
M R .  C .  R .  B E L A V I

D E P T .  O F  C S E ,  H S I T ,  N I D A S O S H I

Software Testing 
Unit 1



Content

 A perspective on Testing

Basic Definition

Test Cases

 Insights from a Venn Diagram

 Identifying Test Cases

Functional Testing

Structural Testing

Error & Fault Taxonomies

Level of Testing



Why Do we Test.?

 To make a judgment about quality or acceptability.

 Discover Problems



Basic Definitions

 Error(mistake): mistake while coding-bug

 Fault(defect): Result of an error

Fault of omission

Fault of commission

 Failure: A failure occurs when a Fault executes.

 Incident: Alerts user occurrence of a Failure

 Test: concerned with errors, faults, failures, 
incident

 Test Case: have identity & is associated with a 
program behavior. Has i/p & o/p





Process of testing

 Test planning

 Test case development

 Running test cases

 Evaluating test results



Test Cases



Insights from a Venn Diagram



Cont.,



Identifying Test Cases

 Functional Testing( Black Box Testing):
implementation of Black box is not known.

 Function of black box is understood by i/p & o/p.



Functional Testing 

 Advantages
 Independent of how the software is implemented.

 If implementation change test cases are still useful

 Test case development can occur in parallel with the 
implementation.

 Disadvantage:
 Redundancies may exist among test cases

 Possibility of gaps of untested software.



Conti.,



Structural Testing

 Also called white box testing( even clear box 
Testing)

 Implementation (of the Black box) is known & 
used to identify test cases.





The functional VS Structural Debate

 Goals of both approach is to identify test cases.

 Functional testing uses only the specification to 
identify test cases.

 Structural testing uses the programs source 
code(implementation) as the basis of test case 
identification.



Cont.,

 When functional test cases are executed in combination
with structural test coverage metrics twin problems
redundancies & gaps faced by functional testing can be

recognized & resolved.



Testing as a craft

 When we know what kind of error we are prone to 
make

 If we know what kind of faults are likely to reside in 
software to be tested.

 We can use this to employ more appropriate test 
case identification methods. 

 At this point testing really becomes a craft.



Error & Fault Taxonomies

 Definition of error & fault hinge on the distinction 
between process & product

 Process-refer to how we do something.

 Product-end result of a process.

 SQA- tries to improve the product by improving the 
process.

 Testing is clearly more product oriented.

 Faults can be classified in several ways













Levels of Testing

 Levels of testing echo the levels of abstraction found 
in the waterfall model of the SDLC.

 In functional testing 3 levels of definition 
(specification, preliminary design, detailed design) 
correspond directly to 3 levels of testing –system, 
integration & unit testing.





Examples

 Three examples to illustrate various unit Testing 
methods.

 These examples raise most of the issues that testing 
craftsperson's will encounter at the unit level.

 For the purpose of structural testing, pseudocode 
implementation of 3 unit-level eg. are given.
 The triangle problem

 NextDate

 Commission problem



Generalized Psuedocode

 Pseudocode provides a “language neutral” way to 
express program source code.

 Pseudocode given here is based on visual basic.









Triangle Problem

 Problem statement

 Simple version: The triangle program accepts 3 
integers a, b, c as input to be sides of a triangle

 o/p is type of triangle determined by 3 sides

 Equilateral, Isosceles, Scalene, Not a triangle.



Improved version

Sides of triangle integer a, b, c must satisfy the following conditions

One of the 4 mutually exclusive output is given













Traditional Implementation







The NextDate Function

 Illustrate complexity

 Logical relationship among the i/p variables

Problem statement:

 NextDate is a function of 3 variables Month, Day, 
Year.

 It returns the date of the day after the i/p date.

 condition



Problem statement

 Responses for invalid values of i/p values for day, 
month, year.

 Responses for invalid combination of i/p june 31 any 
year.

 If any of the conditions C1, C2, or C3 fails
 Corresponding variables has out-of-range values.

 Eg. “Value of month not in range 1…12”

 If invalid day-month- year combination exist 
NextDate collapses these into one message

“Invalid input date”



Discussion

 Two source of complexity
 Complexity of input domain

 Rule that determine when a year is leap year.

 A year is 365.2422 days long

 Leap years are used for the “extra day” problem.

 According to Gregorian calendar
 A year is a leap year if it is divisible by 4, unless it is a century 

year.

 Century years are leap years only if they are multiples of 400

 So 1992, 1996, 2000 are leap years… 1900 is not



Implementation







Improved Version











The commission Problem

 It contains a mix of computation & decision making.

 A rifle salesperson in the former Arizona territory 
sold rifle lock’s, stocks, & barrel’s made of a 
gunsmith in Missouri.

 Locks cost $45, stocks cost $30, Barrel Cost $ 25.

 Sales person has to sell at least 1 complete rifle per 
month

 Production limitation such that 1 sales man can sell 
70 locks, 80 stocks, 90 barrels per month. 



 After each town visit salesperson update sale of no of 
locks, stocks, barrels through a telegram to gunsmith

 At the end of month salesperson sent a shot telegram 
showing -1 locks sold.

 Gunman knew sales for month are over & compute 
the commission of sales person
 10% on sales up to $1000

 15% on the next $800

 20% on any sales in excess of $1800

The commission program produces a monthly sales 
report that gave total no. of locks, barrels, stocks 
sold. Sales persons total dollar sale & commission.



Discussion

 This problem separates into 3 distinct pieces 

 The input data portion( data validation) ignore here

 Sales calculation 

 Commission calculation problem.



Implementation





The SATM System

 To better discuss the issues of integration & system 
testing 





The currency converter

•Another event 

driven program 

that emphasizes 

code associated 

with a GUI

•A sample GUI 

built with visual 

basic is shown.



Saturn Windshield Wiper Controller





Thank you ???



References

 Software Testing Craftsman’s Approach-Paul C 
Jorgensen.


