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Introduction to Transaction Processing

• Transaction: An executing program (process) that 

includes one or more database access operations

– Read operations (database retrieval, such as SQL SELECT)

– Write operations (modify database, such as SQL INSERT, UPDATE, 

DELETE)

– Transaction: A logical unit of database processing

– Example: Bank balance transfer of $100 dollars from a checking 

account to a saving account in a BANK database

• Note: Each execution of a program is a distinct transaction with 
different parameters

– Bank transfer program parameters: savings account number, 

checking account number, transfer amount
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Introduction to Transaction Processing (cont.)

• A transaction (set of operations) may be:

– stand-alone, specified in a high level language like SQL 

submitted interactively, or 

– consist of database operations embedded within a 

program (most transactions)

• Transaction boundaries: Begin and End transaction.

– Note: An application program may contain several 

transactions separated by Begin and End transaction 

boundaries

3



Introduction to Transaction Processing (cont.)

• Transaction Processing Systems: Large multi-user 

database systems supporting thousands of 

concurrent transactions (user processes) per minute

• Two Modes of Concurrency

– Interleaved processing: concurrent execution of 

processes is interleaved in a single CPU

– Parallel processing: processes are concurrently 

executed in multiple CPUs (Figure 21.1)

– Basic transaction processing theory assumes interleaved 

concurrency 
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Introduction to Transaction Processing (cont.)

For transaction processing purposes, a simple 
database model is used:

• A database - collection of named data items

• Granularity (size) of a data item - a field (data item 

value), a record, or a whole disk block

– TP concepts are independent of granularity

• Basic operations on an item X:

– read_item(X): Reads a database item named X 
into a program variable. To simplify our notation, 
we assume that the program variable is also named 
X.

– write_item(X): Writes the value of program 
variable X into the database item named X.
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Introduction to Transaction Processing (cont.)

READ AND WRITE OPERATIONS:

 Basic unit of data transfer from the disk to the
computer main memory is one disk block (or page).
A data item X (what is read or written) will usually be
the field of some record in the database, although it
may be a larger unit such as a whole record or even
a whole block.

 read_item(X) command includes the following
steps:

• Find the address of the disk block that contains item X.

• Copy that disk block into a buffer in main memory (if that disk
block is not already in some main memory buffer).

• Copy item X from the buffer to the program variable named X.
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READ AND WRITE OPERATIONS (cont.):
 write_item(X) command includes the following

steps:

• Find the address of the disk block that contains
item X.

• Copy that disk block into a buffer in main memory
(if it is not already in some main memory buffer).

• Copy item X from the program variable named X
into its correct location in the buffer.

• Store the updated block from the buffer back to disk
(either immediately or at some later point in time).

Introduction to Transaction Processing (cont.)

8



• Figure 21.2 (next slide) shows two examples of
transactions

• Notation focuses on the read and write operations

• Can also write in shorthand notation:

– T1: b1; r1(X); w1(X); r1(Y); w1(Y); e1;

– T2: b2; r2(Y); w2(Y); e2;

• bi and ei specify transaction boundaries (begin and
end)

• i specifies a unique transaction identifier (TId)

Transaction Notation
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Without Concurrency Control, problems may occur
with concurrent transactions:

• Lost Update Problem.

Occurs when two transactions update the same data
item, but both read the same original value before
update (Figure 21.3(a), next slide)

• The Temporary Update (or Dirty Read) Problem.

This occurs when one transaction T1 updates a
database item X, which is accessed (read) by
another transaction T2; then T1 fails for some reason
(Figure 21.3(b)); X was (read) by T2 before its value
is changed back (rolled back or UNDONE) after T1
fails

Why we need concurrency control
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• The Incorrect Summary Problem .

One transaction is calculating an aggregate summary 

function on a number of records (for example, sum 

(total) of all bank account balances) while other 

transactions are updating some of these records (for 

example, transferring a large amount between two 

accounts, see Figure 21.3(c)); the aggregate function 

may read some values before they are updated and 

others after they are updated. 

Why we need concurrency control (cont.)
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• The Unrepeatable Read Problem .

A transaction T1 may read an item (say, available 

seats on a flight); later, T1 may read the same item 

again and get a different value because another 

transaction T2 has updated the item (reserved seats 

on the flight) between the two reads by T1

Why we need concurrency control (cont.)
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Causes of transaction failure:

1. A computer failure (system crash): A hardware or 
software error occurs during transaction execution. If 
the hardware crashes, the contents of the computer’s 
internal main memory may be lost.

2. A transaction or system error : Some operation in the 
transaction may cause it to fail, such as integer overflow 
or division by zero. Transaction failure may also occur 
because of erroneous parameter values or because of 
a logical programming error. In addition, the user may 
interrupt the transaction during its execution.

Why recovery is needed
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3. Local errors or exception conditions detected by 
the transaction: 

- certain conditions necessitate cancellation of the 
transaction. For example, data for the transaction may 
not be found. A condition, such as insufficient account 
balance in a banking database, may cause a 
transaction, such as a fund withdrawal, to be canceled 
- a programmed abort causes the transaction to fail.

4. Concurrency control enforcement: The concurrency 
control method may decide to abort the transaction, to 
be restarted later, because it violates serializability or 
because several transactions are in a state of 
deadlock (see Chapter 22). 

Why recovery is needed (cont.)
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5. Disk failure: Some disk blocks may lose their data 

because of a read or write malfunction or because of 

a disk read/write head crash. This kind of failure and 

item 6 are more severe than items 1 through 4. 

6.     Physical problems and catastrophes: This refers 

to an endless list of problems that includes power or 

air-conditioning failure, fire, theft, sabotage, 

overwriting disks or tapes by mistake, and mounting 

of a wrong tape by the operator. 

Why recovery is needed (cont.)
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Transaction and System Concepts

A transaction is an atomic unit of work that is either 
completed in its entirety or not done at all. A 
transaction passes through several states (Figure 
21.4, similar to process states in operating systems).

Transaction states:

• Active state (executing read, write operations)

• Partially committed state (ended but waiting for 
system checks to determine success or failure)

• Committed state (transaction succeeded)

• Failed state (transaction failed, must be rolled back)

• Terminated State (transaction leaves system)
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Transaction and System Concepts (cont.)

DBMS Recovery Manager needs system to keep track of
the following operations (in the system log file):

• begin_transaction: Start of transaction execution.

• read or write: Read or write operations on the database
items that are executed as part of a transaction.

• end_transaction: Specifies end of read and write
transaction operations have ended. System may still
have to check whether the changes (writes) introduced
by transaction can be permanently applied to the
database (commit transaction); or whether the
transaction has to be rolled back (abort transaction)
because it violates concurrency control or for some other
reason.
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Transaction and System Concepts (cont.)

Recovery manager keeps track of the following operations 

(cont.):

• commit_transaction: Signals successful end of 

transaction; any changes (writes) executed by 

transaction can be safely committed to the database 

and will not be undone.

• abort_transaction (or rollback): Signals transaction 

has ended unsuccessfully; any changes or effects that 

the transaction may have applied to the database must 

be undone.

22



Transaction and System Concepts (cont.)

System operations used during recovery (see Chapter 

23):

• undo(X): Similar to rollback except that it 

applies to a single write operation rather than to 

a whole transaction.

• redo(X): This specifies that a write operation of 

a committed transaction must be redone to 

ensure that it has been applied permanently to 

the database on disk. 
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Transaction and System Concepts (cont.)

The System Log File
• Is an append-only file to keep track of all operations of

all transactions in the order in which they occurred. This
information is needed during recovery from failures

• Log is kept on disk - not affected except for disk or
catastrophic failure

• As with other disk files, a log main memory buffer is kept
for holding the records being appended until the whole
buffer is appended to the end of the log file on disk

• Log is periodically backed up to archival storage (tape)
to guard against catastrophic failures
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Transaction and System Concepts (cont.)

Types of records (entries) in log file: 

• [start_transaction,T]: Records that transaction T has 
started execution.

• [write_item,T,X,old_value,new_value]: T has changed 
the value of item X from old_value to new_value.

• [read_item,T,X]: T  has read the value of item X (not 
needed in many cases).

• [end_transaction,T]: T has ended execution

• [commit,T]: T has completed successfully, and 
committed.

• [abort,T]: T has been aborted. 
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Transaction and System Concepts (cont.)

The System Log (cont.):

 protocols for recovery that avoid cascading 

rollbacks do not require that read operations 

be written to the system log; most recovery 

protocols fall in this category (see Chapter 23)

 strict protocols require simpler write entries 

that do not include new_value (see Section 

21.4). 
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Transaction and System Concepts (cont.)

Commit Point of a Transaction:

 Definition: A transaction T reaches its commit point
when all its operations that access the database have 
been executed successfully and the effect of all the 
transaction operations on the database has been 
recorded in the log file (on disk). The transaction is 
then said to be committed.
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Transaction and System Concepts (cont.)

Commit Point of a Transaction (cont.):
 Log file buffers: Like database files on disk, whole disk blocks 

must be read or written to main memory buffers.

 For log file, the last disk block (or blocks) of the file will be in main 
memory buffers to easily append log entries at end of file.

 Force writing the log buffer: before a transaction reaches its 
commit point, any main memory buffers of the log that have not 
been written to disk yet must be copied to disk.

 Called force-writing the log buffers before committing a 
transaction.

 Needed to ensure that any write operations by the transaction are 
recorded in the log file on disk before the transaction commits 
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Desirable Properties of Transactions

Called ACID properties – Atomicity, 

Consistency, Isolation, Durability:

• Atomicity: A transaction is an atomic unit of 

processing; it is either performed in its entirety 

or not performed at all.

• Consistency preservation: A correct execution 

of the transaction must take the database from 

one consistent state to another.
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Desirable Properties of Transactions (cont.)

ACID properties (cont.):

• Isolation: Even though transactions are executing 

concurrently, they should appear to be executed in 

isolation – that is, their final effect should be as if each 

transaction was executed in isolation from start to finish.

• Durability or permanency: Once a transaction is 

committed, its changes (writes) applied to the database 

must never be lost because of subsequent failure. 
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Desirable Properties of Transactions (cont.)

• Atomicity: Enforced by the recovery protocol.

• Consistency preservation: Specifies that each 
transaction does a correct action on the database on its 
own. Application programmers and DBMS constraint 
enforcement are responsible for this.

• Isolation: Responsibility of the concurrency control 
protocol.

• Durability or permanency: Enforced by the recovery 
protocol. 
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Schedules of Transactions

• Transaction schedule (or history): When transactions are 
executing concurrently in an interleaved fashion, the order of 
execution of operations from the various transactions forms 
what is known as a transaction schedule (or history). 

• Figure 21.5 (next slide) shows 4 possible schedules (A, B, C, D) 
of two transactions T1 and T2:

– Order of operations from top to bottom

– Each schedule includes same operations

– Different order of operations in each schedule
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Schedules of Transactions (cont.)

• Schedules can also be displayed in more compact notation

• Order of operations from left to right

• Include only read (r) and write (w) operations, with transaction 
id (1, 2, …) and item name (X, Y, …)

• Can also include other operations such as b (begin), e (end), c 
(commit), a (abort)

• Schedules in Figure 21.5 would be displayed as follows:

– Schedule A: r1(X); w1(X); r1(Y); w1(Y); r2(X); w2(x);

– Schedule B: r2(X); w2(X); r1(X); w1(X); r1(Y); w1(Y);

– Schedule C: r1(X); r2(X); w1(X); r1(Y); w2(X); w1(Y);

– Schedule D: r1(X); w1(X); r2(X); w2(X); r1(Y); w1(Y);
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Schedules of Transactions (cont.)

• Formal definition of a schedule (or history) S of n transactions 
T1, T2, ..., Tn :

An ordering of all the operations of the transactions subject to 
the constraint that, for each transaction Ti that participates in S, 
the operations of Ti in S must appear in the same order in 
which they occur in Ti.

Note: Operations from other transactions Tj can be interleaved
with the operations of Ti in S. 
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Schedules of Transactions (cont.)

• For n transactions T1, T2, ..., Tn, where each Ti has mi read and 
write operations, the number of possible schedules is (! is 
factorial function):

(m1 + m2 + … + mn)! / ( (m1)! * (m2)! * … * (mn)! )

• Generally very large number of possible schedules

• Some schedules are easy to recover from after a failure, while 
others are not

• Some schedules produce correct results, while others produce 
incorrect results

• Rest of chapter characterizes schedules by classifying them 
based on ease of recovery (recoverability) and correctness 
(serializability)
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Characterizing Schedules based on 

Recoverability

Schedules classified into two main classes:

• Recoverable schedule: One where no committed
transaction needs to be rolled back (aborted).

A schedule S is recoverable if no transaction T in S commits 
until all transactions T’ that have written an item that T reads 
have committed.

• Non-recoverable schedule: A schedule where a 
committed transaction may have to be rolled back during 
recovery.

This violates Durability from ACID properties (a committed 
transaction cannot be rolled back) and so non-recoverable 
schedules should not be allowed. 
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Characterizing Schedules Based on 

Recoverability (cont.)

• Example: Schedule A below is non-recoverable because T2 
reads the value of X that was written by T1, but then T2 
commits before T1 commits or aborts 

• To make it recoverable, the commit of T2 (c2) must be delayed 
until T1 either commits, or aborts (Schedule B)

• If T1 commits, T2 can commit

• If T1 aborts, T2 must also abort because it read a value that 
was written by T1; this value must be undone (reset to its old 
value) when T1 is aborted

– known as cascading rollback

• Schedule A: r1(X); w1(X); r2(X); w2(X); c2; r1(Y); w1(Y); c1 (or a1)

• Schedule B: r1(X); w1(X); r2(X); w2(X); r1(Y); w1(Y); c1 (or a1); ...
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Characterizing Schedules based on 

Recoverability (cont.)

Recoverable schedules can be further refined:

• Cascadeless schedule: A schedule in which a transaction 

T2 cannot read an item X until the transaction T1 that last 
wrote X has committed.

• The set of cascadeless schedules is a subset of the set of 
recoverable schedules.

Schedules requiring cascaded rollback: A schedule in which 
an uncommitted transaction T2 that read an item that was 
written by a failed transaction T1 must be rolled back. 
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Characterizing Schedules Based on 

Recoverability (cont.)

• Example: Schedule B below is not cascadeless because T2 
reads the value of X that was written by T1 before T1 commits

• If T1 aborts (fails), T2 must also be aborted (rolled back) 
resulting in cascading rollback

• To make it cascadeless, the r2(X) of T2 must be delayed until 
T1 commits (or aborts and rolls back the value of X to its 
previous value) – see Schedule C

• Schedule B: r1(X); w1(X); r2(X); w2(X); r1(Y); w1(Y); c1 (or a1);

• Schedule C: r1(X); w1(X); r1(Y); w1(Y); c1; r2(X); w2(X); ... 
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Characterizing Schedules based on 

Recoverability (cont.)

Cascadeless schedules can be further refined:

• Strict schedule: A schedule in which a transaction T2 can 

neither read nor write an item X until the transaction T1 that 
last wrote X has committed.

• The set of strict schedules is a subset of the set of cascadeless 
schedules.

• If blind writes are not allowed, all cascadeless schedules are 
also strict

Blind write: A write operation w2(X) that is not preceded by a 
read r2(X). 
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Characterizing Schedules Based on 

Recoverability (cont.)

• Example: Schedule C below is cascadeless and also strict
(because it has no blind writes)

• Schedule D is cascadeless, but not strict (because of the blind 
write w3(X), which writes the value of X before T1 commits)

• To make it strict, w3(X) must be delayed until after T1 commits 
– see Schedule E

• Schedule C: r1(X); w1(X); r1(Y); w1(Y); c1; r2(X); w2(X); …

• Schedule D: r1(X); w1(X); w3(X); r1(Y); w1(Y); c1; r2(X); w2(X); …

• Schedule E: r1(X); w1(X); r1(Y); w1(Y); c1; w3(X); r2(X); w2(X); …
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Characterizing Schedules Based on 

Recoverability (cont.)

Summary:

• Many schedules can exist for a set of transactions

• The set of all possible schedules can be partitioned into two 
subsets: recoverable and non-recoverable

• A subset of the recoverable schedules are cascadeless

• If blind writes are allowed, a subset of the cascadeless 
schedules are strict

• If blind writes are not allowed, the set of cascadeless schedules 
is the same as the set of strict schedules
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Characterizing Schedules based on 

Serializability

• Among the large set of possible schedules, we want to 

characterize which schedules are guaranteed to give a 

correct result

• The consistency preservation property of the ACID 

properties states that: each transaction if executed on its 

own (from start to finish) will transform a consistent state 

of the database into another consistent state

• Hence, each transaction is correct on its own
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Characterizing Schedules based on 

Serializability (cont.)

• Serial schedule: A schedule S is serial if, for every 

transaction T participating in the schedule, all the 

operations of T are executed consecutively (without 

interleaving of operations from other transactions) in the 

schedule. Otherwise, the schedule is called nonserial.

• Based on the consistency preservation property, any serial 

schedule will produce a correct result (assuming no inter-

dependencies among different transactions)
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Characterizing Schedules based on 

Serializability (cont.)

• Serial schedules are not feasible for performance reasons:

– No interleaving of operations

– Long transactions force other transactions to wait

– System cannot switch to other transaction when a 

transaction is waiting for disk I/O or any other event

– Need to allow concurrency with interleaving without 

sacrificing correctness
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Characterizing Schedules based on 

Serializability (cont.)

• Serializable schedule: A schedule S is serializable if it is 

equivalent to some serial schedule of the same n 

transactions.

• There are (n)! serial schedules for n transactions – a 

serializable schedule can be equivalent to any of the 

serial schedules

• Question: How do we define equivalence of schedules?
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Equivalence of Schedules

• Result equivalent: Two schedules are called result 

equivalent if they produce the same final state of the 

database.

• Difficult to determine without analyzing the internal 

operations of the transactions, which is not feasible in 

general.

• May also get result equivalence by chance for a particular 

input parameter even though schedules are not equivalent 

in general (see Figure 21.6, next slide)
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Equivalence of Schedules (cont.)

• Conflict equivalent: Two schedules are conflict equivalent 

if the relative order of any two conflicting operations is the 

same in both schedules.

• Commonly used definition of schedule equivalence

• Two operations are conflicting if:

– They access the same data item X

– They are from two different transactions

– At least one is a write operation

• Read-Write conflict example: r1(X) and w2(X)

• Write-write conflict example: w1(Y) and w2(Y)
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Equivalence of Schedules (cont.)

• Changing the order of conflicting operations generally 

causes a different outcome

• Example: changing r1(X); w2(X) to w2(X); r1(X) means 

that T1 will read a different value for X

• Example: changing w1(Y); w2(Y) to w2(Y); w1(Y) means 

that the final value for Y in the database can be different

• Note that read operations are not conflicting; changing 

r1(Z); r2(Z) to r2(Z); r1(Z) does not change the outcome
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Characterizing Scedules Based on 

Serializability (cont.)

• Conflict equivalence of schedules is used to determine 

which schedules are correct in general (serializable)

A schedule S is said to be serializable if it is conflict 

equivalent to some serial schedule S’.
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Characterizing Schedules based on 

Serializability (cont.)

• A serializable schedule is considered to be correct

because it is equivalent to a serial schedule, and any 

serial schedule is considered to be correct

– It will leave the database in a consistent state. 

– The interleaving is appropriate and will result in a 

state as if the transactions were serially executed, yet 

will achieve efficiency due to concurrent execution 

and interleaving of operations from different 

transactions. 

53



Characterizing Schedules based 

on Serializability (cont.)

• Serializability is generally hard to check at run-

time:

– Interleaving of operations is generally handled by the 

operating system through the process scheduler

– Difficult to determine beforehand how the operations 

in a schedule will be interleaved

– Transactions are continuously started and terminated
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Characterizing Schedules Based on 

Serializability (cont.)

Practical approach:

• Come up with methods (concurrency control protocols) 
to ensure serializability (discussed in Chapter 22)

• DBMS concurrency control subsystem will enforce the 
protocol rules and thus guarantee serializability of 
schedules

• Current approach used in most DBMSs: 

– Use of locks with two phase locking (see Section 22.1)
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Characterizing Schedules based on 

Serializability (cont.)

Testing for conflict serializability 

Algorithm 21.1:

• Looks at only r(X) and w(X) operations in a schedule

• Constructs a precedence graph (serialization graph) – one 

node for each transaction, plus directed edges 

• An edge is created from Ti to Tj if one of the operations in Ti

appears before a conflicting operation in Tj

• The schedule is serializable if and only if the precedence graph 

has no cycles. 
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Characterizing Schedules based on 

Serializability (cont.)

• View equivalence: A less restrictive definition of 

equivalence of schedules than conflict serializability 

when blind writes are allowed

• View serializability: definition of serializability based 

on view equivalence. A schedule is view serializable if it 

is  view equivalent to a serial schedule. 
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Characterizing Schedules based 

on Serializability (cont.)

Two schedules are said to be view equivalent if the following 
three conditions hold:

• The same set of transactions participates in S and S’, and S 
and S’ include the same operations of those transactions.

• For any operation Ri(X) of Ti in S, if the value of X read was 
written by an operation Wj(X) of Tj (or if it is the original 
value of X before the schedule started), the same condition 
must hold for the value of X read by operation Ri(X) of Ti in 
S’.

• If the operation Wk(Y) of Tk is the last operation to write item 
Y in S, then Wk(Y) of Tk must also be the last operation to 
write item Y in S’. 
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Characterizing Schedules based 

on Serializability (cont.)

The premise behind view equivalence:

 Each read operation of a transaction reads the result 

of the same write operation in both schedules.

 “The view”: the read operations are said to see the 

the same view in both schedules.

 The final write operation on each item is the same on 

both schedules resulting in the same final database 

state in case of blind writes
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Characterizing Schedules based on 

Serializability (cont.)

Relationship between view and conflict equivalence:

 The two are same under constrained write 
assumption (no blind writes allowed)

 Conflict serializability is stricter than view 
serializability when blind writes occur (a schedule 
that is view serializable is not necessarily conflict 
serialiable.

 Any conflict serializable schedule is also view 
serializable, but not vice versa. 
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Characterizing Schedules based on 

Serializability (cont.)

Relationship between view and conflict equivalence 
(cont):

Consider the following schedule of three transactions

T1: r1(X); w1(X); T2: w2(X); and T3: w3(X):

Schedule Sa: r1(X); w2(X); w1(X); w3(X); c1; c2; c3;

In Sa, the operations w2(X) and w3(X) are blind writes, since T2 and 
T3 do not read the value of X. 

Sa is view serializable, since it is view equivalent to the serial 
schedule T1, T2, T3. However, Sa is not conflict serializable, 
since it is not conflict equivalent to any serial schedule.
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Characterizing Schedules based on 

Serializability (cont.)

Other Types of Equivalence of Schedules 

 Under special semantic constraints, schedules that 

are otherwise not conflict serializable may work 

correctly

 Using commutative operations of addition and 

subtraction (which can be done in any order) certain 

non-serializable transactions may work correctly; 

known as debit-credit transactions
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Characterizing Schedules based on 

Serializability (cont.)

Other Types of Equivalence of Schedules (cont.)
Example: bank credit/debit transactions on a given item are 

separable and commutative.

Consider the following schedule S for the two transactions:

Sh : r1(X); w1(X); r2(Y); w2(Y); r1(Y); w1(Y); r2(X); w2(X);

Using conflict serializability, it is not serializable.

However, if it came from a (read,update, write) sequence as 
follows: 

r1(X); X := X – 10; w1(X); r2(Y); Y := Y – 20; w2(Y); r1(Y); 

Y := Y + 10; w1(Y); r2(X); X := X + 20; w2(X);

Sequence explanation: debit, debit, credit, credit.

It is a correct schedule for the given semantics
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Introduction to Transaction Support in 

SQL

• A single SQL statement is always considered to  be 
atomic.  Either the statement completes execution 
without error or it fails and leaves the database 
unchanged.  

• With SQL, there is no explicit Begin Transaction 
statement. Transaction initiation is done implicitly 
when particular SQL statements are encountered.

• Every transaction must have an explicit end
statement,  which is either a COMMIT or 
ROLLBACK. 
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Introduction to Transaction Support in 

SQL (cont.)

Characteristics specified by a SET TRANSACTION 
statement in SQL:

 Access mode: READ ONLY or READ WRITE. The default  
is READ WRITE unless the isolation level of READ 
UNCOMITTED is specified, in which case READ ONLY is 
assumed.

 Diagnostic size n, specifies an integer value n, indicating   
the number of conditions that can be held simultaneously 
in the diagnostic area. (To supply run-time feedback 
information to calling program for SQL statements 
executed in program)
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Transaction Support in SQL (cont.)

Characteristics specified by a SET TRANSACTION 

statement in SQL (cont.):

 Isolation level <isolation>, where <isolation> can be 

READ UNCOMMITTED, READ COMMITTED, REPEATABLE

READ or SERIALIZABLE.   The default is SERIALIZABLE. 

If all transactions is a schedule specify isolation 

level SERIALIZABLE, the interleaved execution of 

transactions will adhere to serializability. However, if 

any transaction in the schedule executes at a lower 

level, serializability may be violated. 
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Transaction Support in SQL (cont.)

Potential problem with lower isolation levels:

 Dirty Read: Reading a value that was written by a 
transaction that failed.

 Nonrepeatable Read: Allowing another transaction to 
write a new value between multiple reads of one 
transaction. 

A transaction T1  may read a given value from a table. If 
another transaction T2  later updates that value and then 
T1 reads that value again, T1 will see a different value.  
Example: T1 reads the No. of seats on a flight. Next, T2 
updates that number (by reserving some seats). If T1 
reads the No. of seats again, it will see a different value. 
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Transaction Support in SQL (cont.)

Potential problem with lower isolation levels 
(cont.):

 Phantoms: New row inserted after another transaction 
accessing that row was started.

A transaction T1  may read a set of rows from a 
table (say EMP),  based on some condition 
specified in the SQL WHERE clause (say DNO=5). 
Suppose a transaction T2 inserts a new EMP row 
whose DNO value is 5.  T1 should see the new row 
(if equivalent serial order is T2; T1) or not see it (if 
T1; T2). The record that did not exist when T1 
started is called a phantom record. 
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Transaction Support in SQL2 (cont.)

Sample SQL transaction:
EXEC SQL whenever sqlerror go to UNDO;

EXEC SQL SET TRANSACTION

READ WRITE

DIAGNOSTICS SIZE 5

ISOLATION LEVEL SERIALIZABLE;

EXEC SQL INSERT

INTO EMPLOYEE (FNAME, LNAME, SSN, DNO, SALARY)

VALUES ('Robert','Smith','991004321',2,35000);

EXEC SQL UPDATE EMPLOYEE

SET SALARY = SALARY * 1.1

WHERE DNO = 2;

EXEC SQL COMMIT;

GO TO THE_END;

UNDO: EXEC SQL ROLLBACK;

THE_END:  ... 
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Purpose of Concurrency Control

• To ensure that the Isolation Property is maintained while 
allowing transactions to execute concurrently (outcome of 
concurrent transactions should appear as though they were 
executed in isolation). 

• To preserve database consistency by ensuring that the 
schedules of executing transactions are serializable.

• To resolve read-write and write-write conflicts among 
transactions.
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Concurrency Control Protocols (CCPs)

• A CCP is a set of rules enforced by the DBMS to ensure
serializable schedules

• Also known as CCMs (Concurrency Control Methods)

• Main protocol known as 2PL (2-phase locking), which is based
on locking the data items

• Other protocols use different techniques

• We first cover 2PL in some detail, then give an overview of
other techniques
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2PL Concurrency Control Protocol

Based on each transaction securing a lock on a data item before 
using it:

Locking enforces mutual exclusion when accessing a data item –
simplest kind of lock is a binary lock, which secures permission to

Read or Write a data item for a transaction.

Example: If T1 requests Lock(X) operation, the system grants the
lock unless item X is already locked by another transaction. If request
is granted, data item X is locked on behalf of the requesting
transaction T1.

Unlocking operation removes the lock.

Example: If T1 issues Unlock (X), data item X is made available to
all other transactions.
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2PL Concurrency Control Protocol

System maintains lock table to keep track of which items are
locked by which transactions

Lock(X) and Unlock (X) are hence system calls

Transactions that request a lock but do not have it granted can be
placed on a waiting queue for the item

Transaction T must unlock any items it had locked before T
terminates

Next slides gives overview of lock and unlock operations
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2PL Concurrency Control (cont.)

Locking for database items:

For database purposes, binary locks are not sufficient:

– Two locks modes are needed (a) shared lock (read lock) and (b) 

exclusive lock (write lock).

Shared mode: Read lock (X). Several transactions can hold shared
lock on X (because read operations are not conflicting).

Exclusive mode: Write lock (X). Only one write lock on X can exist at
any time on an item X. (No read or write locks on X by other
transactions can exist).

Conflict matrix Read    Write

R
ead

    W
rite

N

NN

Y



2PL Concurrency Control (cont.)

Three operations are now needed:

– read_lock(X): transaction T requests a read (shared) lock on item X

– write_lock(X): transaction T requests a write (exclusive) lock on item 

X

– unlock(X): transaction T unlocks an item that it holds a lock on 

(shared or exclusive)

Transaction can be blocked (forced to wait) if the item is held by other
transactions in conflicting lock mode

Conflicts are write-write or read-write (read-read is not conflicting)

Next slide gives outline of these three operations





2PL Concurrency Control (cont.)

Two-Phase Locking Techniques: Essential components

Lock Manager: Subsystem of DBMS that manages locks on

data items.

Lock table: Lock manager uses it to store information about

locked data items, such as: data item id, transaction id, lock

mode, list of waiting transaction ids, etc. One simple way to

implement a lock table is through linked list (shown).

Alternatively, a hash table with item id as hash key can be

used.

T1

Transaction ID Data item id  lock mode  Ptr to next data item

NextX1 Read



2PL Concurrency Control (cont.)

Rules for locking:

• Transaction must request appropriate lock on a 

data item X before it reads or writes X.

• If T holds a write (exclusive) lock on X, it can both 

read and write X.

• If T holds a read lock on X, it can only read X.

• T must unlock all items that it holds before 

terminating

• (also T cannot unlock X unless it holds a lock on X).



2PL Concurrency Control (cont.)

•Lock conversion

•Lock upgrade: existing read lock to write lock
•if Ti holds a read-lock on X, and no other Tj holds a read-lock on X (i  j), then

•it is possible to convert (upgrade) read-lock(X) to write-lock(X)

else

force Ti to wait until all other transactions Tj that hold read locks on X release

their locks

Lock downgrade: existing write lock to read lock

if Ti holds a write-lock on X 

•(*this implies that no other transaction can have any lock on X*)

then it is possible to convert (downgrade) write-lock(X) to read-lock(X)



2PL Concurrency Control (cont.)

Two-Phase Locking Rule:

Each transaction should have two phases:  (a) Locking (Growing) phase, and 

(b) Unlocking (Shrinking) Phase.

Locking (Growing) Phase: A transaction applies locks (read or write) on

desired data items one at a time. Can also try to upgrade a lock.

Unlocking (Shrinking) Phase: A transaction unlocks its locked data items one

at a time. Can also downgrade a lock.

Requirement: For a transaction these two phases must be mutually

exclusively, that is, during locking phase no unlocking or downgrading of locks

can occur, and during unlocking phase no new locking or upgrading operations

are allowed.



2PL Concurrency Control (cont.)

Basic Two Phase Locking:

When transaction starts executing, it is in the locking phase, and it can 

request locks on new items or upgrade locks. A transaction may be blocked 

(forced to wait) if a lock request is not granted. (This may lead to several 

transactions being in a state of deadlock – see later)

Once the transaction unlocks an item (or downgrades a lock), it starts its

shrinking phase and can no longer upgrade locks or request new locks.

The combination of locking rules and 2-phase rule ensures serializable

schedules

Theorem: If every transaction in a schedule follows the 2PL rules, the schedule

must be serializable. (Proof is by contradiction.)



2PL Concurrency Control (cont.)

Some Examples:

Rules of locking alone do not enforce serializability – Figure 22.3(c) shows a 

schedule that follows locking rules but is not serializable

Figure 22.4 shows how the transactions in Figure 22.3(a) can be modified to

follow the two-phase rule (by delaying the first unlock operation till all locking

is completed).

The schedule in 22.3(c) would not be allowed if the transactions are

changed as in 22.4 – a state of deadlock would occur instead because T2

would try to lock Y (which is locked by T1 in conflicting mode) and forced

to wait, then T1 would try to lock X (which is locked by T2 in conflicting

mode) and forced to wait – neither transaction can continue to unlock the

item they hold as they are both blocked (waiting) – see Figure 22.5









2PL Concurrency Control (cont.)

Other Variations of Two-Phase Locking:

Conservative 2PL: A transaction must lock all its items before starting

execution. If any item it needs is not available, it locks no items and tries again

later. Conservative 2PL has no deadlocks since no lock requests are issued once

transaction execution starts.

Strict 2PL: All items that are writelocked by a transaction are not released

(unlocked) until after the transaction commits. This is the most commonly used

two-phase locking algorithm, and ensures strict schedules (for recoverability).

Rigorous 2PL: All items that are writelocked or readlocked by a transaction are

not released (unlocked) until after the transaction commits. Also guarantees

strict schedules.



2PL Concurrency Control (cont.)

Deadlock Example (see Figure 22.5)

T1' T2'

read_lock (Y); T1' and T2' did follow two-phase

read_item (Y); policy but they are deadlock

read_lock (X);

read_item (Y);

write_lock (X);

(waits for X) write_lock (Y);

(waits for Y)

Deadlock (T1' and T2')



2PL Concurrency Control (cont.)

Dealing with Deadlock

Deadlock prevention

System enforces additional rules (deadlock prevention protocol) to

ensure deadlock do not occur – many protocols (see later for some

examples)

Deadlock detection and resolution

System checks for a state of deadlock – if a deadlock exists, one of

the transactions involved in the deadlock is aborted



2PL Concurrency Control (cont.)

1. Deadlock detection and resolution

In this approach, deadlocks are allowed to happen. The system maintains

a wait-for graph for detecting cycles. If a cycle exists, then one

transaction involved in the cycle is selected (victim) and rolled-back

(aborted).

A wait-for graph contains a node for each transaction. When a

transaction (say Ti) is blocked because it requests an item X held by

another transaction Tj in conflicting mode, a directed edge is created

from Ti to Tj (Ti is waiting on Tj to unlock the item). The system checks for

cycles; if a cycle exists, a state of deadlock is detected (see Figure 22.5).



2PL Concurrency Control (cont.)

2. Deadlock prevention

There are several protocols. Some of them are:

1. Conservative 2PL, as we discussed earlier.

2. No-waiting protocol: A transaction never waits; if Ti requests an item that is

held by Tj in conflicting mode, Ti is aborted. Can result in needless

transaction aborts because deadlock might have never occurred

3. Cautious waiting protocol: If Ti requests an item that is held by Tj in

conflicting mode, the system checks the status of Tj; if Tj is not blocked,

then Ti waits – if Tj is blocked, then Ti aborts. Reduces the number of

needlessly aborted transactions



2PL Concurrency Control (cont.)

2. Deadlock prevention (cont.)

4. Wound-wait and wait-die: Both use transaction timestamp TS(T), which is a

monotonically increasing unique id given to each transaction based

on their starting time

TS(T1) < TS(T2) means that T1 started before T2 (T1 older than T2)

(Can also say T2 younger than T1)

Wait-die:

If Ti requests an item X that is held by Tj in conflicting mode, then

if TS(Ti) < TS(Tj) then Ti waits (on a younger transaction Tj)

else Ti dies (if Ti is younger than Tj, it aborts)

[In wait-die, transactions only wait on younger transactions that started 

later, so no cycle ever occurs in wait-for graph – if 

transaction requesting lock is younger than that holding the 

lock, requesting transaction aborts (dies)]



2PL Concurrency Control (cont.)

2. Deadlock prevention (cont.)

4. Wound-wait and wait-die (cont.):

Wound-wait:

If Ti requests an item X that is held by Tj in conflicting mode, then

if TS(Ti) < TS(Tj) then Tj is aborted (Ti wounds younger Tj)

else Ti waits (on an older transaction Tj)

[In wound-wait, transactions only wait on older transactions that started 

earlier, so no cycle ever occurs in wait-for graph – if 

transaction requesting lock is older than that holding the 

lock, transaction holding the lock is preemptively aborted]



Database Concurrency Control

Dealing With Starvation

Starvation occurs when a particular transaction consistently waits or gets

restarted and never gets a chance to proceed further. Solution is to use a

fair priority-based scheme that increases the priority for transaction the

longer they wait.

Examples of Starvation:

1. In deadlock detection/resolution it is possible that the same transaction may

consistently be selected as victim and rolled-back.

2. In conservative 2PL, a transaction may never get started because all the items

needed are never available at the same time.

3. In Wound-Wait scheme a younger transaction may always be wounded

(aborted) by a long running older transaction which may create

starvation.



Other Concurrency Control Methods

Some CCMs other than 2PL:

 Timestamp Ordering (TO) CCM

 Optimistic (Validation-Based) CCMs

 Multi-version CCMs:

 Multiversion 2PL with Certify Locks

 Multiversion TO



Timestamp Ordering (TO) CCM

Timestamp

A monotonically increasing identifier (e.g., an integer, or the system clock

time when a transaction starts) indicating the start order of a transaction.

A larger timestamp value indicates a more recently started transaction.

Timestamp of transaction T is denoted by TS(T)

Timestamp ordering CCM uses the transaction timestamps to serialize the

execution of concurrent transactions – allows only one equivalent serial

order based on the transaction timestamps



Timestamp Ordering (TO) CCM (cont.)

Instead of locks, systems keeps track of two values for 

each data item X:

 Read_TS(X): The largest timestamp among all the 

timestamps of transactions that have successfully 

read item X

 Write_TS(X): The largest timestamp among all the 

timestamps of transactions that have successfully 

written X

 When a transaction T requests to read or write an 

item X, TS(T) is compared with read_TS(X) and 

write_TS(X) to determine if request is out-of-order



Timestamp Ordering (TO) CCM (cont.)

Basic Timestamp Ordering

1. Transaction T requests a write_item(X) operation:

a. If read_TS(X) > TS(T) or if write_TS(X) > TS(T), then a younger

transaction has already read or written the data item so abort and

roll-back T and reject the operation.

b. Otherwise, execute write_item(X) of T and set write_TS(X) to TS(T).

2. Transaction T requests a read_item(X) operation:

a. If write_TS(X) > TS(T), then a younger transaction has already written

the data item X so abort and roll-back T and reject the operation.

b. Otherwise, execute read_item(X) of T and set read_TS(X) to the

larger of TS(T) and the current read_TS(X).



Multiversion CCMs

Assumes that multiple versions of an item can exists at 

the same time

An implicit assumption is that when a data item is updated, the new

value replaces the old value

Only current version of an item exists

Multiversions techniques assume that multiple versions of the same item

coexist and can be utilized by the CCM

We discuss two variations of multiversion CCMs:

 Multiversion Timestamp Ordering (TO)

 Multiversion Two-phase Locking (2PL)



Multiversion CCMs (cont.)

Multiversion Timestamp Ordering

Concept
Assumes that a number of versions of a data item X exist (X0,

X1, X2, ...); each version has its own read_TS and write_TS

Can allocate the right version to a read operation - thus read

operation is always successful

Significantly more storage (RAM and disk) is required to

maintain multiple versions; to check unlimited growth of versions,

a window is kept – say last 10 versions.



Multiversion CCMs (cont.)

Multiversion Timestamp Ordering (cont.)

Assume X1, X2, …, Xn are the version of a data item X created by

a write operation of transactions. With each Xi a read_TS (read

timestamp) and a write_TS (write timestamp) are associated.

read_TS(Xi): The read timestamp of Xi is the largest of all the

timestamps of transactions that have successfully read version Xi.

write_TS(Xi): The write timestamp of Xi is the timestamp of the

transaction that wrote version Xi.

A new version of Xi is created only by a write operation.



Multiversion CCMs (cont.0

Multiversion Timestamp Ordering (cont.)

To ensure serializability, the following two rules are used.

If transaction T issues write_item (X) and version i of X has the

highest (latest) write_TS(Xi) of all versions of X that is also less than

or equal to TS(T), and read _TS(Xi) > TS(T), then abort and roll-

back T; otherwise create a new version Xi and set read_TS(X) =

write_TS(Xj) = TS(T).

If transaction T issues read_item (X), find the version i of X that has 

the highest write_TS(Xi) of all versions of X that is also less than or 

equal to TS(T), then return the value of Xi to T, and set the value of 

read _TS(Xi) to the larger of TS(T) and the current read_TS(Xi).



Multiversion CCMs (cont.)

Multiversion 2PL Using Certify Locks

Concepts:

Allow one or more transactions T’ to concurrently read a data

item X while X is write locked by a different transaction T.

Accomplished by allowing two versions of a data item X: one

committed version (this can be read by other transactions)

and one local version being written by T.



Multiversion CCMs (cont.)

Multiversion 2PL Using Certify Locks (cont.)

Concepts (cont.):

Write lock on X by T is no longer exclusive – it can be held

with read locks from other transactions T'; however, only one

transaction can hold write lock on X.

Before local value of X (written by T) can become the

committed version, the write lock must be upgraded to a

certify lock by T (certify lock is exclusive in this scheme) – T

must wait until any read locks on X by other transactions T' are

released before upgrading to certify lock.





Multiversion CCMs (cont.)

Multiversion 2PL Using Certify Locks (cont.)

Steps

1. X is the committed version of a data item.

2. T creates local version X’ after obtaining a write lock on X.

3. Other transactions can continue to read X.

4. T is ready to commit so it requests a certify lock on X’.

5. If certify lock is granted, the committed version X becomes X’.

6. T releases its certify lock on X’, which is X now.



Multiversion CCMs (cont.)

Multiversion 2PL Using Certify Locks (cont.)

Note:

In multiversion 2PL several read and at most one write operations from

conflicting transactions can be processed concurrently. This improves

concurrency but it may delay transaction commit because of obtaining

certify locks on all items its writes before committing. It avoids

cascading abort but like strict two phase locking scheme conflicting

transactions may get deadlocked.



Validation-based (optimistic) CCMs

Known as optimistic concurrency control because it assumes that few

conflicts will occur.

Unlike other techniques, system does not have to perform checks

before each read and write operation – system performs checks only

at end of transaction (during validation phase)

Three Phases: Read phase, Validation Phase, Write Phase – we discuss

each phase next



Validation-based (optimistic) CCMs

While transaction T is executing, system collects information about

read_set(T) and write_set(T) (the set of item read and written by T)

as well as start/end time of each phase

Read phase is the time when the transaction is actually running and

executing read and write operations

Read phase: A transaction can read values of committed data items.

However, writes are applied only to local copies (versions) of the

data items (hence, it can be considered as a multiversion CCM).



Validation-based (optimistic) CCMs (cont.)

Validation phase: Serializability is checked by determining any

conflicts with other concurrent transactions.

This phase for Ti checks that, for each transaction Tj that is either

committed or is in its validation phase, one of the following

conditions holds:

1. Tj completes its write phase before Ti starts its read phase.

2. Ti starts its write phase after Tj completes its write phase,

and the read_set(Ti) has no items in common with the

write_set(Tj)

3. Both read_set(Ti) and write_set(Ti) have no items in

common with the write_set(Tj), and Tj completes its read

phase before Ti completes its write phase.



Validation-based (optimistic) CCMs (cont.)

When validating Ti, the first condition is checked first for each

transaction Tj, since (1) is the simplest condition to check. If (1) is false

for a particular Tj, then (2) is checked and only if (2) is false is (3 ) is

checked. If none of these conditions holds for any Tj, the validation

fails and Ti is aborted.

Write phase: On a successful validation, transaction updates are

applied to the database on disk and become the committed versions

of the data items; otherwise, transactions that fail the validation phase

are restarted.



Multiple-Granularity 2PL

The size of a data item is called its granularity. Granularity can be

coarse (entire database) or it can be fine (a tuple (record) or an

attribute value of a record). Data item granularity significantly

affects concurrency control performance. Degree of concurrency is

low for coarse granularity and high for fine granularity. Example of

data item granularity:

1. A field of a database record (an attribute of a tuple).

2. A database record (a tuple).

3. A disk block.

4. An entire file (relation).

5. The entire database.



Multiple-Granularity 2PL (cont.)

The following slide illustrates a hierarchy of granularity of items from

coarse (database) to fine (record). The root represents an item that

includes the whole database, followed by file items (tables/relations),

disk page items within each file, and record items within each disk

page.





Multiple-Granularity 2PL (cont.)

To manage such hierarchy, in addition to read or shared (S) and

write or exclusive (X) locking modes, three additional locking

modes, called intention lock modes are defined:

Intention-shared (IS): indicates that a shared lock(s) will be

requested on some descendent nodes(s).

Intention-exclusive (IX): indicates that an exclusive lock(s) will be

requested on some descendent nodes(s).

Shared-intention-exclusive (SIX): indicates that the current node is

requested to be locked in shared mode but an exclusive lock(s)

will be requested on some descendent nodes(s).



Multiple-Granularity 2PL (cont.)

These locks are applied using the lock compatibility table in

the next slide. Locking always begins at the root node and

proceeds down the tree, while unlocking proceeds in the

opposite direction:





Multiple-Granularity 2PL (cont.)

The set of rules which must be followed for producing

serializable schedule are

1. The lock compatibility table must be adhered to.

2. The root of the tree must be locked first, in any mode..

3. A node N can be locked by a transaction T in S (or X) mode
only if the parent node is already locked by T in either IS (or
IX) mode.

4. A node N can be locked by T in X, IX, or SIX mode only if
the parent of N is already locked by T in either IX or SIX
mode.

5. T can lock a node only if it has not unlocked any node (to
enforce 2PL policy).

6. T can unlock a node, N, only if none of the children of N are
currently locked by T.



Multiple-Granularity 2PL (cont.)

Next slide shows an example of how the locking and unlocking

may proceed in a schedule:





Purpose of Database Recovery

• To bring the database into a consistent state after a failure
occurs.

• To ensure the transaction properties of Atomicity (a
transaction must be done in its entirety; otherwise, it has to
be rolled back) and Durability (a committed transaction
cannot be canceled and all its updates must be applied
permanently to the database).

• After a failure, the DBMS recovery manager is responsible
for bringing the system into a consistent state before
transactions can resume.
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Types of Failure

• Transaction failure: Transactions may fail because of

errors, incorrect input, deadlock, incorrect

synchronization, etc.

• System failure: System may fail because of application

error, operating system fault, RAM failure, etc.

• Media failure: Disk head crash, power disruption, etc.
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The Log File

• Holds the information that is necessary for the recovery

process

• Records all relevant operations in the order in which they

occur (looks like a schedule of transactions, see Chapter

21)

• Is an append-only file.

• Holds various types of log records (or log entries).
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Log File Entries (from Chapter 21)

Types of records (entries) in log file: 

• [start_transaction,T]: Records that transaction T has 
started execution.

• [write_item,T,X,old_value,new_value]: T has changed 
the value of item X from old_value to new_value.

• [read_item,T,X]: T  has read the value of item X (not 
needed in many cases).

• [end_transaction,T]: T has ended execution

• [commit,T]: T has completed successfully, and 
committed.

• [abort,T]: T has been aborted. 
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The Log File (cont.)

For write_item log entry, old value of item before modification
(BFIM - BeFore Image) and the new value after modification (AFIM
– AFter Image) are stored. BFIM needed for UNDO, AFIM needed
for REDO. A sample log is given below. Back P and Next P point to
the previous and next log records of the same transaction.

T ID Back P Next P Operation Data item BFIM AFIM

T1 0 1

T1 1 4

T2 0 8

T1 2 5

T1 4 7

T3 0 9

T1 5 nil

Begin

Write

W

R

R

End

Begin
X

Y

M

N

X = 200

Y = 100

M = 200

N = 400

X = 100

Y = 50

M = 200

N = 400



Database Cache

Database Cache: A set of main memory buffers; each

buffer typically holds contents of one disk block. Stores

the disk blocks that contain the data items being read

and written by the database transactions.

Data Item Address: (disk block address, offset, size in

bytes).

Cache Table:Table of entries of the form (buffer addr,

disk block addr, modified bit, pin/unpin bit, ...) to

indicate which disk blocks are currently in the cache

buffers.



Database Cache (cont.)

Data items to be modified are first copied into

database cache by the Cache Manager (CM) and after

modification they are flushed (written) back to the disk.

The flushing is controlled by Modified and Pin-Unpin

bits.

Pin-Unpin: If a buffer is pinned, it cannot be written

back to disk until it is unpinned.

Modified: Indicates that one or more data items in the

buffer have been changed.



Data Update

• Immediate Update: A data item modified in cache
can be written back to disk before the transaction
commits.

• Deferred Update: A modified data item in the cache
cannot be written back to disk till after the transaction
commits (buffer is pinned).

• Shadow update: The modified version of a data
item does not overwrite its disk copy but is written at
a separate disk location (new version).

• In-place update: The disk version of the data item is
overwritten by the cache version.



UNDO and REDO Recovery Actions

To maintain atomicity and durability, some transaction’s may have 

their operations redone or undone during recovery. UNDO (roll-

back) is needed for transactions that are not committed yet. REDO 

(roll-forward) is needed for committed transactions whose writes 

may have not yet been flushed from cache to disk.

Undo: Restore all BFIMs from log to database on disk. UNDO

proceeds backward in log (from most recent to oldest UNDO).

Redo: Restore all AFIMs from log to database on disk. REDO

proceeds forward in log (from oldest to most recent REDO).



Write-ahead Logging Protocol

The information needed for recovery must be written to the log

file on disk before changes are made to the database on disk.

Write-Ahead Logging (WAL) protocol consists of two rules:

For Undo: Before a data item’s AFIM is flushed to the

database on disk (overwriting the BFIM) its BFIM must be

written to the log and the log must be saved to disk.

For Redo: Before a transaction executes its commit operation,

all its AFIMs must be written to the log and the log must be

saved on a stable store.



Checkpointing

To minimize the REDO operations during recovery. The

following steps define a checkpoint operation:

– Suspend execution of transactions temporarily.

– Force write modified buffers from cache to disk.

– Write a [checkpoint] record to the log, save the log to disk.

This record also includes other info., such as the list of active

transactions at the time of checkpoint.

– Resume normal transaction execution.

During recovery redo is required only for transactions that

have committed after the last [checkpoint] record in the log.



Checkpointing (cont.)

Steps 1 and 4 in previous slide are not realistic.

A variation of checkpointing called fuzzy checkpointing

allows transactions to continue execution during the

checkpointing process.

We discuss fuzzy checkpointing in the ARIES protocol later.



Other Database Recovery Concepts

Steal/No-Steal and Force/No-Force

Specify how to flush database cache buffers to database on disk:

Steal: Cache buffers updated by a transaction may be flushed to disk

before the transaction commits (recovery may require UNDO).

No-Steal: Cache buffers cannot be flushed until after transaction commit

(NO-UNDO). (Buffers are pinned till transactions commit).

Force: Cache is flushed (forced) to disk before transaction commits (NO-

REDO).

No-Force: Some cache flushing may be deferred till after transaction

commits (recovery may require REDO).

These give rise to four different ways for handling recovery:

Steal/No-Force (Undo/Redo), Steal/Force (Undo/No-redo), No-Steal/No-

Force (Redo/No-undo), No-Steal/Force (No-undo/No-redo).



Deferred Update (NO-UNDO/REDO) Recovery Protocol

System must impose NO-STEAL rule. Recovery subsystem analyzes the log,

and creates two lists:

Active Transaction list: All active (uncommitted) transaction ids are

entered in this list.

Committed Transaction list: Transactions committed after the last

checkpoint are entered in this table.

During recovery, transactions in commit list are redone; transactions in

active list are ignored (because of NO-STEAL rule, none of their writes

have been applied to the database on disk). Some transactions may be

redone twice; this does not create inconsistency because REDO is

“idempotent”, that is, one REDO for an AFIM is equivalent to multiple

REDO for the same AFIM.
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Deferred Update (NO-UNDO/REDO) Recovery Protocol 

(cont.)

Advantage: Only REDO is needed during recovery.

Disadvantage: Many buffers may be pinned while waiting for transactions

that updated them to commit, so system may run out of cache buffers when

requests are made by new transactions.

140



UNDO/NO-REDO Recovery Protocol

In this method, FORCE rule is imposed by system (AFIMs of a transaction

are flushed to the database on disk under Write Ahead Logging before

the transaction commits).

Transactions in active list are undone; transactions in committed list are

ignored (because based on FORCE rule, all their changes are already

written to the database on disk).

Advantage: During recovery, only UNDO is needed.

Disadvantages: 1. Commit of a transaction is delayed until all its changes

are force-written to disk. 2. Some buffers may be written to disk multiple

times if they are updated by several transactions.
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UNDO/REDO Recovery Protocol 

Recovery can require both UNDO of some transactions and REDO of

other transactions (Corresponds to STEAL/NO-FORCE). Used most often in

practice because of disadvantages of the other two methods. To minimize

REDO, checkpointing is used. The recovery performs:

1. Undo of a transaction if it is in the active transaction list.

2. Redo of a transaction if it is in the list of transactions that committed

since the last checkpoint.
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Shadow Paging (NO-UNDO/NO-REDO)

The AFIM does not overwrite its BFIM but is recorded at another place

(new version) on the disk. Thus, a data item can have AFIM and BFIM

(Shadow copy of the data item) at two different places on the disk.

X Y

Database

X' Y'

X and Y:  Shadow (old) copies of data items

X` and Y`: Current (new) copies of data items
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ARIES Database Recovery

Used in practice, it is based on:

1. WAL (Write Ahead Logging)

2. Repeating history during redo: ARIES will retrace all actions of

the database system prior to the crash to reconstruct the correct

database state.

3. Logging changes during undo: It will prevent ARIES from

repeating the completed undo operations if a failure occurs

during recovery, which causes a restart of the recovery process.
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ARIES Database Recovery (cont.)

The ARIES recovery algorithm consists of three steps:

1. Analysis: step identifies the dirty (updated) page buffers in the

cache and the set of transactions active at the time of crash. The

set of transactions that committed after the last checkpoint is

determined, and the appropriate point in the log where redo is

to start is also determined.

2. Redo: necessary redo operations are applied.

3. Undo: log is scanned backwards and the operations of

transactions active at the time of crash are undone in reverse

order.
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ARIES Database Recovery (cont.)

The Log and Log Sequence Number (LSN)

A log record is written for (a) data update (Write), (b) transaction

commit, (c) transaction abort, (d) undo, and (e) transaction end. In the

case of undo a compensating log record is written.

A unique LSN is associated with every log record. LSN increases

monotonically and indicates the disk address of the log record it is

associated with. In addition, each data page stores the LSN of the

latest log record corresponding to a change for that page.
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ARIES Database Recovery (cont.)

The Log and Log Sequence Number (LSN) (cont.)

A log record stores:

1. LSN of previous log record for same transaction: It links the log

records of each transaction.

2. Transaction ID.

3. Type of log record.

For a write operation, additional information is logged:

1. Page ID for the page that includes the item

2. Length of the updated item

3. Its offset from the beginning of the page

4. BFIM of the item

5. AFIM of the item
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ARIES Database Recovery (cont.)

The Transaction table and the Dirty Page table

For efficient recovery, the following tables are also stored in the log

during checkpointing:

Transaction table: Contains an entry for each active transaction, with

information such as transaction ID, transaction status, and the LSN of

the most recent log record for the transaction.

Dirty Page table: Contains an entry for each dirty page (buffer) in

the cache, which includes the page ID and the LSN corresponding to

the earliest update to that page.
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ARIES Database Recovery (cont.)

“Fuzzy” Checkpointing

A checkpointing process does the following:

1. Writes a begin_checkpoint record in the log, then forces updated

(dirty) buffers to disk.

2. Writes an end_checkpoint record in the log, along with the

contents of transaction table and dirty page table.

3. Writes the LSN of the begin_checkpoint record to a special file.

This special file is accessed during recovery to locate the last

checkpoint information.

To allow the system to continue to execute transactions, ARIES uses

“fuzzy checkpointing”.
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ARIES Database Recovery (cont.)

The following steps are performed for recovery

1. Analysis phase: Start at the begin_checkpoint record and

proceed to the end_checkpoint record. Access transaction table

and dirty page table that were appended to the log. During this

phase some other records may be written to the log and the

transaction table may be modified. The analysis phase compiles

the set of redo and undo operations to be performed and ends.

2. Redo phase: Starts from the point in the log where all dirty

pages have been flushed, and move forward. Operations of

committed transactions are redone.

3. Undo phase: Starts from the end of the log and proceeds

backward while performing appropriate undo. For each undo it

writes a compensating record in the log.

The recovery completes at the end of undo phase.
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Recovery in Multi-database Transactions 

(Two-phase commit)

A multidatabase transaction can access several databases: e.g.

airline database, car rental database, credit card database. The

transaction commits only when all these multiple databases agree to

commit individually the part of the transaction they were executing.

This commit scheme is referred to as “two-phase commit” (2PC). If

any one of these nodes fails or cannot commit its part of the

transaction, then the whole transaction is aborted. Each node

recovers the transaction under its own recovery protocol.
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Two-phase commit (cont.)

Phase 1: Coordinator (usually application program running in

middle-tier of 3-tier architecture) sends “Ready-to-commit?” query

to each participating database, then waits for replies. A participating

database replies Ready-to-commit only after saving all actions in its

local log on disk.

Phase 2: If coordinator receives Ready-to-commit signals from all

participating databases, it sends Commit to all; otherwise, it send

Abort to all.

This protocol can survive most types of crashes.
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Questions
155

1. Explain the properties of transactions.

2. What is serializability? Explain.

3. What is 2PL? Explain.

4. Explain shadow paging.

5. Explain ARIES recovery algorithm.


