiver starts receiving

• Sender ends sending

• Receiver ends receiving
23-Nov-18

Taxonomy of interactions

• Static interactions in a single processor system
Static interactions in multiprocessor system
Dynamic interactions in a single processor
system

• Dynamic interactions in multiprocessor
system

23-Nov-18

• Given two propositions P and Q

• They are contraries if both cannot be true

• Sub-contraries if both cannot be false

• Contradictories if exactly one is true

• R is a subaltern of P if the truth of P
guarantees the truth of R – i.e. P → R

• Rules in a decision table, if correct, are
contradictories

23-Nov-18

Static interactions in a single processor

• Analogous to combinatorial circuits

• Model with decision tables and unmarked
event-driven Petri nets

• Telephone system example

• Call display and unlisted numbers are
contraries

• Both cannot be satisfied

• Both could be waived

23-Nov-18

Data-data connectedness – Logical
relationships

• 0-connected

• Logically independent

• 2-connected

• Sub-alternation

• 3-connected – bidirectional

• Contraries

• Contradictories

• Sub-contraries
23-Nov-18

EXAMPLES

• 3-connected data-data

• When data are deeply related, as in repetition
and semaphores

• 1-connected data-event

• Context-sensitive port input events

23-Nov-18

Dynamic, single processor
interactions

• Six potential interaction pairs

• Combination pairs of

• Data

• Events Threads

• Each interaction can exhibit 4 different graph
connectedness attributes

• Result is 24 sub-categories for these
interactions IAT–31

23-Nov-18

Thread –thread interaction

• Each thread can be represented by an EDPN

• The symbolic names of the places and
transitions correspond to those in the EDPN
for the system

• Synonyms in thread nets need to be resolved
when they interact

23-Nov-18

Dynamic Multiprocessor
Interactions

• Problem here is threads and events occur in
parallel

• We have concurrent behaviour with a
collection of communicating sequential
processors (CSP)

• Have non-deterministic behaviour

• To fully understand need to learn the
mathematics of CSP

• Without that can only work through an
example

23-Nov-18

Determinism

• A system is deterministic if, given its inputs,
we can always predict its outputs

• A system is deterministic if it always produces
the same outputs for a given set of inputs

• (For a non-deterministic system it may be
difficult to demonstrate different output

• Process P chooses non-deterministically at
every step whether to engage in event

23-Nov-18

• a or b Process Q chooses non-deterministically
once whether to engage only with event a or
only with event b

• P = (a → P) (b → P) Q = (a → Qa) (b → Qb) Qa
= (a → Qa) Qb = (b → Qb)

• P is deterministic ↔ ∀s : traces (P) • X ∈
refusals (P / s) ↔ X ∩ (P / s)1 = {} P1 = { e * 〈
e 〉 ∈ traces (P) } A system is deterministic if
at every step the system never refuses to
engage in any external event appropriate at
that step

23-Nov-18

23-Nov-18

• P is deterministic ↔ ∀s : traces (P) • X ∈
refusals (P / s) ↔ X ∩ (P / s)1 = {} P1 = { e * 〈
e 〉 ∈ traces (P) }

• P1 definition is the set of events in which P
may engage on the first step

• P / s is the process after P has engaged in all
of the events in the trace s

• A trace is a record of the external events in
which a process has engaged

• A refusal is a set of events in which a process
refuses to engage

Client Server Complexities

• Base system has program components
Database, application, presentation (logical
output) Have a centralized, fat server and
distinction

• Entire system includes above items plus
Network

• GUI May have homogeneous or
heterogeneous processors

23-Nov-18

Client Server Testing
• Extend notion of threads beyond an EDPN

• CS transaction

• A sequence of threads across EDPN
boundaries

• Client processor --> network --> application --
>DBMS back again

• Much of the system is stable – e.g. DBMS,
existing application Should testing be needed
Use functional testing – no source text

23-Nov-18

