
UNIT 4

Levels of Testing, 

Integration Testing



contents

• Levels of Testing, Integration Testing: 
Traditional view of testing levels, Alternative 
life-cycle models, The SATM system, 
Separating integration and system testing. A 
closer look at the SATM system, 
Decomposition-based,call graph-based, Path-
based integrations.



Goals/Purpose of Integration Testing

• Presumes previously tested units

• Not system testing

• Tests functionality "between" unit and system 
levels

• Basis for test case identification?



Testing Level Assumptions and Objectives
• Unit assumptions
– All other units are correct
– Compiles correctly
• Integration assumptions
– Unit testing complete
• System assumptions
– Integration testing complete
– Tests occur at port boundary
• Unit goals
– Correct unit function
– Coverage metrics satisfied
• Integration goals
– Interfaces correct
– Correct function across units
– Fault isolation support
• System goals
– Correct system functions
– Non-functional
requirements tested
– Customer satisfaction.



The software process

• A structured set of activities required to develop a 
software system

– Specification;

– Design;

– Validation;

– Evolution.

• A software process model is an abstract representation of a 
process. It presents a description of a process from some 
particular perspective.



Approaches to Integration Testing
(“source” of test cases)
• Functional Decomposition (most commonly described in
the literature)
– Top-down
– Bottom-up
– Sandwich
– “Big bang”
• Call graph
– Pairwise integration
– Neighborhood integration
• Paths
– MM-Paths
– Atomic System Functions



Waterfall model



Waterfall model phases

• Requirements analysis and definition
• System and software design
• Implementation and unit testing
• Integration and system testing
• Operation and maintenance
• The main drawback of the waterfall model is 

the difficulty of accommodating change after 
the process is underway. One phase has to be 
complete before moving onto the next phase.



Evolutionary development



Evolutionary development

• Problems
– Lack of process visibility;

– Systems are often poorly structured;

– Special skills (e.g. in languages for rapid 
prototyping) may be required.

• Applicability
– For small or medium-size interactive systems;

– For parts of large systems (e.g. the user interface);

– For short-lifetime systems.



Spiral development

• Process is represented as a spiral rather than 
as a sequence of activities with backtracking.

• Each loop in the spiral represents a phase in 
the process. 

• No fixed phases such as specification or design 
- loops in the spiral are chosen depending on 
what is required.

• Risks are explicitly assessed and resolved 
throughout the process.



Waterfall spin-offs



















System Testing

Contents

1.System Testing Overview

2.Functional system Testing

3.Non-functional system Testing



System Testing overview

• Testing complete system.

• It is done by independent Tester.

• Bring in customer perspective in testing.

• Objective is to find product level defects and 
in building the confidence before the product 
is released to the customer.

• Provide a fresh pair of eyes to discover defects 
not found earlier by testing.



Contents

• A closer look at the SATM system

• Decomposition based Integration



Closer look at SATM SYSTEM

• The unit Calling graph is the directed graph in 
which nodes are program units and edges 
corresponds to program calls.







Decomposition Based Integration

• The goal is to interface Among Separately 
tested units.

• We can obtain four integration strategies 
based on functional decomposition tree

1.Top down

2.Bottom Up

3.Sandwich

4.Big bang 



Top down

• Top down integration begin with the main 
program.

• Any lower level unit that is called by main 
program appear to be stub

• Stub: they are piece of throwaway code that 
emulate a called unit

• It follows breadth first traversal







Bottom up Integration

• It’s mirror image to the top down approach.

• Only change is we use Drivers instead of stubs.





Top-Down Integration Mechanism
•Breadth-first traversal of the functional
decomposition tree.
• First step: Check main program logic, with all 
called
• units replaced by stubs that always return correct
values.
• Move down one level
– replace one stub at a time with actual code.
– any fault must be in the newly integrated unit



Bottom-Up Integration Mechanism
• Reverse of top-down integration
• Start at leaves of the functional decomposition 
tree.
• Driver units...
– call next level unit
– serve as a small test bed
– “drive” the unit with inputs
– drivers know expected outputs
• As with top-down integration, one driver unit at a
time is replaced with actual code.
• Any fault is (most likely) in the newly integrated
code.



Call Graph-Based Integration

• Definition: The Call Graph of a program is a directed graph in which
– nodes are unit
– edges correspond to actual program calls (or messages)
• Call Graph Integration avoids the possibility of impossible edges in decomposition-
based
integration.
• Can still use the notions of stubs and drivers.
• Can still traverse the Call Graph in a top-down or bottom-up strategy.



Call Graph-Based Integration (continued)
• Two strategies
– Pair-wise integration
– Neighborhood integration
• Degrees of nodes in the Call Graph indicate
integration sessions
– isLeap and weekDay are each used by three units
• Possible strategies
– test high indegree nodes first, or at least,
– pay special attention to “popular” nodes



Pair-Wise Integration

• By definition, and edge in the Call Graph refers 
to

an interface between the units that are the

endpoints of the edge.

• Every edge represents a pair of units to test.

• Still might need stubs and drivers

• Fault isolation is localized to the pair being

integrated



Neighborhood Integration

• The neighborhood (or radius 1) of a node in a

graph is the set of nodes that are one edge away

from the given node.

• This can be extended to larger sets by 
choosing

larger values for the radius.

• Stub and driver effort is reduced.



Path-Based Integration
• Wanted: an integration testing level construct
similar to DD-Paths for unit testing...
– extend the symbiosis of spec-based and code-based
testing to the integration level
– greater emphasis on behavioral threads
– shift emphasis from interface testing to interactions 
(confutations)
among units
• Need some new definitions
– source and sink nodes in a program graph
– module (unit ) execution path
– generalized message
– MM-Path


