
P R E S E N T E D B Y :

M R . C . R . B E L A V I

D E P T . O F C S E , H S I T , N I D A S O S H I

Unit 2: Functional Testing
Boundary value Testing

Equivalence class Testing
Decision Table Based Testing

Subject Code: 10CS842 I.A. Marks : 25

Hours/Week : 04 Exam Hours: 03

Total Hours : 52 Exam Marks: 100

UNIT 2

Boundary Value Testing, Equivalence Class Testing, Decision Table-Based

Testing: Boundary value analysis, Robustness testing, Worst-case testing, Special value testing,

Examples, Random testing, Equivalence classes, Equivalence test cases for the triangle problem,

NextDate function, and the commission problem, Guidelines and observations. Decision tables,

Test cases for the triangle problem, NextDate function, and the commission problem, Guidelines and

observations.

To Understand fundamental concepts in software testing, including software

testing objectives, process, criteria, strategies, and methods.

To discuss various types of software testing and its techniques

To list out various tools which can be used for automating the testing process

To Understand various software quality standards for establishing quality

environment

To Analyze planning , monitoring the process and Documentation

contents

 Boundary Value Testing

 Boundary Value Analysis

 Generalizing Boundary Value Analysis: variable 4n+1 and range

 Limitations of Boundary Value Analysis: independent and

physical quantity.

 Robustness Testing: Extrema value are exceeded

 Worst Case Testing: more than one variable has extreme value

 Special Value Testing: Tester uses his domain knowledge,

experience.

Boundary Value Testing

 Any program can be considered to be a function in
the sense that prog. I/p form its domain & prog.
o/p form its range.

 Input domain testing is the best known functional
testing technique.

For valid user name it should consist characters in the

range from 6 to 30

Based on 5 elements values of BVA: min-(5) min(6), min+(7),

nom(12), max-(29),max(30),max+(31)

Boundary Value Analysis

 When function F is implemented as a pogram, the
input variables x1 & x2 will have some boundaries

F(x1, x2), a ≤ x1 ≤ b, c ≤ x2 ≤ d

[a,b] [c,d] are ranges of x1 & x2.

 Strongly typed languages (Ada, Pascal) permit such
variable range.

•Input space(domain) of our function F is shown above.
•Any point within the shaded rectangle is a legitimate input to the
function F.
•Boundary value analysis focuses on the boundary of the input space to
identify test cases.

Cont.,

 Errors tend to occur near the extreme values of an
input variable
 e.g. loop conditions (< instead of ≤), counters

 Basic idea: use input variable values at their minimum
(min), just above the minimum (min+), a nominal value
(nom), just below their maximum (max-), and at their
maximum (max).

 Testing tool (T) generates such Test Cases for Properly
specified program. min, min+, max-, max.

Cont.,

 The boundary value analysis test cases are obtained
by holding the values of all but one variable at their
nominal values, and letting that variable assume its
extreme values <x

1nom
, x

2min
>

<x
1nom

, x
2min+

>

<x
1nom

, x
2nom

>

<x
1nom

, x
2max-

>

<x
1nom

, x
2max

>

<x
1min

, x
2nom

>

<x
1min+

, x
2nom

>

<x
1nom

, x
2nom

>

<x
1max-

, x
2nom

>

<x
1max

, x
2nom

>

Generalizing Boundary value Analysis

 Generalized in 2 ways
 No of variables.

 Kinds of ranges.

 For a function of n variables, boundary value
analysis yields 4n+1 unique test cases.

Conti.,

 By the kinds of ranges, depends on the type (nature) of the
variables
 Variables have discrete, bounded values

 e.g. NextDate function, commission problem

 Variables have no explicit bounds

 Create “artificial” bounds

 e.g. triangle problem

 Boolean variables

 Decision table-based testing

 Logical variables (bound to a value or another logic variable)

 e.g. PIN and transaction type in SATM System

Limitations of Boundary value Analysis

 Boundary value analysis works well when the
program to be tested is a function of several
independent variables that represent bounded
physical quantities.
 e.g. NextDate test cases are inadequate (little stress on

February, dependencies among month, day, and year)

 e.g. variables refer to physical quantities, such as temperature,
air speed, load etc. {Sky Harbour International Airport 120
deg F eg.)

Robustness Testing

 Simple extension of boundary value analysis

 In addition to the five boundary value analysis
values of a variable, see what happens when the
extrema are exceeded with a value slightly greater
than the maximum (max+) and a value slightly less
than the minimum (min-)

 Focuses on the expected outputs
 e.g. exceeding load capacity of a public elevator

 May 32 we expect error message.

 Forces attention on exception handling

Robustness Testing

Considering min- and max+

values along with 5 elements

of BVA

Worst-Case Testing

 Worst case analysis: more than one variable has an extreme
value

 Procedure:
 For each variable create the set <min, min+, nom, max-, max>

 Take the Cartesian product of these sets to generate test cases

 More thorough than boundary value analysis

 Represents more effort
 For n variables → 5n test cases (as opposed to 4n+1 test cases for

boundary value analysis)

Worst Case Testing

Taking Cartesian

product of

X1:min, min+, nom, max-, max

X2:min,min+, nom, max-, max

5^n

Combination of

Robust and

worst case

Testing. 7^n

Special value testing

 The most widely practiced form of functional testing

 Most intuitive, least uniform, no guidelines

 The tester uses his/her domain knowledge, experience with

similar programs, “ad hoc testing”

 It is dependent on the abilities of the tester

 Even though it is highly subjective, it often results in a set

of test cases which is more effective in revealing faults than

the test sets generated by the other methods

Contents

Equivalence class.

Weak normal equivalence class testing.

Strong normal equivalence class testing.

Weak Robust equivalence class testing.

Strong Robust equivalence class testing.

Equivalence class Testing

– amount <= 1800
– 1800 < amount < 15000
– amount >= 15000

Equivalence classes

 Motivations

 Have a sense of complete testing

 Avoid redundancy

 Equivalence classes form a partition of a set, where partition

refers to a collection of mutually disjoint subsets whose union is

the entire set (completeness, non-redundancy)

 The idea is to identify test cases by using one element from each

equivalence class

 The key is the choice of the equivalence relation that determines

the classes

Equivalence class Testing

 When Function F is implemented as a program, the
input variables x1,x2 will have boundaries

Weak Normal Equivalence class Testing

• Assumes the „single fault‟ or “independence of input
variables.”

• e.g. If there are 2 input variables, these input variables
are independent of each other.

• Partition the test cases of each input variable separately
into one of the different equivalent classes.

• Choose the test case from each of the equivalence classes
for each input variable independently of the other input
variable

• Using 1 variable from each equivalence class(interval) in a
test case.

Weak Normal Equivalence class test cases

X2

x1

e

f

g

a b c d

Strong Normal Equivalence testing

 Multi Fault assumption.

 We need Test cases from each element of the Cartesian
product of the equivalence classes.

 The Cartesian product guarantees that we have a notion of
completeness in two senses

 We cover all the equivalence classes,

 We have 1 of each possible combination of inputs.

Strong Normal Equivalence class test cases

X2

x1

e

f

g

a b c d

Weak Robust Equivalence class Testing

 Up to now we have only considered partitioning the
valid input space.

 “Weak robust” is similar to “weak normal”
equivalence test except that the invalid input
variables are now considered.

 The robust part comes from consideration of invalid
values, & the weak part refers to the single fault
assumption.

weak robust Equivalence class test cases

X2

x1

e

f

g

a b c d

Cont.,

 2 problems occur with robust equivalence testing.
 Specification do not define what the expected output for an

invalid input should be.

 Strongly typed languages eliminate the need for the
consideration of invalid inputs.

Strong Robust Equivalence Testing

 Robust part comes from consideration of invalid
values,

 Strong part refers to the multiple fault assumption.

 We obtain test cases from each element of the
Cartesian product of all the equivalence classes

Strong robust Equivalence class test cases

X2

x1

e

f

g

a b c d

content

 Equivalence class test cases for
 Triangle problem

 NextDate Function

 Commission problem

Equivalence class Test Cases for Triangle
problem

Equivalence Class Test Cases for NextDate
Function

Equivalence Classes

Equivalence Class Test Cases

Strong Normal Equivalence test case

Equivalence Class Test case for commission
problem

Strong Robust equivalence Test cases

Output range equivalence class test cases

Guidelines & observations

Content

 Decision tables
 technique

 Test cases for the Triangle problem

Decision table based testing

 Used to represent & analyze complex logical
relationships since the early 1960.

 Most rigorous because decision table enforces logical
rigor.

 2 types of methods
 Cause effect graphing

 Decision tableau method

Decision Tables - Structure

Conditions - (Condition stub) Condition Alternatives –

(Condition Entry)

Actions – (Action Stub) Action Entries

• Each condition corresponds to a variable, relation or predicate
• Possible values for conditions are listed among the condition
alternatives

• Boolean values (True / False) – Limited Entry Decision Tables
• Several values – Extended Entry Decision Tables
• Don’t care value

• Each action is a procedure or operation to perform
• The entries specify whether (or in what order) the action is to be

performed

 To express the program logic we can use a
limited-entry decision table consisting of 4 areas
called the condition stub, condition entry, action
stub and the action entry:

Rule1 Rule2 Rule3 Rule4

Condition1 Yes Yes No No

Condition2 Yes X No X

Condition3 No Yes No X

Condition4 No Yes No Yes

Action1 Yes Yes No No

Action2 No No Yes No

Action3 No No No Yes

Condition

stub

Action stub

Action Entry

Condition entry

 We can specify default rules to indicate the action
to be taken when none of the other rules apply.

 When using decision tables as a test tool, default
rules and their associated predicates must be
explicitly provided.

Rule5 Rule6 Rule7 Rule8

Condition1 X No Yes Yes

Condition2 X Yes X No

Condition3 Yes X No No

Condition4 No No Yes X

Default

action

Yes Yes Yes Yes

Decision Table - Example

Conditions

Printer does not print Y Y Y Y N N N N

A red light is flashing Y Y N N Y Y N N

Printer is unrecognized Y N Y N Y N Y N

Actions

Heck the power cable X

Check the printer-computer cable X X

Ensure printer software is installed X X X X

Check/replace ink X X X X

Check for paper jam X X

Printer Troubleshooting

Below table tells about the Condition

and action to be taken

In mutually exclusive only one condition can

be performed at a time.

Test cases for NextDate Function

Equivalence

classes

Why many

rules were

impossible

Test cases for NextDate Function

Second Try

Third try

If the action sets

of 2 rule in a

limited entry

decision table

are identical,

there must be 1

condition that

allow 2 rules to

be combined

with a don’t care

entry

Test cases for commission problem

 Commission problem is not well served by decision
table analysis.

 Very little decision logic is used in the problem

