
Prepared By

Mr. C. R. Belavi

CSE, HSIT, NDS

 Path Testing, Data Flow Testing: DD paths, Test

coverage metrics, Basis path testing, guidelines and
observations. Definition-Use testing, Slice-based
testing, Guidelines and observations.

Unit 3

DD Paths

 Test Coverage metrics

 Basis Path testing

content

Software Testing

G=(V,E)

PATH

Directed Graph

Program graph

 Program graph

PATH Testing

Decision-Decision Path

DD Path

 Test coverage metrics are a device to measure the
extent to which a set of test cases covers a program.

18

Test Coverage Metrics

Test Coverage Metrics
Metric Description of Coverage

C0 Every Statement

C1 Every DD-Path

C1P Every predicate to each outcome

C2 C1 Coverage + loop coverage

Cd C1 Coverage + every dependent pair of

DD-Paths

CMCC Multiple condition coverage

Cik Every program path that contains up to

k repetitions of a loop (usually k=2)

Cstat “Statistically significant” fraction of

paths

C∞ All possible execution paths 19

 Statement Testing: Every statement is executed by

the test set and Predicate Testing: Every logical
predicate is executed by the test set

DD path testing: check for all possible paths

Dependent pair of DD-paths: reference/Dependent

Multiple condition coverage: use truth table instead
of predicate.

 Loop coverage: concatenated, nested, horrible

Selection Statements
–Using if and if...else

–Nested if Statements

–Using switch Statements

Repetition Statements

–Looping: while, do, and for

–Nested loops

–Using break and continue

22

Boiler shutdown conditions

1. The water level in the boiler is below X lbs. (a)

2. The water level in the boiler is above Y lbs. (b)

3. A water pump has failed. (c)

4. A pump monitor has failed. (d)

5. Steam meter has failed. (e)

The boiler is to be shut down when a or b is true or the boiler is in degraded

mode and the steam meter fails. We combine these five conditions to form a

compound condition (predicate) for boiler shutdown.

Boiler in degraded mode when

either is true.

23

Another example

A condition is represented formally as a predicate, also known as a

Boolean expression. For example, consider the requirement

``if the printer is ON and has paper then send document to printer."

This statement consists of a condition part and an action part. The

following predicate represents the condition part of the statement.

pr: (printerstatus=ON) (printertray= empty)

24

Predicates

Relational operators (relop): {<, , >, , =, .}

= and == are equivalent.

Boolean operators (bop): {!,,, xor} also known as

{not, AND, OR, XOR}.

Relational expression: e1 relop e2. (e.g. a+b<c)

e1 and e2 are expressions whose values

can be compared using relop.

Simple predicate: A Boolean variable or a relational

expression. (x<0)

Compound predicate: Join one or more simple predicates

using bop. (gender==“female”age>65)

 Statement coverage based testing aims to devise test cases that

collectively exercise all statements in a program.

 Predicate coverage (or branch coverage, or decision coverage)
based testing aims to devise test cases that evaluate each simple
predicate of the program to True and False.

 For example in predicate coverage for the condition
if(A or B) then C we could consider the test cases A=True, B=
False (true case), and A=False, B=False (false case). Note if the
program was encoded as if(A) then C we would not detect any
problem.

25

Statement and Predicate Coverage
Testing

DD-Path Graph Edge Coverage
C1

26

1 2

T F

T F

Here a T,T and

F,F combination will

suffice to have DD-Path

Graph edge coverage or

Predicate coverage C1

P1

P2

 This is the same as the C1 but

now we must consider test
cases that exercise all possible
outcomes of the choices T,T,
T,F, F,T, F,F for the predicates
P1, and P2 respectively, in the
DD-Path graph.

 If else, case statements are
checked.

27

DD-Path Coverage
Testing C1P

T F

T F

P1

P2

 Now if we consider that the predicate P1 is a compound

predicate (i.e. (A or B)) then Multiple Condition Coverage
Testing requires that each possible combination of inputs
be tested for each decision.

 Example: ―if (A or B)‖ requires 4 test cases:
A = True, B = True
A = True, B = False
A = False, B = True
A = False, B = False

 The problem: For n conditions, 2n test cases are needed,
and this grows exponentially with n.

28

Multiple Condition Coverage
Testing

 The simple view of loop testing coverage is that we must devise

test cases that exercise the two possible outcomes of the
decision of a loop condition that is one to traverse the loop and
the other to exit (or not enter) the loop.

 An extension would be to consider a modified boundary value
analysis approach where the loop index is given a minimum,
minimum +, a nominal, a maximum -, and a maximum value or
even robustness testing.

 Concatenated: sequence of disjoint loops

 Nested: one is contained inside another.

 Horrible:
29

Loop Coverage

Concatenated

loop

nested horrible

Mathematicians define a basis in terms of a structure

called a vector space, which is a set of
elements(vectors) as well as operations that
correspond to multiplication & addition defined for
the vectors.

Basis Path Testing

McCabe based his view of testing on a major result

from graph theory.

Which states that the cyclomatic no. of a strongly
connected graph is the number of linearly
independent circuits in the graph.

We can create a strongly connected graph by adding
an edge from the(every) sink node to the (every)
source node.

McCabe’s basis path
method

V(G)=e-n+2p; arbitrary directed graph

V(G)=e-n+p; strong directed graph

e– no of edges, n—no of nodes, p—no of connected
regions.

 Two important points should be made here.

1)if there is a loop, it only has to be traversed once, or
else the basis will contain redundant

2)it is possible for there to be more than one basis.

Cont.,

 The cyclomatic complexity of the strong connected graph

is 5; thus there are five linearly independent circuits.
 If we now delete the added edge from node G to node A.

these 5 circuits become five linearly independent paths
from node A to node G.

 In a small graphs, we can identify independent paths
P1:A,B,C,G
P2:A,B,C,B,C,G
P3:A,B,E,F,G
P4:A,D,E,F,G
P5:A,D,F,G

Cont.,

 Path addition is simply 1 path followed by another

path, & multiplication corresponds to repetitions of a
path.

McCabe arrives at a vector space of program paths.

 Path A,B,C,B,E,F,G is the basis sum p2+p3-p1 & the
path A,B,C,B,C,B,C,G is the linear combination 2p2-
p1

Cont.,

 Each decision is ―flipped‖ that is when a node of out

degree>=2 is reached, a different edge must be taken.

Cont.,

Cont.,

Essential Complexity

Prepared By

Mr. C. R. Belavi

Asst. Professor

Dept. of CSE, HIT, NDS

Data flow testing(DFT) is NOT directly related to the
design diagrams of data-flow-diagrams(DFD).

 It is a form of structural testing and a White Box
testing technique that focuses on program variables
and the paths:

 From the point where a variable, v, is defined or assigned a
value

 To the point where that variable, v, is used

Data Flow Testing

 Static analysis allows us to check (test or find faults) without
running the actual code, and we can apply it to analyzing variables
as follows:

1. A variable that is defined but never used
2. A variable that is used but never defined

3. A variable that is defined a multiple times prior to usage.

 While these are dangerous signs, they may or may not lead to
defects.
1. A defined, but never used variable may just be extra stuff
2. Some compilers will assign an initial value of zero or blank to all

undefined variable based on the data type.
3. Multiple definitions prior to usage may just be bad and wasteful logic

 We are more interested in “executing” the code than just
static analysis, though.

Static Analysis of Data

In define-use testing, we are interested in
testing (executing) certain paths that a variable
is defined – to - its usage.

These paths will provide further information
that will allow us to decide on choice of test
cases beyond just the earlier discussed paths
analysis (all statements testing or dd-testing
(branch) or linearly independent paths).

Variable Define-Use Testing

• In Data Flow Testing (DFT) we are interested in the

“dependencies” among data or “relationships”
among data ----- Consider a data item, X:

– Data Definitions (value assignment) of X: via 1) initialization,
2) input, or 3) some assignment.
• Integer X; (compiler initializes X to 0 or it will be “trash”)

• X = 3;

• Input X;

– Data Usage (accessing the value) of X: for 1) computation and
assignment (C-Use) or 2) for decision making in a predicate (P-
Use)
• Z = X + 25; (C-Use)

• If (X > 0) then ----- (P-Use)

Data Dependencies and Data Flow
Testing(DFT)

 Defining node, DEF(v,n), is a node, n, in the program graph where
the specific variable, v, is defined or given its value (value
assignment).

 Usage node, USE(v,n), is a node, n, in the program graph where the
specific variable, v, is used.

 A P-use node is a usage node where the variable, v, is used as a
predicate (or for a branch-decision-making).

 A C-use node is any usage node that is not P-used.

 A Definition-Use path, du-path, for a specific variable, v, is a path

where DEF(v,x) and USE(v,y) are the initial and the end nodes of
that path.

 A Definition-Clear path for a specific variable, v, is a Definition-
Use path with DEF(v,x) and USE(v,y) such that there is no other
node in the path that is a defining node of v. (e.g. v does not get
reassigned in the path.)

Some Definitions

Simple Example

1. Pseudo-code Sample

2. int a, b

3. input (a, b)

4. if (a > b)

5. then Output (a, “ a bigger than b”)

6. else Output (b, “ b is equal or greater than a”)

7. end

3

4

5 6

7

The following are examples of the definitions:

• DEF(a, 3) – node 3 is a defining node of variable “a” --- a value is assigned to “a”

• USE(a, 4) – node 4 is a usage node of variable “a”

• USE(a, 5) – node 5 is a usage node of variable “a”

• USE (a,4) is a P-use node while

• USE(a,5) is C-use node

• Path that begins with DEF(a,3) and ends with USE(a,4) is a definition-use path of a

• Path that begins with DEF(a,3) and ends with USE(a,5) is a definition-use path of a

• Path that begins with DEF(a,3) and ends with USE(a,5) is a definition-clear path of a

• Path that begins with DEF(b,3) and ends with USE(b.6) is a definition-use path of b

Note that: if we choose the definition-use paths [last two examples above] of both

variables a and b, then it is the same as executing the decision-decision (dd) path

or branch testing.

This is type defining not value

 All-Defs : contains set of test paths, P, where for every variable v in the
program, P includes definition-clear paths from every DEF(v,n) to only one of its
use node.

 All-Uses: contains set of test paths, P, where for every variable v in the
program, P includes definition-clear paths from every DEF(v,n) to every use of
v and to the successor node of that use node.

 All-P-Use/Some C-Use: contains set of test paths, P, where for every variable
v in the program, P contains definition-clear paths from DEF(v,n) to every
predicate –use node of v; and if there is no predicate-use, then the definition-
clear path leads to at least one C-use node of v.

 All-C-Use/Some P-Use: contains set of test paths, P, where for every variable
v in the program, P contains definition-clear paths from DEF(v,n) to every
computation-use node of v; and if there is no computation-use, then the
definition-clear path leads to at least one predicate-use node of v.

 All-DU-paths: contains the set of paths, P, where for every variable v in the
program, P includes definition-clear paths from every DEF(v,n) to every
USE(v,n) and to the successor node of each of the USE(v,n), and that these
paths are either single loop traversals or they are cycle free.

Definitions of Definition-Use (DU) testing

Summarizing hierarchy

All possible paths

All-DU-paths

All-Uses

All-C-Use/some-P-Use All-P-Use/some-C-Use

All-Defs

Text page 160 has another chain

Under All-P-Use/some-C-Use;

take a look at that page.

 He was a chief scientist at Xerox PARC. Weiser is
widely considered to be the father of ubiquitous
computing, a term he coined in 1988.

Mark D. Weiser
(July 23, 1952 – April 27, 1999)

Slice Based Testing

A program slice is a subset of a program.

 Program slicing enables programmers to view
subsets of a program by filtering out code that is not
relevant to the computation of interest.

 E.g., if a program computes many things, including
the average of a set of numbers, slicing can be used
to isolate the code that computes the average.

What is a Program Slice?

 Program slices are more manageable for testing and

debugging.

When testing, debugging, or understanding a
program, most of the code in the program is
irrelevant to what you are interested in.

 Program slicing provides a convenient way of
filtering out “irrelevant” code.

 Program slices can be computed automatically by
statically analyzing the data and control flow of the
program.

Why is Program Slicing
Useful?

Assume that:

 P is a program.

 V is the set of variables at a program location (line
number) n.

A slice S(V,n) produces the portions of the program
that contribute to the value of V just before the
statement at location n is executed.

 S(V,n) is called the slicing criteria.

Definition of Program
Slice

 Slice S(V,n) must be derived from P by deleting

statements from P.

 Slice S(V,n) must be syntactically correct.

 For all executions of P, the value of V in the
execution of S(V,n) just before the location n must be
the same value of V in the execution of the program
P just before location n.

A Program Slice Must
Satisfy the Following

Conditions:

1.a=3;

2.b=6;

3.c=b^2;

4.d=a^2+b^2;

5.c=a+b;

S(c,5) S(c,3)

2.b=6;

1.a=3; 3. c=b^2;

2.b=6;

5.c=a+b;

Example

Example:
Assume the Following

Program ...
main() {

1. int mx, mn, av;
2. int tmp, sum, num;
3.
4. tmp = readInt():
5. mx = tmp;
6. mn = tmp;
7. sum = tmp;
8. num = 1;
9.

10. while(tmp >= 0)
11. {
12. if (mx < tmp)
13. mx = tmp;
14. if (mn > tmp)
15. mn = tmp;
16. sum += tmp;
17. ++num;
18. tmp = readInt();
19. }
20.

21. av = sum / num;
22. printf(“\nMax=%d”, mx);
23. printf(“\nMin=%d”, mn);
24. printf(“\nAvg=%d”, av);
25. printf(“\nSum=%d”, sum);
26. printf(“\nNum=%d”, num);
}

Slice S(num,26)

main() {
2. int tmp, num;
4. tmp = readInt():
8. num = 1;
10. while(tmp >= 0)
11. {
17. ++num;
18. tmp = readInt();
19. }
26. printf(“\nNum=%d”, num);

}

Slice S(sum, 25)

main() {
2. int tmp, sum;
4. tmp = readInt():
7. sum = tmp;
10. while(tmp >= 0)
11. {
16. sum += tmp;
18. tmp = readInt();
19. }
25. printf(“\nSum=%d”, sum);
}

Slice S(av, 24)
main() {

1. int av;
2. int tmp, sum, num;
4. tmp = readInt():
7. sum = tmp;
8. num = 1;
10. while(tmp >= 0)
11. {
16. sum += tmp;
17. ++num;
18. tmp = readInt();
19. }
21. av = sum / num;
24. printf(“\nAvg=%d”, av);
}

Slice S(mn, 23)
main() {

1. int mn;
2. int tmp;
4. tmp = readInt():
6. mn = tmp;
10. while(tmp >= 0)
11. {
14. if (mn > tmp)
15. mn = tmp;
18. tmp = readInt();
19. }
23. printf(“\nMin=%d”, mn);
}

Slice S(mx, 22)

main() {
1. int mx;
2. int tmp;
4. tmp = readInt():
5. mx = tmp;
10. while(tmp >= 0)
11. {
12. if (mx < tmp)
13. mx = tmp;
18. tmp = readInt();
19. }
22. printf(“\nMax=%d”, mx);
}

Given a slice S(X,n) where variable X depends on

variable Y with respect to location n:

 All d-uses and p-uses of Y before n are included in
S(X,n).

 The c-uses of Y will have no effect on X unless X is a
d-use in that statement.

 Slices can be made on a variable at any location.

Observations about
Program Slicing

 Select the slicing criteria (i.e., a variable or a set of

variables and a program location).

Generate the program slice(s).

 Perform testing and debugging on the slice(s).
During this step a sliced program may be modified.

Merge the modified slice with the rest of the
modified slices back into the original program.

Program Slicing Process

 Spyder

 A debugging tool based on program slicing.

Unravel

 A program slicer for ANSI C.

Tools for Program
Slicing

 [Weiser84] Weiser, M., Program Slicing, IEEE

Transactions on Software Engineering, Vol. SE-10,
No. 4, July, 1984.

 [Gallagher91] Gallagher, K. B., Lyle, R. L., Using
Program Slicing in Software Maintenance, IEEE
Transactions on Software Engineering, Vol. SE-17,
No. 8, August, 1991.

 [DeMillo96] DeMillo, R. A., Pan, H., Spafford, E. H,
Critical Slicing for Software Fault Localization, Proc.
1996 International Symposium on Software Testing
and Analysis (ISSTA), San Diego, CA, January, 1996.

References

THANK YOU

