Unit 5

SYSTEM TESTING AND INTERACTION
TESTING

Content

* Threads, Basic concepts for requirements
specification, Finding threads, Structural
strategies and functional strategies for thread
testing, SATM test threads, System testing
guidelines, ASF (Atomic System Functions)
testing example. Context of interaction, A
taxonomy of interactions, Interaction,
composition, and determinism, Client/Server
Testing,

Contents

* Threads.

e Basic concepts for requirements specification.

* Finding threads.

Threads

* A scenario of normal usage

* Asystem level test case

Threads Possibilities

* Four candidate threads in our SATM system
1.Entry of a digit

2.Entry of a pin

3.A simple transaction

4.An session containing two or more transaction.

ASF: An atomic system function is an action that is
observable at the system level in terms of port
input and output events.

Basic concepts for requirements
specification
 Data: it is described in terms of variable,
records, data structure.
1.Account and PIN
2. System developed in terms of CRUD
3.Relationship between data entities
e Action: it have input and output

* Device
Every system has port devices.

A port is the point at which an 10 device is
attached to a system.

Ex: Display screen, Withdraw doors, card and
receipt slot.

* Event: An event is a system level input that
occurs on a port device.

Finding Threads

¥rong Card
[Figplay Screenm 51,
Eject Card

Top-level SATM state machine.

Drsplay Screen 4, then 1

¥irong Cand
Legitimate Cand Msplay Screen 51,
Display Scresn 2 Eject Card

2.1 First
PIN Try

Incorrect PIN or Cancelled
Drisplay Screen 2, then 2

1wyl
Comect PIN i
Display Screen 5 |

b

3. Acwrait
Transaciion
Choice

Drisplay Screen 5

&.¥ Third
PN Try

Transition probabilities for the SATM system,

Incosmect Pin

kG 'f

PIN Try finite state machine.

Table 14.3 Port Event Sequence for Correct PIN on First Try

Port Input Event Port Output Event

Screen 2 displayed with ‘- - - -
1 pressed

Screen 2 displayed with “X- - -
2 pressed

Screen 2 displayed with “XX- -/
3 pressed

Screen 2 displayed with *XXX-*
4 pressed

Screen 2 displayed with “XXXX'

(Correct PIN) Screen 5 displayed
e ——

Table 14.4 Port Event Sequence for Correct PIN on Third Try

Port Input Event

Port Owtpout Event

1. pressed

2 pressed

Screen 2 displayed with "~ - - -*
Screen 2 displayed with “X- - -*

Screen 2 displayed with “XX- -*

3-pressed-—-
5 pressed
(Incorrect PIN)
(Second try)

1 pressed

2 pressed

3 pressed

Cancel key pressed
(End of second try)

1 pressed
2 pressed
3 pressed
4 pressed

(Correct PIN)

Screen 2 displayed with “XXX-*
Screen 2 displayed wwith “XOXX"
Screen 3 displayed

Screen 2 displayed with - - - -~
Screen 2 displayed with “X- - -*
Screen 2 displayed with XX- -*

Screen 2 displayed with “XXX-*

Screen 3 displayed
Screen 2 displayed with *- - - -

Screen 2 displayed with "X- - -/
Screen 2 displayed with “XX- -*
Screen 2 displayed with “XXX-*

Screen 2 displayed with “XXXX’
Screen 5 displayed

Table 14.7 Node and Edge Traversal of a Thread
Port Input Evernil Port Qutput Event Modles Edpes

Screen 2 displayed with - - - -* 2.1 a
1 pressed 214

Screen 2 displayed with %- - - x1
2 pressed 21.2

Screen 2 displayed with "XX- - o
3pressed———— 0 ——— 243 -

Screen 2 displayed with “XXX-* w3
5 pressed 21.4

Screen 2 displayed with 00 x4
(Incorrect PIM) Screen 3 displayed 215, 3 =6 2
(Second try) Screen 2 displayed with *- - - - 2.2
1 pressed 221

Screen 2 displayed with "X- - -* x1
2 pressed 222

Screen 2 displayed with XX- - x2
3 pressed 223

Screen 2 displayed with 00X x3
Cancel pressed 2.2.4 %10
{End of second Screen 3 displayed 226 x11

tryl Screen 2 displayved with - - - - 2.3 4

1 pressed 231

Screen 2 displayed with "X- - - x1
2 pressed 2.3.2

Screen 2 displayed with XX- - x2
3 pressed . 233

Screen 2 displayed with X000 x3
4 pressed 2.3.4

Screen 2 displayed with XXX’ wd
(Correct PIN) Screen 5 displayed 235 3 %55

System Testing

Beyond unit testing

System Testing

e Of the three levels of testing, system level testing is
closest to everyday experience
— We evaluate a product with respect to our expectations

* Concerned with the application’s externals

* We tend to approach system testing from a
functional standpoint rather than from a structural
one

System Testing

* Functional testing

— Objective: Assess whether the application does
what it is supposed to do

— Basis: Behavioral/functional specification
— Test case: A sequence of Atomic System Functions

Atomic System Function

e Atomic System Function (ASF): is an action
that is observable at the system level in terms
of port input and output events.

— It begins with a port input event,
— traverses one or more MM-Paths,
— and terminates with a port output event.

Atomic System Function

* When viewed from the system level, there is no

compelling reason to decompose an ASF into lower
levels of detail (hence the atomicity)

* For example in an ATM system
— Digit entry
— Card entry
— Cash dispensing
— PIN entry is probably too big

Atomic System Function

* ASFs are an upper limit for MM-Paths:
— MM-Paths should not cross ASF boundaries

* ASFs represent the seam between integration
and system testing:

— they are the largest item to be tested during
Integration testing,

— and the smallest item for system testing

ASF Example

\/0

MM-path: Interleaved sequence of module exec path and messages
Module exec path: entry-exit path in the same module

Atomic System Function: port input, ... {MM-paths}, ... port output

Test cases: exercise ASFs

21

Threads

* We view system testing in terms of threads of system
level behavior.

* Many possible views of a thread:
— a scenario of normal usage
— a system level test case
— a stimulus/response pair

— behavior that results from a sequence of system level
inputs

— aninterleaved sequence of port input and output events

Threads

— a sequence of transitions in a state machine
description of a system

— an interleaved sequence of object messages and
method executions

— a sequence of machine instructions
— a sequence of source instructions
— a sequence of atomic system functions

Thread Levels

e Threads have distinct levels:

— Unit level thread is understood as an execution-time path
of instructions or some path on a flow graph

— Integration level thread is a sequence of MM-paths that
implement some atomic function. Usually denoted as a
sequence of module executions and messages

— System level thread is a sequence of atomic system
functions

Thread Levels

* Since ASFs have port events as their inputs and
outputs, the sequence of ASFs implies an interleaved
sequence of port input/port output events.

* Threads provide a unifying view of the three levels of
testing:
— Unit testing tests individual functions
— Integration tests examine interaction among units
— System testing examines interactions among ASFs.

Thread Definitions

ASF Graph: a directed graph in which nodes are ASFs
and edges represent sequential flow.

Source ASF: an ASF that appears as a source node in
the ASF graph of a system

Sink ASF: an ASF that appears as sink node in the ASF
graph.

System thread: a path from a source ASF to a sink
ASF in the ASF graph of a system.

Basis Concepts for Requirements
Specification

 The objective is to discuss system testing with

respect to a basis set of requirements specification
constructs

e Every system can be specified in terms of the
following requirements specification constructs:
— Data

— Actions
— Ports

— Events
— Threads

Data

* For a system that is described in terms of its data,

— the focus is on the information used/created by the system

(described in terms of variables, data structures, fields,
records, data stores, and files)

* The data centered view is also starting point for
many OO analysis methods.

e Data refers to information that is either initialized,
stored, updated or possibly destroyed.

Data

e Data-centric systems are often specified in terms of
CRUD actions (Create, Retrieve, Update, Delete)

e Often, threads can be identified directly from the
data model
* Also possible to have read-only data (i.e. expected

PIN pairs, etc.)

— this must be part of system initialization process
* if not, then there must be threads that create the data.
* Hence read-only data is an indicator of source ASFs.

Actions

* Action-centered modeling is the most common
requirements specification form.

— Actions have inputs and outputs and these can be either
data or port events.

— Actions can also be decomposed in to lower level actions
(i.e. typical data flow diagrams).

* The input/output view of actions is the basis of
functional testing

Devices

* Every system has ports (and port devices):

— Sources and destinations of system level inputs
and outputs.

* |f no physical port devices in system, much of
system testing can be accomplished by moving
the port boundary inward to the logical
instances of port events.

Events

Events have some characteristics of data and some of
actions

An event is a system level input which occurs at a
port.

Events can be inputs to or outputs of actions:

— Can be either discrete or continuous

— Discrete events have a time duration and this can be
critical in real-time systems.

Threads

* Threads are the least frequently used of the
fundamental constructs.

— Since threads are tested, it is up to the tester to find them
in the interactions of the data, events, and actions.

* Finding Threads

— A finite state machine model of the system is a good
starting point to find threads since the paths are easily
converted to threads.

Finding Threads

* Usually, one deals with a hierarchy of state
machines i.e. the card entry state of an ATM
may be decomposed into lower levels that
deal with details like:

— jammed cards,
— cards that are upside-down,

— checking the card against the list of cards for
which service is offered, etc.).

Finding Threads

e At this level, states correspond to states of
processing, and transitions are caused by logical
(rather than port) events.

e Once the details of a macro-state are tested we
continue with the next macro-state

* Within the decomposition of the macro state we
need to identify the port input and port output
events

Finding Threads

* The hierarchy of finite state machines multiplies the
number of threads

* |deal to reach a state machine in which transitions
are caused by actual port input events, and the
actions on transitions are port output events

— Ggenerating the test cases for these threads is mechanical

— Just follow a path of transitions noting the inputs and
outputs as they occur along the path

Structural Strategies for Thread Testing

* Generating the threads may be easy, but to
decide which one to test is complex

* Encounter the same path explosion problem
at system level as at unit level
* Bottom Up Threads

— When state machines are organized in a hierarchy,
it is possible to work bottom up

Structural Strategies for Thread Testing

* Asseen in unit testing, structural testing can
be misleading

— The assumption is that path traversal uncovers

faults and traversing a variety of paths reduces
redundancy

e A more serious flaw with these threads is that

it is not really possible to execute them “by

themselves” due to the hierarchical state
machines.

Coverage Metrics

* Since FSMs are directed graphs, use same test
coverage metrics as at the unit level

* The hierarchical relationship indicates that the
upper level machine treats the lower level
machine as a procedure that is entered and
returned from

Coverage Metrics

 Two fundamental choices are node coverage
and edge coverage

— Node coverage is similar to statement coverage at
unit level: bare minimum .

— Edge (state transition) coverage is more
acceptable

INTERACTION TESTING

It is a relationship Interacts With among
Data

Events

Threads

Actions

Ports

The relationship is reflexive It is binary
relation between Data & events Data &
threads Events & threads

Properties of threads and
processors

Textbook has two meanings for event Causes confusion,
ambiguity, wordy explanations Use two words Use event for
instant Use state or activity for duration Occurs between two
e

Properties of threads and processors

Threads have duration

They are activities

At one time a processor can execute only one thread Events.

A processor is in a state of executing a thread @ Timesharing,
multiprocessing interleaves thread execution [Processor
changes state for each thread [Here thread durations overlap
in time

* On one processor events can be simultaneous within
the minimum resolution of time-grain markers .

 BUT reality (hardware) puts an order on those
events — puts them in a sequence.

- As far as we can tell it is a random choice

- At another occurrence the events may be
ordered in a different sequence

- That is an essential difficulty of interaction testing

On different processors, events can occur
simultaneously

Common events by definition must occur at
the same time

Consider a two people colliding — the collision
IS a common event to the two people
(processors)

Synchronous communication for processors
start and end with common events

For a single processor

Input and output events occur during thread
execution

From the perspective of a thread they cannot
occur simultaneously, because they occur at
instructions and instructions are executed
sequentially

From the perspective of devices port events
can be simultaneous

For each port events occur in time sequence

Threads occur only within one processor
Do not cross processor boundaries

Have trans-processor quiescence when
threads reach processor boundaries

Analogous to crossing unit boundaries in
Integration testing

What we want is sane behaviour

This results from considering events to be in a
linear sequence

For example synchronous communications
takes into account message transmission time
Break the communication into events such as
Sender starts sending

Receiver starts receiving
Sender ends sending

Receivaer endc receivinoc

Taxonomy of interactions

e Static interactions in a single processor system
Static interactions in multiprocessor system
Dynamic interactions in a single processor
system

 Dynamic interactions in multiprocessor
system

Given two propositions P and Q

They are contraries if both cannot be true
Sub-contraries if both cannot be false
Contradictories if exactly one is true

R is a subaltern of P if the truth of P
guarantees the truth of R—i.e.P > R

Rules in a decision table, if correct, are
contradictories

Static interactions in a single processor

Analogous to combinatorial circuits

Model with decision tables and unmarked
event-driven Petri nets

Telephone system example

Call display and unlisted numbers are
contraries

Both cannot be satisfied
Both could be waived

Data-data connectedness — Logical
relationships

0-connected

Logically independent
2-connected
Sub-alternation
3-connected — bidirectional
Contraries

Contradictories
Sub-contraries

EXAMPLES

3-connected data-data

When data are deeply related, as in repetition
and semaphores

1-connected data-event
Context-sensitive port input events

Dynamic, single processor
Interactions

Six potential interaction pairs
Combination pairs of

Data

Events Threads

Each interaction can exhibit 4 different graph
connectedness attributes

Result is 24 sub-categories for these
Interactions IAT-31

Thread —thread interaction

* Each thread can be represented by an EDPN

 The symbolic names of the places and
transitions correspond to those in the EDPN

for the system

* Synonyms in thread nets need to be resolved
when they interact

Dynamic Multiprocessor
Interactions
Problem here is threads and events occur in

parallel

We have concurrent behaviour with a
collection of communicating sequential
processors (CSP)

Have non-deterministic behaviour

To fully understand need to learn the
mathematics of CSP

Without that can only work through an
example

A system is

Determinism

deterministic if, given its inputs,

we can always predict its outputs

A system is

difficult to c

deterministic if it always produces

the same outputs for a given set of inputs

(For a non-deterministic system it may be

emonstrate different output

Process P ¢

nooses non-deterministically at

every step whether to engage in event

* aorb Process Q chooses non-deterministically
once whether to engage only with event a or
only with event b

* P=(@a=>P)(b>P)Q=(a—>Qa)(b—>Qb)AQa
=(a > Qa) Qb = (b - Qb)

* Pisdeterministic > Vs :traces (P) e X €
refusals (P/s) <> XN (P/s)1={}P1={e* (
e) € traces (P)} @ A system is deterministic if
at every step the system never refuses to
engage in any external event appropriate at
that step

P is deterministic ¢ Vs : traces (P) e X €
refusals (P/s) <> XN (P/s)1={}P1={e* (
e) € traces (P)}

P1 definition is the set of events in which P
may engage on the first step

P /s is the process after P has engaged in all
of the events in the trace s

A trace is a record of the external events in
which a process has engaged

A refusal is a set of events in which a process
refuses to engage

Client Server Complexities

* Base system has program components
Database, application, presentation (logical
output) Have a centralized, fat server and
distinction

* Entire system includes above items plus
Network

 GUI May have homogeneous or
heterogeneous processors

Client Server Testing
Extend notion of threads beyond an EDPN

CS transaction

A sequence of threads across EDPN
boundaries

Client processor --> network --> application --
>DBMS back again

Much of the system is stable — e.g. DBMS,
existing application Should testing be needed
Use functional testing — no source text

