Unit 2: Functional Testing

Boundary value Testing
Equivalence class Testing
Decision Tab

B Subject Code: 10CS842 I.A. Marks : 25 |

Hours/Week: 04 Exam Hours: 03
Total Hours : 52 Exam Marks: 100

UNIT 2
Boundary Value Testing, Equivalence Class Testing, Decision Table-Based

\%

Testing: Boundary value analysis, Robustness testing, Worst-case testing, Special value testing,
Examples, Random testing, Equivalence classes, Equivalence test cases for the triangle problem,
NextDate function, and the commission problem, Guidelines and observations. Decision tables,

Test cases for the triangle problem, NextDate function, and the commission problem, Guidelines and
observations.

contents

* Boundary Value Testing
Boundary Value Analysis

Generalizing Boundary Value Analysis: variable 4n+1 and range
Limitations of Boundary Value Analysis: independent and
physical quantity.

Robustness Testing: Extrema value are exceeded

Worst Case Testing: more than one variable has extreme value

Special Value Testing: Tester uses his domain knowledge,

experience.

Any program can be considered to be a_function in

the sense that prog. I/p form its domain & prog.
o/p form its range.

Input domain testing is the best known functional
testing technique.

Boundary Value Analysis

Name

Choose your username
»

Please use Detween § and 30 characiers

For valid user name it should consist characters in the
range from 6 to 30

Boundary Value Analysis

6 30

Mm
A

Based on 5 elements values of BVA: min-(5) min(6), min+(7),
nom(12), max-(29),max(30),max+(31)

When function F is implemented as a pogram, the
input variables x1 & x2 will have some boundaries

F(x,x,),a<x,<b,c<x,<d
[a,b] [c,d] are ranges of x1 & x2.

Strongly typed languages (Ada, Pascal) permit such
variable range.

» xl

Figure 5.1 Input domain of a function of two variables.

*Input space(domain) of our function F is shown above.
*Any point within the shaded rectangle is a legitimate input to the

function F.
*Boundary value analysis focuses on the boundary of the input space to

identify test cases.

Errors tend to occur near the extreme values of an
input variable
e.g. loop conditions (< instead of <), counters

Basic idea: use input variable values at their minimum
(min), just above the minimum (min+), a nominal value
(nom), just below their maximum (max-), and at their
maximum (max).

Testing tool (T) generates such Test Cases for Properly
specified program. min, min+, max-, max.

» The boundary value analysis test cases are obtained
by holding the values of all but one variable at their
nominal values, and letting that variable assume its

extreme values

<X
<X
<X
<X
<X
<X
<X
<X
<X
<X

1nom’
1nom?’
1nom’

1nom’

1min+?
1nom’
Imax-’

1max’

1nom’ X2min

x X

2nom

x X

2max

Imin? “*2nom

X X

2nom

X X

2nom

v V

2min+

v V

2max-

>
v V V

2nom

v V

2nom

V

Figure 5.2

Boundary value analysis test cases for a function of two variables.

Generalized in 2 ways
No of variables.
Kinds of ranges.

For a function of n variables, boundary value
analysis yields 4n+1 unique test cases.

By the kinds of ranges, depends on the type (nature) of the
variables
Variables have discrete, bounded values
e.g. NextDate function, commission problem
Variables have no explicit bounds
Create “artificial” bounds
e.g. triangle problem
Boolean variables
Decision table-based testing
Logical variables (bound to a value or another logic variable)
e.g. PIN and transaction type in SATM System

Boundary value analysis works well when the
program to be tested is a function of several
independent variables that represent bounded
physical quantities.
e.g. NextDate test cases are inadequate (little stress on
February, dependencies among month, day, and year)

e.g. variables refer to physical quantities, such as temperature,
air speed, load etc. {Sky Harbour International Airport 120
deg F eg.)

Simple extension of boundary value analysis

In addition to the five boundary value analysis
values of a variable, see what happens when the
extrema are exceeded with a value slightly greater
than the maximum (max+) and a value slightly less
than the minimum (min-)

Focuses on the expected outputs
e.g. exceeding load capacity of a public elevator
May 32 we expect error message.

Forces attention on exception handling

Robustness Testing

x2 Considering min- and max+
A values along with 5 elements
| of BVA |
‘ °
I+t — == —=——+—-
| I
l |
o0® ¢ o0&
I . |
I s e bl
l l > xl
b

Figure 5.3 Robustness test cases for a function of two variables.

Worst case analysis: more than one variable has an extreme
value

Procedure:

For each variable create the set <min, min+, nom, max-, max>
Take the Cartesian product of these sets to generate test cases

More thorough than boundary value analysis

Represents more effort

For n variables — 5" test cases (as opposed to 4n+1 test cases for
boundary value analysis)

Worst Case Testing

Taking Cartesian I |
product of d |- fo— —e— — — —op — -
X21:min, min+, nom, max-, max ! ¢ ¢ *
X2:min,min+, nom, max-, max I
I |
9 ® [N
1 ® @ ® 1
c ™ Tl _—e—— — = - o-?- _— -
! I >» xl
a b

Figure 5.4 Worst-case test cases for a function of two variables. 5"'n

Combinationof | e%¢ o e
Robust and yy o 0ée
worst case I |
Testing. 7°n | |
(XX (] LN
010 0 .1.
— 0l b . = 00— .
‘ (N X -9 OTO
| | »
b

Figure 5.5 Robust worst-case test cases for a function of two variables.

The most widely practiced form of functional testing
Most intuitive, least uniform, no guidelines

The tester uses his/her domain knowledge, experience with

similar programs, “ad hoc testing”
It is dependent on the abilities of the tester

Even though it is highly subjective, it often results in a set
of test cases which is more effective in revealing faults than

the test sets generated by the other methods

Equivalence class.
Weak normal equivalence class testing.
Strong normal equivalence class testing.
Weak Robust equivalence class testing.
Strong Robust equivalence class testing.

—amount <= 1800

—amount >= 15000

Equivalence class Testing

Equivalence classes

— 1800 < amount < 15000 Equivalence classes

/

amaount

Equivalence class testing

= We need to test onlty one value from each equivalence class;
testing more would be redundant

* Equivalence classes help us to design tests which ensure
— Completeness
— MNon-redundancy

Completeness
A=AlVAZ2 O WO AS
Domain

setA Mon-redundancy

i#] AN A =2

Motivations
Have a sense of complete testing
Avoid redundancy

Equivalence classes form a partition of a set, where partition
refers to a collection of mutually disjoint subsets whose union is
the entire set (completeness, non-redundancy)

The idea is to identify test cases by using one element from each
equivalence class

The key is the choice of the equivalence relation that determines
the classes

When Function F is implemented as a program, the
input Variables x1,x2 will have boundaries

o r————— e — -— —e—

a <x <d, w1th intervals [a b) [b c) [c, d]
e < x, < g, with intervals [e,), [f, gl

[nvalid values of x, and x,are: x, <a,x,>d, and x, < e, x,> g

Assumes the ‘single fault’” or “independence of input
variables.”

e.g. If there are 2 input variables, these input variables
are independent of each other.

Partition the test cases of each input variable separately
into one of the different equivalent classes.

Choose the test case from each of the equivalence classes

for each input variable independently of the other input
variable

Using 1 variable from each equivalence class(interval) in a
test case.

N

D)

N

o

&

)

N

D)

e’

A

= =
&

D)

9 | | |

= | | |

2 e =
a 1 1 1

s () o

= i .
S o

g | | |

et - m T mAaT T o
m ! ! !

= SN N S a
S | | |

4 | | |

Ju o | |

m m o —)

Multi Fault assumption.

We need Test cases from each element of the Cartesian
product of the equivalence classes.

The Cartesian product guarantees that we have a notion of
completeness in two senses

We cover all the equivalence classes,
We have 1 of each possible combination of inputs.

Strong Normal Equivalence class test cases

e —— === ==} -——-

:xl

f
e

Up to now we have only considered partitioning the
valid input space.

“Weak robust” 1s similar to “weak normal”
equivalence test except that the invalid input
variables are now considered.

The robust part comes from consideration of invalid
values, & the weak part refers to the single fault
assumption.

N

O

N

=

&

)

N

O

sl

A <
h A
&

D) | | |

O ! ! !

5 AU IR SR PP .
— ! | |

m@) O |

5 e et I
=2 m m m

E IIII.I@II_IIII_ IIIII a
7 I

= ! O

S S A e ®
- : : ‘“

g ! ! !

a u | | |

m S o - o

» 2 problems occur with robust equivalence testing.

Specification do not define what the expected output for an
invalid input should be.

Strongly typed languages eliminate the need for the
consideration of invalid inputs.

Robust part comes from consideration of invalid
values,

Strong part refers to the multiple fault assumption.

We obtain test cases from each element of the
Cartesian product of all the equivalence classes

Strong robust Equivalence class test cases

S U

:xl

R1 = |<a, b, ¢> : the triangle with sides a, b, and c is equilateral)
—R2-={<ab,¢>-thetriangle with sides a; b; and-e-is-isescelest——
R3 = {<a, b, ¢> : the triangle with sides a, b, and ¢ is scalene}

R4 = {<a, b, ¢> : sides a, b, and ¢ do not form a triangle]

The four weak normal equivalence class test cases are:

Test Case a b ¢ Expected Output
WN1 5 5 5 Equilateral
WN2 2 2 3 |lIsosceles

WN3 3 4 5 Scalene

WN4 4 1 2 NotaTriangle

Considering the invalid values for a, b, and ¢ yields the following additional
weak robust equivalence class test cases:

TestCase a b ¢ Expected Output

WR1 -1 5 5 Valueofais notin the range of permitted values
WR2 5 -1 5 Value of bis notin the range of permitted values
WR3 . 5 5 -1 Valueofcisnotin the range of permitted values

R

lestCase a b ¢ Expected Output

WRe 201 5 5 Valueofaisnotin the range of permitted values
WRS 5 01 5 Valueofbisnot in the range of permitted values
WR6 5 5 201 Valueofcisnotin the range of permitted values

Here is one “comer’ of the cube in 3-space of the additional strong robust
equivalence class test cases:

TestCase a b ¢ | Fxpected Output

SR -1 5 5 Valueofais not in the range of permitted values

SR2 5 =1 5 Valueofbis notin the range of permitted values

SR3 5 5 -1 Valueof cis not in the range of permitted values

SR4 -1 =15 Values of 3 b are not in the range of permitted values
SRS 5 -1 -1 Values of b, care not in the range of permitted values
SRé -1 5 -1 Values of 3 c are not in the range of permitted values
SR7 -1 -1 -1 Values of 3 b, care not in the range of permitted values

Equivalence Class Test Cases for NextDate
Function

M1 = {month : 1 £ month <€ 12}
D1 = {day : 1 € day < 31}
Y1 = {year : 1812 < year < 2012}

The invalid equivalence classes are:

M2 = {month : month < 1}
M3 = {month : month > 12}
D2 = {day : day < 1}

D3 = {day : day > 31}

Y2 = {year : year < 1812}
Y3 = {year : year > 2012}

Because: the number of valid classes equals the number of independent
variables, only one weak normal equivalence clags test case occurs, and it i
dentical to the strong normal equivalence class test case:

- GaelD Month Doy Vear “Bipected Outprt T

—_—
WNT,NT 6 15 1912 gr16mo)

Here is the full set of weak robust test cases:

-“
Case D Month Day Year Expected Output

WRT 6 15 1912 616/1912

WR2 -1 15 1912 Value of month not in the range 1.12
WR3 13 15 1912 Value of month not in the range 1.12
WR4 b -1 1912 Value of day not in the range 1.31

WR5 6 32 1912 Value of day not in the range 1.31

WR6 b 15 1811 Value of year not in the range 1812..2012
WR7 6 15 2013 Value of year not in the range 1812.2012

%

e TTTT T mmm e g

the additional strong robust equivalence class test cases:

m

Case ID Month Day Year fxpected Output
SRT -1 15 1912 Value of month not in the range 1..12
W
Case ID Month Day Year Expected Output
SR2 6 -1 1912 Value of day not in the range 1..31
SR3 6 15 1811 Value of year not in the range 1812..2012
SR4 -1 -1 1912 Value of month not in the range 1..12
| Value of day not in the range 1..31
SR5 6 -1 1811 Value of day not in the range 1..31
Value of year not in the range 1812..2012
SR6 -1 15 1811 Value of month not in the range 1..12
Value of year not in the range 1812..2012
SR7 -1 -1 1811 Value of month not in the range 1..12

Value of day not in the range 1..31
Value of year not in the range 1812..2012

M1 = {month : month has 30 days}
M2 = {month : month has 31 days}
M3 = {month : month is February}
D1 = {day : 1 < day < 28}

D2 = {day : day = 29}
D3 = {day : day = 30}
D4 = {day : day = 31}
Y1 = {year : year = 2000}

Y2 = {year : year is a leap year}
Y3 = {year : year is a common year}

~Case ID Month Day Year

Expected Output

WN1
WN2
WN3
WN4

Sy NN O

14
29
30
31

2000
1996
2002
2000

6/15/2000

7/30/1996

2/31/2002 (impossible date)
7/1/2000 (impossible input date)

Case ID Month Day Year Expected Output

SN 6 14 2000 6/15/2000
SN2 6 14 1996 6/15/1996 i

SN3 6 14 2002 6/15/2002

SN4 6 29 2000 6/30/2000

SN5 6 29 1996 6/30/1996

SN6 6 29 2002 6/30/2002

SN7 6 30 2000 6/31/2000 (impossible date)
SN8 6 30 1996 6/31/1996 (impossible date)
SN9 6 30 2002 6/31/2002 (impossible date)
SN10 6 31 2000 7/1/2000 (invalid input)
SN11 6 31 1996 7/1/1996 (invalid input)
SN12 6 31 2002 7/1/2002 (invalid input)
SN13 7 14 2000 7/15/2000

SN14 7 14 1996 7/15/1996

SN15 7 14 2002 7/15/2002

SN16 7 29 2000 7/30/2000

SN17 7 29 1996 7/30/1996

~ The valid classes of the input variables are:

L1 = {locks : 1 < locks < 70}

L2 = {locks = —1}
S1 = {stocks : 1 < stocks < 80}
B1 = {barrels : 1 < barrels < 90}

The corresponding invalid classes of the input variables are:

L; = {locks : locks = 0 OR locks < -1}
L, = {locks : locks > 70}

S2 = {stocks : stocks < 1}

S3 = {stocks : stocks > 80}

B2 = {(barrels : barrels < 1)

B3 = {barrcls : barrels > 90}

m

Case ID locks Stocks Barrels Expected Output
SR1 -1 40 45 Value of Locks not in the range 1..70
SR2 35 -1 45 Value of Stocks not in the range 1..80
SR3 35 40 -1 Value of Batrels not in the range 1..90
oR4. 11 45 Value of Locks not in the range 1.70
Value of Stocks not in the range 1..80
SR5 -1 40 -1 Value of Locks not in the range 1..70
Value of Barrels not in the range 1..90
SR6 35 -1 -1 Value of Stocks not in the range 1..80
Value of Barrels not in the range 1..90
SR7 -1 -1 -1 Value of Locks not in the range 1..70

Value of Stocks not in the range 1..80
Value of Barrels not in the range 1..90

“

Output range equivalence class test cases

sales = 45 X locks + 30 x stocks + 25 X barrels
We could define equivalence classes of three variables by commission ranges:

S1 = {<locks, stocks, barrels> : sales < 1000)

2 = {<locks, stocks, barrels> : 1000 < sales < 1800
$3 = [<locks, stocks, barrels> : sales > 1800)

Output Range Equivalence Class Test Cases

M
Test Case locks Stocks Barrels Sales Commission

OR1 5 5 5 500 50
OR2 BB 15 1500 175
OR3 5 25 2500 360

W

.~ Obviously, the weak forms of equivalence class testing (normal or robust)
are not as comprehensive as the corresponding strong forms.

 If the implementation language is strongly typed (and invalid values cause
run-time errors), it makes no sense to use the robust forms.

I error conditions are a high priority, the robust forms are appropriate.

. Equivalence class testing is appropriate when input data is defined in terms
of intervals and sets of discrete values. This is certainly the case when
system malfunictions can occur for out-oflimit variable values.

. Equivalence class testing is strengthened by a hybrid approach with bound-
ary value testing. (We can “reuse” the effort made in defining the equiv-

alence classes.)

Used to represent & analyze complex logical
relationships since the early 1960.

Most rigorous because decision table enforces logical
rigor.

2 types of methods

Cause effect graphing
Decision tableau method

Decision Tables - Structure

Conditions - (Condition stub) Condition Alternatives —
(Condition Entry)

Actions — (Action Stub) Action Entries

 Each condition corresponds to a variable, relation or predicate
« Possible values for conditions are listed among the condition
alternatives
« Boolean values (True / False) — Limited Entry Decision Tables
« Several values — Extended Entry Decision Tables
« Don'’t care value
« Each action is a procedure or operation to perform
» The entries specify whether (or in what order) the action is to be
performed

e To express the program logic we can use a
limited—entry decision table consisting of 4 areas
called the condition stub, condition entry, action

stub and the action entry: ~_Condition entry

~ N
Rulel Rule2 Rule3 Rule4

(Conditionl | Yes Yes No No

Condition | Condition2 | Yes X No X

stub Condition3| No Yes No X

\ Condition4 No Yes No Yes

Actionl Yes Yes No No

Actionstufy | Action2 No No Yes No

_ Action3 No No No Yes

- YAction Entry

e We can specify default rules to indicate the action
to be taken when none of the other rules apply.

» When using decision tables as a test tool, default
rules and their associated predicates must be
explicitly provided.

Rule5 Rule6 Rule7 Rule8
Conditionl X No Yes Yes
Condition2 X Yes X No
Condition3 Yes X No No
Condition4 No No Yes X
Default Yes Yes Yes Yes
action

Conditions

Printer does not print

Ared light is flashing

Printer is unrecognized

Actions

Heck the power cable

Check the printer-computer cable

Ensure printer software is installed

Check/replace ink

Check for paper jam

Printer Troubleshooting

Below table tells about the Condition
and action to be taken

Table 7.1 Portions of a Decision Table

\

Stub | Rule 1 | Rule 2 | Rules 3,4 | Rule 5 Rule 6 | Rules 7, 8
cl T T T F | F F

c2 T T F | T T - f

3| T F - T | F | =

al | X X X |

a2 X X

a3 X i X ..

a4 | X } |

\

Table 7.2 Decision Table for the Triangle Problem
M

c3:a, b, cformatriangle? | N | Y| Y [Y Y
c2:a=b? - 1Y
c:a=c! — Y
ch b =? - 1Y
al: Not a triangle
a2: Scalene | X
a3: Isosceles | X X | X

a4: Equilateral X | |

a5: Impossible XX X
M

< < Z <
Z < Z <
< Z Z <
Z Z Z <

YIY]Y
Y{ NN
N|Y|N

><

Table 7.3 Refined Decision Table for the Triangle Problem
M

cl: a<b+c? FIT{TIT|T¢T|T|T{T|T|T
2bat? | = | F|T|{T|T{T|T|T|T|T|T
3: c<a+b? | = | F{T|T|IT|T{T|{T[T|T
cha=b? | | = T|T|T|T|F{F]F|F
ch:a=c? = = | T|T|FF|T|TF}F
c6: b =c? | = = {T|F|T|F|T|F|T{F
al: Notatriangle | X | X | X

a2: Scalene | | X
a3: Isosceles | Xi | XX
a4: Equilateral X| |

a5: Impossible | XX X

M

In mutually exclusive only one condition can
be performed at a time.

Table 7.4 Decision Table with Mutually Exclusive Conditions
M

Conditions R1
¢1: month in M1? T
¢2: month in M2¢ -
c3: month in M3? —

M“

al
az
a3

RZ

R3

M

Table 7.5 Decision Table for Table 7.3 with Rule Counts

c1: a<b+c? FITIT T
c2: bca+c? - F | T
c3: c<a+b? — | —1{F
c4:a=b? - - -
c:a=c? - | =] -
c6: b =ct - -~
Rule Count 32|16 | 8
al: Notatriangle | X | X | X
a2: Scalene X
a3: Isosceles X X1 X
a4: Equiiateral X
a5: Impossible XX X

-

e B R I R R

o i e e e
el e B B I A |
o B R i I R

ol Bnr e B A

el o e B e B B
e R
o b R R B

Table 7.6 Rule Counts for a Decision Table with Mutually Exclusive Conditions

Conditions R1 R2 R3
c1: month in M1 T —_ —_
c2: month in M2 — T -
c3: month in M3 — — T
Rule Count 4 4 4
al

Table 7.7 Expanded Version of Table 7.6

=T
oy LI Ll - —
o
Hl’:m) .. -
. i I . i
~ F— = —
E
e i — | 35 S —
o -
g e b P~
3
o3 — | — | S 2. B e
~N — — -
=t
—— e Lt LI. x——
o i
3 ’
- —
m— L | vy
o = = = e
—
2 s = = =S
e - - - Lo
rm o O o
S E E E o
(A - - - - - - m
PR nu d =

Table 7.8 Mutually Exclusive Conditions with Impossible Rules

1111213 14123)] 24/ 34
c1: mo. in M1 T T] T | T F F | F |F
€2: mo. in M2 T T F{ F | T T F | F
€3: mo. in M3 T 1 F T F | T F T 1F
Rule Count 1 1 1 1 1 1 1T 11
al: impossible { X [X | X | X ' | X

Table 7.9 A Redundant Decision Table

Conditions | 1-4 | 5 {6 | 7 | 8 | 9
c1 T FI1F}{ F]F T
c2 — (T|T}F | F1F
c3 — |\ T{F|]T|F|F
al X | X[X[{=]|~=1X
a2 — I X [X] X | -]~
a3 X | —(X]I X X1 X

Table 7.10 An Inconsistent Decision Table

Conditions | 1-4 | 5
cT T1F

c2 - T
3 =T
al X | X

a2 -1 X

23 X | -

6

><><><|n

71819
P F{F]T
F{F|F
T F
X | =] X
X | X | =

Table 7.11 Test Cases fromTable 7.3
CaselD a b c¢ Expected Output
DT1 4 1 2 NotaTriangle
DT2 T 4 2 NotaTriangle
DT3 1T 2 4 Nota Triangle
DT4 5 5 5 Equilateral

DTS5 ¢ ? ! Impossible
DT6 ? 2 7 Impossible
D17 2 2 3 lsosceles

DT8 ¢ 2?2 Impossible
DT9 2 3 2 ‘lsosceles

DT10 3 2 2 Isosceles

DT11 3 4 5 Scalene

Test cases for NextDate Function

M1 = {month : month has 30 days}
_ M2 = {month : month has 31 days}
(Iflqalégljslence M3 = {month : month is February}
D1 = {day : 1 < day < 28}
\ D2 = {day : day = 29}
D3 = {day : day = 30}
D4 = {day : day = 31}
Y1 = {year : year is a leap year|
Y2 = {year : year is not a leap year]

al: Too many days in a month

. - Why many
a2: Cannot happen in a non-leap year . s were
a3: Compute the next date impossible

Test cases for NextDate Function
Table 7.12 First Try Decision Table with 256 Rules

Conditions
ct: monthinM1? | T
c2: month in M2? T
c3: month in M32 T
c4: day in D1?
c5: day in D2¢
c6: day in D3?
c7: day in D4?
c8: year in Y1?
al: impossible

a2: next date
w

M1 = {month : month has 30 daysl}
M2 = {month : month has 31 days)
M3 = {month : month is February}
D1 = {day : 1 £ day < 28]

D2 = {day : day = 29
D3 = {day : day = 30
D4 = {day : day = 31}
Y1 = {year : year = 2000}

Y2 = {year : year is a leap year}

Y3 = {year : year is a common year}

Table 7.13 Second Try Decision Table with 36 Rules

a5: reset month
ab6: increment year

7 2 3 4 5 6 7 8
el month in M1 M1 MI__MT M2 M2 M2 M2

c2: day in D1 D2 D3 D4 D1 D2 D3 D4
Cc3: year in — — — —_ —_ — C— —
Rule count 3 3 3 3 3 3 3 3
actions
al: impossible X
a2: increment day X X X X X
a3: reset day X X
a4: increment month X ?
a5: reset month ?
a6: increment year ¢

9 10 11 12 13 14 15 16 17
c1: month in M3 M3 M3 M3 M3 M3 M3 M3 M3
c2: day in D1 D1 D1 D2 D2 D2 D3 D3 D4
c3: year in Y1 Y2 Y3 Y1 Y2 Y3 — —_ —_
Rule count 1 1 1 1 1. 1 3 3 3
actions
a'l: impossible X X X X
a2: increment day X
a3: reset day X X X X
a4: increment month X X X X

M1 = {month : month has 30 days]
M2 = {month : month has 31 days except December]
M3 = {month : month is December]

M4 = {month : month is February}
D1 = {day : 1 < day £ 27)

D2 = {day : day = 28

D3 = {day : day = 29

D4 = {day : day = 30}

D5 = [day : day = 31

Y1 = {year : year is a leap year]

Y2 = {year : year is a common year]

AT T p——

Table 7.14 Decision Table for the NextDate Function
1 2 3 4 5 6 7 8 9 10
c1: month in M1 MT MT MT M1 M2 A2 M2 M2 M2
c2: day in D1 D2 D3 D4 D5 D1 D2 D3 D4 DS
c3: year in _ - = = = — —_ — — —
actions
al: impossible X
a2: increment day X X X X X X X
a3: reset day X X
a4: increment month X X
ab: reset month
a6: increment year
117 12 13 14 15 16 17 18 19 20 21 22
c1: month in M3 M3 M3 M3 M3 M4 M4 M4 M4 M4 M4 M4
c2: day in D1 D2 D3 D4 D5 D1 D2 Dz D3 D3 D4 D5
c3: year in — —_ — Y1 Y2 Y1 Y2 — —
actions
al: impossible X X X
a2: increment day X X X X X X
_a3: reset day X X X
a4: increment month X X
a5: reset month X
a6: increment year X

Table 7.15 Reduced Decision Table for the NextDate Function

-3 4 5 6—9 10
c1: month in M1 M1 M1 M2 M2
c2: day in D1, D2, D32 D4 D5 D1,D2 D3, D4 DS
c3: year in — — —_ _— — If the action sets
of 2ruleina
actions limited entry
.) decision table
al: impossible X are identical,
a2: increment day X X there must be 1
a3: reset day X X condition that
a4: increment X X allow 2 rules to
month bt? combined
with a don’t care
a5: reset month _ entry
a6: increment year
1714 15 16 17 18 19 20 21, 22
c1: month in M3 M3 M4 M4 M4 M4 M4 M4
c2: day in D1, D2, D3, D4 D5 D1 D2 D2 D3 D3 D4, D5
c3: year in — — — Y1 Y2 Y1 Y2 —
actions A
al: impossible X X
—-az2-increment-day X e X e e R e e R
a3: reset day X X X
a4: increment X X
month
a5: reset month X

a6: increment year X

Table 7.16 Decision Table Test Cases for NextDate

w

Case ID Month Day Year Expected Output
-3 April 15 2001 April 16, 2001

4 April 30 2001 May 1, 2001

5 April 31 2001 Impossible

6-9 January 15 2001 January 16, 2001
10 January 31 2001 February 1, 2001
11-14 December 15 2001 December 16, 2001
15 December 31 2001 January 1, 2002
16 February 15 2001 February 16, 2001
17 February 28 2004 February 29, 2004
18 February 28 2001 March 1, 2001

19 February 29 2004 March 1,2004

20 February 29 2001 Impossible
21,22 February 30 2001 Impossible

M

Commission problem is not well served by decision
table analysis.

Very little decision logic is used in the problem

O

Thank you all..?

O

Thank you all..?

