Software Testing

O

A perspective on Testing
Basic Definition
Test Cases
Insights from a Venn Diagram

Identifying Test Cases

Functional Testing
Structural Testing

Error & Fault Taxonomies
Level of Testing

Why Do we Test.?

9,

Error(mistake): mistake while coding-bug
Fault(defect): Result of an error

Fault of omission

Fault of commission
Failure: A failure occurs when a Fault executes.
Incident: Alerts user occurrence of a Failure

Test: concerned with errors, faults, failures,
incident

Test Case: have identity & is associated with a
program behavior. Has i/p & o/p

A testing life cycle.

Process of testing

9,

Test Cases

Test Case 1D
Purpose
Preconditions
Inputs

Expected QOutputs
Postconditions

Execurion History
Date Result Version Run By

Typical test case information.

Insights from a Venn Diagram

Program Behaviors

0

Specification Program
(expected) (observed)

Specified and implemented program behaviors.

—
| Specification Program |
| (expected) (observed)
A |
| ‘ A
8 Test Cases
(verified)

Specified, implemented, and tested behaviors.

Functional Testing(Black Box Testing):
implementation of Black box is not known.

Function of black box is understood by i/p & o/p.

>

>

)...

-
- 8

An engineer’s black box.

Functional Testing

9,

Conti.,
| r—
Specification Program Specification Program
 Test Cases Test Cases
(Method A) | (Method B)

Cnmparing- functional test case identification methods.

S S T

Also called white box testing(even clear box
Testing)

Implementation (of the Black box) is known &
used to identify test cases.

Specification

Test Cases
(Method A)

Specification

Test Cases
(Method B)

Program

Comparing structural test case identification methods.

Goals of both approach is to identify test cases.

Functional testing uses only the specification to
identify test cases.

Structural testing uses the programs source
code(implementation) as the basis of test case
identification.

When functional test cases are executed in combination
with structural test coverage metrics twin problems
redundancies & gaps faced by functional testing can be
recognized & resolved.

Program Behavior

Functional Structural

(Black Box) {White Box)
establishes confidence secks faults

Sources of test cases.

When we know what kind of error we are prone to
make

If we know what kind of faults are likely to reside in
software to be tested.

We can use this to employ more appropriate test
case identification methods.

At this point testing really becomes a cratft.

Definition of error & fault hinge on the distinction
between process & product

Process-refer to how we do something.
Product-end result of a process.

SQA- tries to improve the product by improving the
process.

Testing is clearly more product oriented.
Faults can be classified in several ways

1. Mild Misspelled word

2. Moderate Misleading or redundant information

3. Annoying Truncated names, bill for $0.00

4. Disturbing Some transaction(s) not pm;cesscd

5. Serious Lose a transaction

6. Very serious {ncorrect transaction execution

7. Extreme Frequent "very serious” errors

8. Intolerable Database corruption

9. Catastrophic System shutdown

10. Infectious Shutdown that spreads to others
Faults classified by severity.

Table 1.1 Input/Output Faults
m

Type Instances

Input Correct input not accepted
Incorrect input accepted
Description wrong or missing
Parameters wrong or missing

Output Wrong format
Wrong result
Correct result at wrong time (too early, too late)

Incomplete or missing result
Spurious result
Spelling/grammar |

‘ Cosmetic

- . .

Table 1.2 Logic Faults

Missing case(s)

Duplicate case(s)

Extreme condition neglected
Misinterpretation

Missing condition

Extraneous condition(s)

Test of wrong variable

Incorrect loop iteration

Wrong operator (e.g., < instead of <)

Table 1.3 Computation Fauits

Incorrect algorithm

Missing computation

Incorrect operand

Incorrect operation

Parenthesis error

Insufficient precision (round-off, truncation)
Wrong built-in function

Table 1.4 Interface Faults

Incorrect interrupt handling
I/O timing

Call to wrong procedure

Call to nonexistent procedure
Parameter mismatch (type, number)
Incompatible types

Superfluous inclusion

Table 1.5 Data Faults

Incorrect initialization
Incorrect storage/access
Wrong flag/index value
Incorrect packing/unpacking
Wrong variable used
Wrong data reference
Scaling or units error
Incorrect data dimension
Incorrect subscript
Incorrect type

Incorrect data scope
Sensor data out of limits '
Off by one

Inconsistent data

Levels of testing echo the levels of abstraction found
in the waterfall model of the SDLC.

In functional testing 3 levels of definition
(specification, preliminary design, detailed design)
correspond directly to 3 levels of testing —system,
integration & unit testing.

Requirements
Specification

Levels of abstraction and testing in the Waterfall Model.

Three examples to illustrate various unit Testing
methods.

These examples raise most of the issues that testing
craftsperson’s will encounter at the unit level.

For the purpose of structural testing, pseudocode
implementation of 3 unit-level eg. are given.

The triangle problem

NextDate

Commission problem

Pseudocode provides a “language neutral” way to
express program source code.

Pseudocode given here is based on visual basic.

Table 2.1 Generalized Pseudocode

Language Element Generalized Pseudocode Construct
Comment ' <text>
Data structure declaration Type <type name>

<list of field descriptions>
End <type name>

Data declaration Dim <variable> As <type>

Assignmefiit statement <variable> = <expression>

Input A Input (<variable list>)

Output Output (<variable list>)

Simple condition <expression> <relational operator> <expressio
-Compound condition <simple condition> <logical connective>

<Simple condition>
Sequence statements in sequential order
Simple selection If <condition> Then
<then clause>
Endif
Selection If <condition>

Then <then clause>
Else <else clause>
, EndIf
Multiple selection Case <variable> Of
' Case 1: <predicate>
e e ase-clause> : S

Case n: <predicate>
<Case clause>
EndCase

Counter-controlled repetition For <counter> = <start> To <end>
<loop body>
EndFor
Pretest repetition Do While <condition>
<loop body>
EndWhile
Posttest repetition Do
<loop body>
Until <condition>
Procedure definition (similarly <procedure name> (Input: <variable list>;
for functions and 0-o methods) Output: <variable list>)
<body>
End <procedure name>
Interunit communication Call <procedure name> (<variable list>;
<variable list>) -
Class/Object definition ~ + <name> (<attribute list>; <method list>, <body>

End <name>
Interunit communication msg <destination object name>.<method name>
(<variable list>)
Object creation Instantiate <class name>.<object name> (attribute
values)

Table 2.1 Generalized Pseudocode (Continued)

{5

Language Element Generalized Pseudocode Construct
Object destruction Delete <class name>.<object name>
Program Program <program name>
<unit list>

End<program name>

Problem statement

Simple version: The triangle program accepts 3
integers a, b, ¢ as input to be sides of a triangle

o/p is type of triangle determined by 3 sides
Equilateral, Isosceles, Scalene, Not a triangle.

Sides of triangle integer a, b, ¢ must satisfy the following conditions

cl. 1 <a<200 c4. a<b+c
c2. 1 <b <200 cS. b<a+c
c3. 1 <¢ <200 c6. c<a+b

One of the 4 mutually exclusive output is given

 al three sdes are equal, the program output is Equilaera,

exactly one pair of sides i equal the program output i lsoscels.
10 pai of sides s equal, the program output s Scalne.

any of condtons c4, 5, and o fafs, the program output is NotATrangle,

-:LR(__}.)!:\J:—-
Pr—

Screen

Keyboard

Triangle
Sides

triangle
sides

True/False

3.
Triangle
Type

prompts

type

[

Figure 2.2 Dataflow diagram for a structured triangle program implementation.

Program triangle2 ‘Structured programming version of simpler specification

Dim a,b,c As Integer
Dim IsATriangle As Boolean

Step1: GetInput

Qutput(“Enter 3 integers which are sides of a triangle")
Input(a,bc)

Output("Side A is ",a)

Output(*Side B is ",b) “

Output("Side C is "c)

Step2: Is A Triangle?
If(acb+c)AND(b<a+c)AND (c<a+b)
"Then IsATriangle = True
Else IsATriangle = False
EndIf

‘Step 3: Determine Triangle Type
If IsATriangle
Then If (a=0b) AND (b=c)
Then Output ("Equilateral™)
Else If (a#=b) AND (a #c) AND (b # ¢)
Then Output ("Scalene™)
Else Output ("Isosceles™)
EndIf
EndIf
Else Output("Not a Triangle™)
EndIf

End triangle2

Program triangle3 ‘Structured programming version of improved specification

Dim a,b,c As Integer
Dim cl, ¢2, ¢3, IsATriangle As Boolean

'‘Step 1: Get Input
Do
Output("Enter 3 integers which are sides of a triangle”)
Input(a,b,c)
¢l = (1 <= a) AND (a <= 200)
¢2 = (1 <=b) AND (b <= 200)
¢3 = (1 <= c) AND (c <= 200)
If NOT(c1)
Then Output("Value of a is not in the range of permitted values")
If NOT{(c2)
Then OQutput("Value of b is not in the range of permitted values")
EndIf
If NOT(c3)
Then Qutput("Value of ¢ is not in the range of permitted values")
EndIf
Until c1 AND ¢2 AND ¢3
Output("Side A is ",a)
Qutput("Side B is ",b)
Output("Side C is ",c)

"Step 2: Is A Triangle?

If(a<(b+c)) AND (b<(a+c)) AND (c<(a+Db))
Then IsATriangle = True
Else IsATriangle = False

EndIf

"Step 3: Determine Triangle Type
If IsATriangle
Then If(a=b) AND (b=c)
Then Output ("Equilateral”)
Else If{a#b)AND (a#c)AND (b#c)
Then Output ("Scalene")
Else Output ("Isosceles”)
EndIf
EndIf
Else Output("Not a Triangle")
EndIf

End triangle3

Traditional Implementation

llnput a, b, c'

| match=0]

match =

match =~
match+2

match =
match+3

-match+11 -

vy N
% >
N
N
= 10
) N
N Not a
Equtlateraﬂ Isosceles Triangle Scalene
20 15 12 11

Program trianglel 'Fortran-like version
Dim a,b,c,match As INTEGER

Output{"Enter 3 integers which are sides of a triangle")

Input(a,b,c)
Output(“Side A is ",a)
Output("Side B is ",b)
Output("Side C is ",¢)
match =0
Ifa=>b

Then match = match + 1
EndIf

Ifa=c

Then match = match + 2
Endif
Ifb=c¢

Then match = match + 3
EndIf
If match =0

__Then If(at+b)<=c

Then Output(" NotATriangle")

Else If(b+c)<=a
Then
Else

EndIf
EndIf

Output(” NotATriangle")

If (a+c)<=b

Output(" NotATriangle")
Output ("Scalene™)

‘(1
'(2)

'(3)
(4)

(5

')
‘(N

-'(8)

'(12.1)
'(9)
'(12.2)
(10)
'(12.3)
'(11)

Else If match=1 _ '(13)

Then If (a+c)<=b '(14)
Then OQutput("NotATriangle") '(12.4)
Else Qutput ("Isosceles") '(15.1)
EndIf
Else If match=2 (16)
Then If (a+c)<=b
Then Output(" NotATriangle") (12.5)
Else Output ("Isosceles") '(15.2)
EndIf
Else If match=3 '(18)
Then If (b+c)<=a '(19)

Then Qutput("NotATriangle") (12.6)
Else ~ OQutput ("Isosceles”) ' '(15.3)
EndIf
Else Output ("Equilateral”) '(20)
EndIf
EndIf
EndIf
EndIf

End Triangle!

Illustrate complexity
Logical relationship among the i/p variables
Problem statement:

NextDate is a function of 3 variables Month, Day,
Year.

It returns the date of the day after the i/p date.

condition cl. 1 < month < 12
cZ2. 1 < day < 31
c3. 1812 < year < 2012

Responses for invalid values of i/p values for day,
month, year.

Responses for invalid combination of i/p june 31 any
year.

If any of the conditions C1, C2, or C3 fails
Corresponding variables has out-of-range values.
Eg. “Value of month not in range 1...12”

If invalid day-month- year combination exist
NextDate collapses these into one message

“Invalid input date”

Two source of complexity
Complexity of input domain
Rule that determine when a year is leap year.
A yearis 365.2422 days long
Leap years are used for the “extra day” problem.

According to Gregorian calendar

A year is a leap year if it is divisible by 4, unless it is a century
year.

Century years are leap years only if they are multiples of 400
S0 1992, 1996, 2000 are leap years... 1900 is not

Program NextDatel ‘Simple version

Dim tomorrowDay,tomorrowMonth,tomorrowYear As Integer
Dim day,month,year As Integer

Output ("Enter today's date in the form MM DD YYYY")
Input (month day,year)
Case month Of

Case I: month Is 1,3,5.7.8. Or 10: 31 day months (except Dec.)
If day < 31

Then tomorrowDay = day + 1
Else
tomorrowDay = 1
tomorrowMonth = month + 1

EndIf
Case 2: month Is 4,6,9, Or 11 ‘30 day months
If day < 30
Then tomorrowDay = day + 1
Else
tomorrowDay = 1
tomorrowMonth = month + 1
EndIf
Case 3: month Is 12: ‘December
If day < 31
Then tomorrowDay = day + 1
Else

tomorrowDay = 1
tomorrowMonth = 1
If year = 2012

Then Output ("2012 is over")

Else tomorrow.year = year + 1
EndIf

Case 4: month is 2: ‘February
If day < 28
Then tomorrowDay =day + 1_
Else
If day = 28
Then
If ((year is a leap year)

Then tomorrowDay = 29 'leap year

Else 'not a leap year
tomorrowDay = 1
tomorrowMonth = 3

EndIf
Else Ifday =29
Then tomorrowDay = 1
tomorrowMonth = 3

Else Output("Cannot have Feb.", day)

EndIf

EndIf
EndIf
EndCase

Output ("Tomorrow's date is", tomorrowMonth, tomorrowDay, tomorrowYear)

End NextDate

Program NextDate2 Improved version

Dim tomorrowDay,tomorrowMonth,tomorrowYear As Integer
Dim day,month,year As Integer
Dim cl, ¢2, ¢3 As Boolean

Do
‘Output (“Enter today's date in the form MM DD YYYY")

Input (month ,day,year)
cl = (1 <= day) AND (day <= 31)
c2 = (1 <= month) AND (month <= 12)
c3 = (1812 <= vear) AND (year <= 2012)
If NOT(cl)
Then Output("Value of day not in the range 1..31")
EndIf
If NOT(c2)
Then OQutput("Value of month not in the range 1..12")
EndIf
If NOT(c3)
Then Output("Value of year not in the range 1812..2012")
EndIf
Until ¢1 AND ¢2 AND c2

Case month Of
Case 1: month Is 1,3,5,7,8, Or 10: '31 day months (except Dec.)
If day < 31
Then tomorrowDay = day + 1
Else '
tomorrowDay = 1
tomorrowMonth = month + 1
EndIf

Case 2: month Is 4,6,9, Or 11 '30 day months
If day < 30

Then tomorrowDay = day + 1

Else
If day = 30
Then tomorrowDay = 1
oo e .. tomorrowMonth = month + 1
Eise Output("Invalid Input Date")
EndIf
EndIf
Case 3: month Is 12: 'December
If day < 31
Then tomorrowDay = day + 1
Else

tomorrowDay = 1
tomorrowMonth = 1
If year = 2012
Then Output ("Invalid Input Date")

Else tomorrow.year = year + 1
EndIf

Case 4. month 1s 2: 'February
If day < 28
Then tomorrowDay = day + 1
Else
If day = 28
Then
If (year is a leap year)
Then tomorrowDay = 29 'leap day
Else 'not a leap year
tomorrowDay = 1
tomorrowMonth = 3
EndIf
Else
If day = 29
Then
If (year is a leap year)

Then tomorrowDay = |
tomorrowMonth = 3

Else
If day > 29
Then Output(“Invalid Input Date”)
Endlf
EndIf
Endif
EndIf
EndIf
EndCase

Qutput ("Tomorrow's date is", tomorrowMonth, tomorrowDay, tomorrowYear)

_End NextDate2

It contains a mix of computation & decision making.

A rifle salesperson in the former Arizona territory
sold rifle lock’s, stocks, & barrel’s made of a
gunsmith in Missouri.

Locks cost $45, stocks cost $30, Barrel Cost $ 25.

Sales person has to sell at least 1 complete rifle per
month

Production limitation such that 1 sales man can sell
70 locks, 80 stocks, 90 barrels per month.

After each town visit salesperson update sale of no of
locks, stocks, barrels through a telegram to gunsmith

At the end of month salesperson sent a shot telegram
showing -1 locks sold.

Gunman knew sales for month are over & compute
the commission of sales person

10% on sales up to $1000

15% on the next $800

20% on any sales in excess of $1800

The commission program produces a monthly sales
report that gave total no. of locks, barrels, stocks
sold. Sales persons total dollar sale & commission.

This problem separates into 3 distinct pieces

The input data portion(data validation) ignore here
Sales calculation

Commission calculation problem.

Program Commission (INPUT.OUTPUT)

Dim locks, stocks, barrels As Integer

Dim lockPrice, stockPrice, barrelPrice As Real
Dim totallocks,totalStocks,.totalBarrels As Integer
Dim lockSales, stockSales, barrelSales As Real
Dim sales,commission : REAL

lockPrice =45.0
stockPrice = 30.0
barrelPrice = 25.0
totailLocks = QO
totalStocks =0
totalBarrels = 0O

Input(locks)
While NOT(locks = -1) ‘Input device uses -1 to indicate end of data

Input(stocks, barrels)
totall_ocks = totall_ocks + locks
totalStocks = totalStocks + stocks
totalBarrels = totalBarrels + barrels
Input(locks)

EndWhile

Output("Locks sold: ", totall.ocks)
Output("Stocks sold: ", totalStocks)
Output(“Barrels sold: ", totalBarrels) . e

lockSales = lockPrice*totalLLocks

stockSales = stockPrice*totalStocks
barrelSales = barrelPrice * totalBarrels
sales = lockSales + stockSales + barrelSales
Output("Total sales: ", sales)

If (sales > 1800.0)
Then
commission = 0.10 * 1000.0
commission = commission + 0.15 * 800.0
commission = commission + 0.20*(sales-1800.0)
Else If (sales > 1000.0)
Then
commission = 0.10 * 1000.0
commission = commission + 0.15*(sales-1000.0)
Else commission = 0.10 * sales
EndIf
EndIf
Output("Commission is $",commission)

End Commission

To better discuss the issues of integration & system

testing

1a

WELCOME
to the

Simple
Automatic Teller
Machine

Please Insert your
\ card for service

_/

Cash Dispensing Door

Deposit Envelope Door

\-

ID Card |

2

glele
DEOOO

3

DO
OO UL

(cANCEL)

Figure 2.3

The SATM terminal.

Screen 1)

Welcome.

Please insert your
ATM card for service)

™~

Screen 4

Invalid identification.
Your card will be
retained. Please call

- Screen 2 N

Enter your Personal
identification Number

_ Press Cancel if Erroy

f Screen 5 \

Select transaction type:
balance

deposit

withdrawat

the bank.
/

z Screen 7 N

Enter amount.
Withdrawals must be
in increments of $10

_P ress (_Jz;nEéITf Erro y

(Screen 10 \

Temporarily unable to
process withdrawalis.
Another transaction?

yes
- ng/
-

Please put envelope intg
deposit slot. Your
balance will be updated

Screen i3 \

\Press Cancel if Erroy

Press Cancel if Errou

r Screen 8 \

Insutficient funds.
Please enter a new
amount. 4

\P ress Eé-nEéITf TErro_r/

a Screen 11 \

Your balance is being
updated. Please take
cash from dispenser.

N _/

Screen 14

“Your-new balance is
printed on your receipt.
Another transaction?
yes
no

r/ Screen 3

Your Personal
tdentification Number
is incorrect. Please

try again.

N
Screen 6
Select account type:
checking
savings

-\Press Cancel if Error

Screen S

Machine cannot
dispense that amount. |

Please try again.

e ™

Temporarily unable to

process deposits.

Anather transaction?
ves

- no/
r

Screen 12

Screen 15 \
Please take your-

receipt and ATM
card. Thank you.

- _

Figure 2.4

SATM screens.

Another event
driven program
that emphasizes
code associated
with a GUI

*A sample GUI
built with visual
basic is shown.

-

Currency Converter

U.S. Dollar amount

Equivalentin ...

O Brazil Compute
O Canada
. Clear
O European Community
O
Japan Quit

Figure 2.5

Currency converter GUIL.

Saturn Windshield Wiper Controller

9,

clleer |OFF INT INT INT LOW HiCH
c2. Dial 12 3 ma s

alWiper 10° 4 6 1 30

— — e lrirm— sy

References

9,

