UNIT 4

Levels of Testing,
Integration Testing

contents

* Levels of Testing, Integration Testing:
Traditional view of testing levels, Alternative
life-cycle models, The SATM system,
Separating integration and system testing. A
closer look at the SATM system,
Decomposition-based,call graph-based, Path-
based integrations.

Goals/Purpose of Integration Testing
* Presumes previously tested units
e Not system testing

e Tests functionality "between" unit and system
levels

e Basis for test case identification?

Testing Level Assumptions and Objectives
e Unit assumptions

— All other units are correct

— Compiles correctly

e [ntegration assumptions

— Unit testing complete

e System assumptions

— Integration testing complete
— Tests occur at port boundary
e Unit goals

— Correct unit function

— Coverage metrics satisfied

* Integration goals

— Interfaces correct

— Correct function across units
— Fault isolation support

e System goals

— Correct system functions

— Non-functional
requirements tested

— Customer satisfaction.

The software process

* A structured set of activities required to develop a
software system

— Specification;
— Design;
— Validation;
— Evolution.
* A software process model is an abstract representation of a

process. It presents a description of a process from some
particular perspective.

Approaches to Integration Testing
(“source” of test cases)

e Functional Decomposition (most commonly described in
the literature)

— Top-down

— Bottom-up

— Sandwich

— “Big bang”

e Call graph

— Pairwise integration

— Neighborhood integration

e Paths

— MM-Paths

— Atomic System Functions

Waterfall model

Requir ements

definition

Sy stem and
software design

Implementa tion

and unit testing

Integration and

sy stem testing

Oper atonand

maintenance

Waterfall model phases

Requirements analysis and definition
System and software design
Implementation and unit testing
Integration and system testing
Operation and maintenance

The main drawback of the waterfall model is

the difficulty of accommodating change after
the process is underway. One phase has to be
complete before moving onto the next phase.

Evolutionary development

Concurr ent
activities

o Initial
Specification version
Outline —_— Intermedia te |
description Development ¢ versions I
o Fmal
Valida tion — version

Evolutionary development

* Problems
— Lack of process visibility;
— Systems are often poorly structured;

— Special skills (e.g. in languages for rapid
prototyping) may be required.

* Applicability
— For small or medium-size interactive systems;

— For parts of large systems (e.g. the user interface);
— For short-lifetime systems.

Spiral development

Process is represented as a spiral rather than
as a sequence of activities with backtracking.

Each loop in the spiral represents a phase in
the process.

No fixed phases such as specification or design
- loops in the spiral are chosen depending on
what is required.

Risks are explicitly assessed and resolved
throughout the process.

Waterfall spin-offs

Emter amount.
‘Withdrawals must be
it increments of 10

| _Press Cancd if Ervor)

- Screen 10)

Temporarly uvmable o
proccsE ailhdrawals.

Another irassactios?
yes
. no
. Scieen 13

Flease pat envelope inso
depasiz skot. Your balames
weblll e i padaanecad.

\ Press Camcel il Ermor.

.
' s A ' Screen 2 ™
Emer your Persanal
Wekoome. Idencification Number
Fleasc Inscvt yomr .
AT card For servisce - yir >,
© Beween 4 I d Sareen 3)
Secbect transactaon e
Envalid idengification. balance
Yoo care] willl be depsin
retsined. Flease call wlbsdraosal
the bank_ Press Cancel il Erroe
o oy >
- Screem T ™ - Screen &

L“_E'l'l:'ﬁs Cance=l if Error

- Seroen 11

Your balance is being
updaied. Please iake cash
Iram dispenser.

.

Vowr neeva halasee is

prrbsted on yomr receipl.

Aneorher aransacLaen T
Mes

" Sereen 3 ™y

Yooaur Personal
kdentificamon Member
i® incosrect Please ry
agmin

M iy

' Svoen T

Select acoount 1ype:

checiing
SaAVimgs

\ Presas Cancel if Error .

- Screso ™

Flachine cannog dispense
than amessune.

Plzsess iy again.

S
-

-~

Screen 12

Tremporarily usable o
process deposies,
Avnodhee irasssction™

WS

"""‘-—-—._ E

II'..-—

-,

Screem 15

Flease rake yoair
recaipt and ATM
card. Thank you

\ .

Figure 12.6 Screens for the SATM system.

~ —
WILCDAE I Reoaipes
| i 1ha

e oNoJo.

— ojolo}
.'-.. card [of wrvie J @ {I} E} E}
' E:] cance) |

)
e)

Figure 12.7 The SATM terminal,

Hid daar
d | e maiEg e Tﬂ r— i .
Shoks comerared o Doery
—— e ——— s e

i

Figure 128 Context diagram of the SATM system.

Conlnmer
Sesslon =) Curode D Has
é . l
Trnsactios Aot
TeariType AzeiNumber
TemeCXDiay Hes | Balance
Amaurni | Type
A TR mamder | I
Termiml |
Qozun. 3 ATMid
Sizius
CishDeHued
—— ——

Figure 12.10 Entity/relationship model of the SATM system.

Figure TZ11 Upper-level SATM finite state machine,

Bdain Program

Swate = A& waliTard

Case Siale

Case 1D AwsinTard
SereenDirivesd I, null)
WarehCard S s (Card S hocSrates)
Dh "N'hdle CardSkotScaties iz [dle

WakchiCerd Shv {Card SlocStanes)

End ¥While

Il Caerad R
Then Stete = Aweminl*TH

Elaz CocerodTardFollestgject)

ExredEF
Srate = AwaitCard
Case 2: AwailPIM
YalidaseFP I PiMNok, PAM}
I FiMNak
Then ScreenDwiver(2, musl}
Siate = AwadTrang
Else ScresnDriver(d, null)
Erdlf
Slate = & waicTErd
Case 3: AwaitTrans
ManageTranssction
Swate = CloseSssshon
Case 4 CloseSecsion
IF HewTramsactionRequest
Then Stabe = AswailTrans
Else PrindReceipl

ControlCard Ballern
Simle == A e sl
Enmd Case (Stabe)
Erd. (Main program SATHM)

Procedare ValidmePIN(PINak. PAN)
GetPINforPAN{PAN, ExpeciedPIN)
Try = First
Case Try of
Case 1: Flrst
ScreenDriver (2, mall)
GelPIM (Enlered PIN)
If EnteredPIM = ExpectedPiMN
Then FlxNak = True
Flse ScresnDeriver(d, null)
Endif
T:I'_'|' = Becond
Case 2 Second
ScreenDiriver (2, mull)
Gt PFIN{Enterad IR}
If EnteredPIN = ExpectedPIM
Then PlMok = Tae
Elsz= Screen Diriver(X, malll)
Endlf
Try = Third
Case 3 Third
ScreenDriver (2, pall)
GetPIMN (EntesedPIN)
If EnteredPIN = ExpectedPTN
Then Plkok = True
Else ScresnDiriver(d. nudl)
= PIRGE = Fal
EndIf
Endase (Try)
End, (Procediee Yalidara IR)

System Testing

Contents

1.System Testing Overview
2.Functional system Testing
3.Non-functional system Testing

System Testing overview

Testing complete system.
It is done by independent Tester.
Bring in customer perspective in testing.

Objective is to find product level defects and
in building the confidence before the product
is released to the customer.

Provide a fresh pair of eyes to discover defects
not found earlier by testing.

Contents

* Acloser look at the SATM system

* Decomposition based Integration

Closer look at SATM SYSTEM

* The unit Calling graph is the directed graph in
which nodes are program units and edges
corresponds to program calls.

Table 13.1 SATM Units and Abbreviated Names

Linit Level
MNomber Mumber Linit Mame
1 1 SATM System
A 1.7 Drevice Sense & Control 5]
Cy 1.1.1 Door Sense & Control
2 1.1.1.1 Get Door Status a
3 1.7.1.2 Control Door
4 1.1.1.3 Dispense Cash m
E 1.1.2 Slot Sense & Control
5 T1.1.2.1 WatchCardSlot
G 1.9.2.2 Get Deposit Slot Status @
7 1.1.2.3 Control Card Roller
TTE T 1423 Confrol Envelope Roller — (9)
9 1.1.25 Read Card Strip
10 1.2 Central Bank Comm. (10)
11 1.2.1 Get PIMN for Pas
12 1.2.2 Get Account Status @
13 123 Post Daily Transactions
B 1.3 Terminal Sense & Control m
14 1.3.1 Screen Driver
15 1.3.2 Key Sensor
C 1.4 Manage Session

16 1.4.1 : Validate Card
17 1.4.2 validate PIN

18 T.4.2.1 GetPIiM
F 1.4.3 Close Session
19 1.4.3.1 Mew Transaction Request yp '

20 1.4.3.2 Print Receipt . ” Y X
21 1.4.3.3 Post Transaction Local / : .
o ®0 O 0

22 1.4.4 Manage Transaction
23 1.4.4.1 Get Transaction Type
24 1.4.4.2 Get Account Type

25 1.4.43 Report Balance

26 T.4.4.4 Process Deposit

2aF 1.4.45 Process Withdrawal

Table 13.2 Adjacency Matrix for the SATM Call Graph

2 3 4 5 6 7 8 9|10 11 12 13 14 15 16 17 18|19 20 21 22 23 24 25 26 27
X X R_J{K X X X X

20 1 O W0 g dad B =3

(=]

e e e e e . T T 1
0~ O W B W P =l 3
o
-
-
s
o
-
=

-
=]

-

b

20
21

22 X X X X X X
73 X X "
24 X X

25 X

26 X X X X X X X

27 X X X X X X X X

Decomposition Based Integration

 The goal is to interface Among Separately
tested units.

* We can obtain four integration strategies
based on functional decomposition tree

1.Top down
2.Bottom Up
3.Sandwich

4.Big bang

Top down

Top down integration begin with the main
program.

Any lower level unit that is called by main
program appear to be stub

Stub: they are piece of throwaway code that
emulate a called unit

It follows breadth first traversal

Module

Uses Modules

SATM Main

ValidatePIN

CetPIN

WatchCardSlot
Control Card Roller
Screen Driver
Validate Card
Validate PIN
Manage Transaction
Mew Transaction Request
GetPINforPAMN
CetPIN

Screen Driver
KeySensor

Screen Driver

Procedure GetPINforPAN(PAN, ExpectedPIN) STUR
If PAN ='1123 Then PIN := '8876'
If PAN ="1234' Then PIN = '8765'
E;m ="8746' Then PIN = '125%'

Procedurs KeySensor(KeyHit) STUB - -
data: KeyStrokes STACK OF 8. '8','T', 'cance]'
KeyHit = POP (KeyStrokes)

End

Top Subtree {Sessions | -4)

=

e [5 = u

Bottom Level Subiree (Sessions 18-42)

Figure 13.3 Top-down integration.

Bottom up Integration

* |t’s mirror image to the top down approach.
* Only change is we use Drivers instead of stubs.

Bottorm Subiree (Sessions 13-17)

Figure 13.4 Bottom-up integration.

Top-Down Integration Mechanism
eBreadth-first traversal of the functional
decomposition tree.

e First step: Check main program logic, with all
called

* units replaced by stubs that always return correct
values.

e Move down one level

— replace one stub at a time with actual code.

—any fault must be in the newly integrated unit

Bottom-Up Integration Mechanism
e Reverse of top-down integration

e Start at leaves of the functional decomposition
tree.

e Driver units...

— call next level unit

— serve as a small test bed

— “drive” the unit with inputs

— drivers know expected outputs

e As with top-down integration, one driver unit at a
time is replaced with actual code.

e Any fault is (most likely) in the newly integrated

code.

Call Graph-Based Integration

e Definition: The Call Graph of a program is a directed graph in which
— nodes are unit
— edges correspond to actual program calls (or messages)

e Call Graph Integration avoids the possibility of impossible edges in decomposition-
based

integration.
e Can still use the notions of stubs and drivers.
e Can still traverse the Call Graph in a top-down or bottom-up strategy.

Call Graph-Based Integration (continued)

e Two strategies

— Pair-wise integration

— Neighborhood integration

e Degrees of nodes in the Call Graph indicate
integration sessions

— isLeap and weekDay are each used by three units
e Possible strategies

— test high indegree nodes first, or at least,

— pay special attention to “popular” nodes

Pair-Wise Integration

e By definition, and edge in the Call Graph refers
to

an interface between the units that are the
endpoints of the edge.

e Every edge represents a pair of units to test.
e Still might need stubs and drivers

e Fault isolation is localized to the pair being
integrated

Neighborhood Integration

 The neighborhood (or radius 1) of a node in a
graph is the set of nodes that are one edge away

from the given node.

e This can be extended to larger sets by
choosing

larger values for the radius.
e Stub and driver effort is reduced.

Path-Based Integration

e Wanted: an integration testing level construct
similar to DD-Paths for unit testing...

— extend the symbiosis of spec-based and code-based
testing to the integration level

— greater emphasis on behavioral threads

— shift emphasis from interface testing to interactions
(confutations)

among units

e Need some new definitions

— source and sink nodes in a program graph
— module (unit) execution path

— generalized message

— MM-Path

