
MODULE – 4

NORMALIZATION: DATABASE DESIGN THEORY

Mr. C. R. Belavi, Dept. of CSE, HIT, NDS

INTRODUCTION TO NORMALIZATION USING

FUNCTIONAL AND MULTIVALUED DEPENDENCIES

NORMALIZATION ALGORITHMS

INTRODUCTION TO NORMALIZATION USING

FUNCTIONAL AND MULTIVALUED

DEPENDENCIES

2

 Informal Design Guidelines for Relational
Databases

 Functional Dependencies

 Normal Forms:

 1NF, 2NF, 3NF, BCNF, 4NF, 5NF

 Inference Rules

 Properties of Decompositions

 Algorithms for Relational Database Schema
Design

3

Informal Design Guidelines for Relational

Databases (1)

 What is relational database design?

The grouping of attributes to form "good" relation schemas

 Two levels of relation schemas

 The logical "user view" level

 The storage "base relation" level

 Design is concerned mainly with base relations

 What are the criteria for "good" base relations?

4

Informal Design Guidelines for Relational

Databases (2)

 We first discuss informal guidelines for good
relational design

 Then we discuss formal concepts of functional
dependencies and normal forms
- 1NF (First Normal Form)

- 2NF (Second Normal Form)

- 3NF (Third Normal Form)

- BCNF (Boyce-Codd Normal Form)

5

Semantics of the Relation Attributes

GUIDELINE 1: Informally, each tuple in a relation
should represent one entity or relationship instance.
(Applies to individual relations and their
attributes).

 Attributes of different entities (EMPLOYEEs, DEPARTMENTs, PROJECTs)
should not be mixed in the same relation

 Only foreign keys should be used to refer to other entities

 Entity and relationship attributes should be kept apart as much as
possible.

Bottom Line: Design a schema that can be explained
easily relation by relation. The semantics of
attributes should be easy to interpret.

6

A simplified COMPANY relational

database schema

Note: The above figure is now called Figure 10.1 in Edition 4

Chapter 10-7

Redundant Information in Tuples and Update

Anomalies

 Mixing attributes of multiple entities may cause

problems

 Information is stored redundantly wasting storage

 Problems with update anomalies

 Insertion anomalies

 Deletion anomalies

Modification anomalies

8

EXAMPLE OF AN UPDATE ANOMALY

(1)

Consider the relation:

EMP_PROJ (Emp#, Proj#, Ename, Pname, No_hours)

 Update Anomaly: Changing the name of project

number P1 from ―Billing‖ to ―Customer-Accounting‖

may cause this update to be made for all 100

employees working on project P1.

9

EXAMPLE OF AN UPDATE ANOMALY

(2)

 Insert Anomaly: Cannot insert a project unless an

employee is assigned to .

Inversely - Cannot insert an employee unless an

he/she is assigned to a project.

 Delete Anomaly: When a project is deleted, it will

result in deleting all the employees who work on that

project. Alternately, if an employee is the sole

employee on a project, deleting that employee would

result in deleting the corresponding project.

10

Two relation schemas suffering from update anomalies

11

Example States for EMP_DEPT and EMP_PROJ
12

Guideline to Redundant Information in Tuples and

Update Anomalies

 GUIDELINE 2: Design a schema that does not suffer

from the insertion, deletion and update anomalies. If

there are any present, then note them so that

applications can be made to take them into account

13

Null Values in Tuples

GUIDELINE 3: Relations should be designed such that
their tuples will have as few NULL values as possible

 Attributes that are NULL frequently could be placed
in separate relations (with the primary key)

 Reasons for nulls:

 attribute not applicable or invalid

 attribute value unknown (may exist)

 value known to exist, but unavailable

14

Spurious Tuples

 Bad designs for a relational database may result in
erroneous results for certain JOIN operations

 The "lossless join" property is used to guarantee
meaningful results for join operations

GUIDELINE 4: The relations should be designed to
satisfy the lossless join condition. No spurious tuples
should be generated by doing a natural-join of any
relations.

15

Spurious Tuples (2)

There are two important properties of decompositions:

(a) non-additive or losslessness of the corresponding

join

(b) preservation of the functional dependencies.

Note that property (a) is extremely important and

cannot be sacrificed. Property (b) is less stringent

and may be sacrificed.

16

Functional Dependencies (1)

 Functional dependencies (FDs) are used to specify
formal measures of the "goodness" of relational
designs

 FDs and keys are used to define normal forms for
relations

 FDs are constraints that are derived from the
meaning and interrelationships of the data
attributes

 A set of attributes X functionally determines a set
of attributes Y if the value of X determines a
unique value for Y

17

Functional Dependencies (2)

 X -> Y holds if whenever two tuples have the same value for X,

they must have the same value for Y

 For any two tuples t1 and t2 in any relation instance r(R): If

t1[X]=t2[X], then t1[Y]=t2[Y]

 X -> Y in R specifies a constraint on all relation instances r(R)

 Written as X -> Y; can be displayed graphically on a relation

schema as in Figures. (denoted by the arrow:).

 FDs are derived from the real-world constraints on the

attributes

18

Examples of FD constraints (1)

 social security number determines employee name

SSN -> ENAME

 project number determines project name and location

PNUMBER -> {PNAME, PLOCATION}

 employee ssn and project number determines the
hours per week that the employee works on the
project

{SSN, PNUMBER} -> HOURS

19

Examples of FD constraints (2)

 An FD is a property of the attributes in the schema R

 The constraint must hold on every relation instance r(R)

 If K is a key of R, then K functionally determines all

attributes in R (since we never have two distinct tuples

with t1[K]=t2[K])

20

Normal Forms Based on Primary Keys

 Normalization of Relations

 Practical Use of Normal Forms

 Definitions of Keys and Attributes Participating in

Keys

 First Normal Form

 Second Normal Form

 Third Normal Form

21

Normalization of Relations (1)

 Normalization: The process of decomposing

unsatisfactory "bad" relations by breaking up their

attributes into smaller relations

 Normal form: Condition using keys and FDs of a

relation to certify whether a relation schema is in a

particular normal form

22

Normalization of Relations (2)

 2NF, 3NF, BCNF based on keys and FDs of a relation

schema

 4NF based on keys, multi-valued dependencies :

MVDs; 5NF based on keys, join dependencies : JDs

 Additional properties may be needed to ensure a

good relational design (lossless join, dependency

preservation)

23

 Lossless join or nonadditive join property

Guarantees that the spurious tuples will not be

generated

 The dependency preservation property

 Ensures that each functional dependency is represented

in some individual relation resulting after decomposition

24

Practical Use of Normal Forms

 Normalization is carried out in practice so that the resulting
designs are of high quality and meet the desirable properties

 The practical utility of these normal forms becomes
questionable when the constraints on which they are based are
hard to understand or to detect

 The database designers need not normalize to the highest
possible normal form. (usually up to 3NF, BCNF or 4NF)

 Denormalization: the process of storing the join of higher
normal form relations as a base relation—which is in a lower
normal form

25

Definitions of Keys and Attributes Participating in

Keys (1)

 A superkey of a relation schema R = {A1, A2,, An}

is a set of attributes S subset-of R with the property

that no two tuples t1 and t2 in any legal relation state

r of R will have t1[S] = t2[S]

 A key K is a superkey with the additional property

that removal of any attribute from K will cause K not

to be a superkey any more.

26

Definitions of Keys and Attributes Participating in

Keys (2)

 If a relation schema has more than one key, each is

called a candidate key. One of the candidate keys is

arbitrarily designated to be the primary key, and the

others are called secondary keys.

 A Prime attribute must be a member of some

candidate key

 A Nonprime attribute is not a prime attribute—that

is, it is not a member of any candidate key.

27

First Normal Form

 Disallows composite attributes, multivalued attributes,
and nested relations; attributes whose values for an
individual tuple are non-atomic

 Considered to be part of the definition of relation

 1NF Definition:

 It states that the domain of an attribute must include only
atomic (simple) values and that the value of any attribute
in a tuple must be a single value from the domain of that
attribute

28

Normalization into 1NF

29

Normalization nested relations into 1NF

30

Second Normal Form (1)

 Uses the concepts of FDs, primary key

Definitions:

 Prime attribute - attribute that is member of the
primary key K

 Full functional dependency - a FD Y -> Z where
removal of any attribute from Y means the FD does
not hold any more

Examples: - {SSN, PNUMBER} -> HOURS is a full FD since

neither SSN -> HOURS nor PNUMBER -> HOURS hold

- {SSN, PNUMBER} -> ENAME is not a full FD (it is called a

partial dependency) since SSN -> ENAME also holds

31

Second Normal Form (2)

 2NF Definition

A relation schema R is in second normal form (2NF)

if every non-prime attribute A in R is fully

functionally dependent on the primary key of R

 R can be decomposed into 2NF relations via the

process of 2NF normalization

32

Normalizing into 2NF and 3NF

Note: The above figure is now called Figure 10.10 in Edition 4

33

Normalization into 2NF and 3NF

34

Third Normal Form (1)

Definition:

 Transitive functional dependency - a FD X -> Z that

can be derived from two FDs X -> Y and Y -> Z

Examples:

- SSN -> DMGRSSN is a transitive FD since

SSN -> DNUMBER and DNUMBER -> DMGRSSN hold

- SSN -> ENAME is non-transitive since there is no set of

attributes X where SSN -> X and X -> ENAME

35

Third Normal Form (2)

 3NF Definition
 A relation schema R is in third normal form (3NF) if it

satisfies 2NF and no non-prime attribute of R is
transitively dependent on the primary key

 R can be decomposed into 3NF relations via the
process of 3NF normalization

NOTE:

In X -> Y and Y -> Z, with X as the primary key, we consider this a problem
only if Y is not a candidate key. When Y is a candidate key, there is no
problem with the transitive dependency .

E.g., Consider EMP (SSN, Emp#, Salary).

Here, SSN -> Emp# -> Salary and Emp# is a candidate key.

36

General Normal Form Definitions (For Multiple

Keys) (1)

 The above definitions consider the primary key only

 The following more general definitions take into

account relations with multiple candidate keys

 A relation schema R is in second normal form (2NF)

if every non-prime attribute A in R is fully functionally

dependent on every key of R

37

General Normal Form Definitions (2)

Definition:

 Superkey of relation schema R - a set of attributes S
of R that contains a key of R

 A relation schema R is in third normal form (3NF) if
whenever a FD X -> A holds in R, then either:

(a) X is a superkey of R, or

(b) A is a prime attribute of R

NOTE: Boyce-Codd normal form disallows condition (b) above

38

BCNF (Boyce-Codd Normal Form)

 A relation schema R is in Boyce-Codd Normal Form

(BCNF) if whenever an FD X -> A holds in R, then X is

a superkey of R

 Each normal form is strictly stronger than the previous one

 Every 2NF relation is in 1NF

 Every 3NF relation is in 2NF

 Every BCNF relation is in 3NF

 There exist relations that are in 3NF but not in BCNF

 The goal is to have each relation in BCNF (or 3NF)

39

Boyce-Codd normal form

40

A relation TEACH that is in 3NF but not in BCNF

41

Achieving the BCNF by Decomposition (1)

 Two FDs exist in the relation TEACH:

fd1: { student, course} -> instructor

fd2: instructor -> course

 {student, course} is a candidate key for this relation and that

the dependencies shown follow the pattern in Figure 10.12 (b).

So this relation is in 3NF but not in BCNF

 A relation NOT in BCNF should be decomposed so as to meet

this property, while possibly forgoing the preservation of all

functional dependencies in the decomposed relations. (See

Algorithm 11.3)

42

Achieving the BCNF by Decomposition (2)

 Three possible decompositions for relation TEACH

1. {student, instructor} and {student, course}

2. {course, instructor } and {course, student}

3. {instructor, course } and {instructor, student}

 All three decompositions will lose fd1. We have to settle for sacrificing the
functional dependency preservation. But we cannot sacrifice the non-additivity
property after decomposition.

 Out of the above three, only the 3rd decomposition will not generate spurious
tuples after join.(and hence has the non-additivity property).

 A test to determine whether a binary decomposition (decomposition into two
relations) is nonadditive (lossless) is discussed in section 11.1.4 under Property
LJ1. Verify that the third decomposition above meets the property.

43

Multivalued Dependencies and Fourth Normal Form

(1)

(a) The EMP relation with two MVDs: ENAME —>> PNAME and ENAME —>>

DNAME.

(b) Decomposing the EMP relation into two 4NF relations EMP_PROJECTS and

EMP_DEPENDENTS.

44

Multivalued Dependencies and Fourth Normal Form

(1)

(c) The relation SUPPLY with no MVDs is in 4NF but not in 5NF if it has the

JD(R1, R2, R3). (d) Decomposing the relation SUPPLY into the 5NF relations

R1, R2, and R3.

45

Multivalued Dependencies and Fourth Normal Form

(2)

Definition:

 A multivalued dependency (MVD) X —>> Y specified on relation

schema R, where X and Y are both subsets of R, specifies the following

constraint on any relation state r of R: If two tuples t1 and t2 exist in r such

that t1[X] = t2[X], then two tuples t3 and t4 should also exist in r with the

following properties, where we use Z to denote (R - (X υ Y)):

 t3[X] = t4[X] = t1[X] = t2[X].

 t3[Y] = t1[Y] and t4[Y] = t2[Y].

 t3[Z] = t2[Z] and t4[Z] = t1[Z].

 An MVD X —>> Y in R is called a trivial MVD if (a) Y is a subset of X, or
(b) X υ Y = R.

46

Multivalued Dependencies and Fourth Normal Form

(3)

 Inference Rules for Functional and
Multivalued Dependencies:
 IR1 (reflexive rule for FDs): If X Y, then X –> Y.

 IR2 (augmentation rule for FDs): {X –> Y} XZ –> YZ.

 IR3 (transitive rule for FDs): {X –> Y, Y –>Z} X –> Z.

 IR4 (complementation rule for MVDs): {X —>> Y} X —>>
(R – (X Y))}.

 IR5 (augmentation rule for MVDs): If X —>> Y and W Z
then WX —>> YZ.

 IR6 (transitive rule for MVDs): {X —>> Y, Y —>> Z} X —>> (Z 2
Y).

 IR7 (replication rule for FD to MVD): {X –> Y} X —>> Y.

 IR8 (coalescence rule for FDs and MVDs): If X —>> Y and there exists
W with the properties that

 (a) W Y is empty, (b) W –> Z, and (c) Y Z, then X –> Z.

47

Multivalued Dependencies and Fourth Normal Form

(4)

Definition:

 A relation schema R is in 4NF with respect to a set of
dependencies F (that includes functional dependencies and
multivalued dependencies) if, for every nontrivial multivalued
dependency X —>> Y in F+, X is a superkey for R.

 Note: F+ is the (complete) set of all dependencies (functional or
multivalued) that will hold in every relation state r of R that
satisfies F. It is also called the closure of F.

48

Multivalued Dependencies and Fourth Normal Form (5)

Decomposing a relation state of EMP that is not in 4NF:

(a) EMP relation with additional tuples.

(b) Two corresponding 4NF relations EMP_PROJECTS and

EMP_DEPENDENTS.

49

Multivalued Dependencies and Fourth Normal Form (6)

Lossless (Non-additive) Join Decomposition into

4NF Relations:

 PROPERTY LJ1’

 The relation schemas R1 and R2 form a lossless (non-

additive) join decomposition of R with respect to a set F

of functional and multivalued dependencies if and only if

 (R1∩ R2) —>> (R1 - R2)

 or by symmetry, if and only if

 (R1 ∩ R2) —>> (R2 - R1)).

50

Multivalued Dependencies and Fourth Normal Form (7)

Algorithm 11.5: Relational decomposition into 4NF relations

with non-additive join property

 Input: A universal relation R and a set of functional and multivalued

dependencies F.

1. Set D := { R };

2. While there is a relation schema Q in D that is not in 4NF do {

choose a relation schema Q in D that is not in 4NF;

find a nontrivial MVD X —>> Y in Q that violates 4NF;

replace Q in D by two relation schemas (Q - Y) and (X υ Y);

};

51

Join Dependencies and Fifth Normal Form (1)

Definition:

 A join dependency (JD), denoted by JD(R1, R2, ..., Rn),
specified on relation schema R, specifies a constraint on the
states r of R.

 The constraint states that every legal state r of R should have a
non-additive join decomposition into R

1
, R

2
, ..., R

n
; that is, for

every such r we have

 * (
R1

(r),
R2

(r), ...,
Rn

(r)) = r

Note: an MVD is a special case of a JD where n = 2.

 A join dependency JD(R1, R2, ..., Rn), specified on relation
schema R, is a trivial JD if one of the relation schemas Ri in
JD(R1, R2, ..., Rn) is equal to R.

52

Join Dependencies and Fifth Normal Form (2)

Definition:

 A relation schema R is in fifth normal form (5NF)

(or Project-Join Normal Form (PJNF)) with respect

to a set F of functional, multivalued, and join

dependencies if,

 for every nontrivial join dependency JD(R
1
, R

2
, ..., R

n
)

in F+ (that is, implied by F),

 every Ri is a superkey of R.

53

Relation SUPPLY with Join Dependency and conversion to

Fifth Normal Form
54

NORMALIZATION ALGORITHMS

55

Closure of f

 The set of all dependencies that include F as well as all
dependencies that can be inferred from F is called the closure
of F; it is denoted by F+.

 Example…

F = {Ssn → {Ename, Bdate, Address, Dnumber}, Dnumber → {Dname, Dmgr_ssn} }

 Some of the additional functional dependencies that we can infer from F are the following:

Ssn → {Dname, Dmgr_ssn}

Ssn → Ssn

Dnumber → Dname

56

2.2 Inference Rules for FDs (1)

 Given a set of FDs F, we can infer additional FDs that
hold whenever the FDs in F hold

Armstrong's inference rules:

IR1. (Reflexive) If Y subset-of X, then X -> Y

IR2. (Augmentation) If X -> Y, then XZ -> YZ

(Notation: XZ stands for X U Z)

IR3. (Transitive) If X -> Y and Y -> Z, then X -> Z

 IR1, IR2, IR3 form a sound and complete set of
inference rules

57

Inference Rules for FDs (2)

Some additional inference rules that are useful:

(Decomposition) If X -> YZ, then X -> Y and X -> Z

(Union) If X -> Y and X -> Z, then X -> YZ

(Psuedotransitivity) If X -> Y and WY -> Z, then WX -> Z

 The last three inference rules, as well as any other

inference rules, can be deduced from IR1, IR2, and

IR3 (completeness property)

58

PROOF

 Proof of IR1.

 Suppose that X ⊇ Y and that two tuples t1 and t2 exist in some relation instance
r of R such that t1 [X] = t2 [X]. Then t1[Y] = t2[Y] because X ⊇ Y; hence, X→Y
must hold in r.

 Proof of IR2 (by contradiction).

 Assume that X→Y holds in a relation instance r of R but that XZ→YZ does not
hold. Then there must exist two tuples t1 and t2 in r such that (1) t1 [X] = t2 [X],
(2) t1 [Y] = t2 [Y], (3) t1 [XZ] = t2 [XZ], and (4) t1 [YZ] ≠ t2 [YZ]. This is not
possible because from (1) and (3) we deduce (5) t1 [Z] = t2 [Z], and from (2)
and (5) we deduce (6) t1 [YZ] = t2 [YZ], contradicting (4).

 Proof of IR3.

 Assume that (1) X → Y and (2) Y → Z both hold in a relation r. Then for any two
tuples t1 and t2 in r such that t1 [X] = t2 [X], we must have (3) t1 [Y] = t2 [Y],
from assumption (1); hence we must also have (4) t1 [Z] = t2 [Z] from (3) and
assumption (2); thus X→Z must hold in r.

59

CONTD

 Proof of IR4 (Using IR1 through IR3).
 X→YZ (given).

 YZ→Y (using IR1 and knowing that YZ ⊇ Y).

 X→Y (using IR3 on 1 and 2).

 Proof of IR5 (using IR1 through IR3).
 X→Y (given).

 X→Z (given).

 X→XY (using IR2 on 1 by augmenting with X; notice that XX = X).

 XY→YZ (using IR2 on 2 by augmenting with Y).

 X→YZ (using IR3 on 3 and 4).

 Proof of IR6 (using IR1 through IR3).
 X→Y (given).

 WY→Z (given).

 WX→WY (using IR2 on 1 by augmenting with W).

 WX→Z (using IR3 on 3 and 2).

60

 The inference rules IR1 through IR3 are sound and

complete

 sound because given a set of functional dependencies F

specified on a relation schema R, any dependency that we

can infer from F by using IR1 through IR3 holds in every

relation state r or R that satisfies the dependencies in F.

 complete because using IR1 through IR3 repeatedly to infer

dependencies until no more dependencies can be inferred

results in the complete set of all possible dependencies that

can be inferred from F.

61

Closure of x under f

 For each set of attributes X, we determine the set X+

of attributes that are functionally determined by X

based on F; X+ is called the closure of X under F.

62

Algorithm: Determining X+, the

Closure of X under F

Input: A set F of FDs on a relation schema R, and a set

of attributes X, which is a subset of R.

X+ := X;

repeat

oldX + := X +;

for each functional dependency Y→Z in F do

if X + ⊇ Y then X + := X + ∪ Z;

until (X + = oldX +);

63

Equivalence of sets of functional dependencies

 A set of functional dependencies F is said to cover another set

of functional dependencies E if every FD in E is also in F+; that

is, if every dependency in E can be inferred from F;

alternatively, we can say that E is covered by F.

 Two sets of functional dependencies E and F are equivalent if

E+ = F+. Therefore, equivalence means that every FD in E can

be inferred from F, and every FD in F can be inferred from E;

that is, E is equivalent to F if both the conditions—E covers F

and F covers E—hold.

64

Minimal Sets of FDs

 A set of functional dependencies F to be minimal if it

satisfies the following conditions:

1. Every dependency in F has a single attribute for its right-

hand side.

2. We cannot replace any dependency X → A in F with a

dependency Y → A, where Y is a proper subset of X, and

still have a set of dependencies that is equivalent to F.

3. We cannot remove any dependency from F and still have

a set of dependencies that is equivalent to F.

65

Minimal cover

 A minimal cover of a set of functional dependencies

E is a minimal set of dependencies (in the standard

canonical form and without redundancy) that is

equivalent to E

66

Algorithm: Finding a Minimal Cover F for

a Set of Functional Dependencies E

Input: A set of functional dependencies E.

1. Set F := E.

2. Replace each functional dependency X→{A1, A2, ..., An} in F

by the n functional dependencies X→A1, X→A2, ..., X→An.

3. For each functional dependency X→A in F for each attribute

B that is an element of X if { {F – {X→A} } ∪ { (X – {B}) →A}

} is equivalent to F then replace X→A with (X – {B}) →A in F.

4. For each remaining functional dependency X→A in F if {F –

{X→A} } is equivalent to F, then remove X→A from F.

67

Example

Find the minimal cover for the following set of

functional dependencies:

E : {B→A, D→A, AB→D}.

68

SOLUTION

 All above dependencies are in canonical form (that is, they have only one attribute
on the right-hand side), so we have completed step 1 of Algorithm and can proceed
to step 2. In step 2 we need to determine if AB→D has any redundant attribute on
the left-hand side; that is, can it be replaced by B→D or A→D?

 Since B →A, by augmenting with B on both sides (IR2), we have BB → AB, or B→AB
(i). However, AB→D as given (ii).

 Hence by the transitive rule (IR3), we get from (i) and (ii), B → D. Thus AB→D may be
replaced by B→D.

 We now have a set equivalent to original E, say E: {B→A, D→A, B→D}. No further
reduction is possible in step 2 since all FDs have a single attribute on the left-hand
side.

 In step 3 we look for a redundant FD in E. By using the transitive rule on B → D
and D → A, we derive B → A. Hence B → A is redundant in E and can be eliminated.

 Therefore, the minimal cover of E is {B→D, D→A}.

69

DESIGNING A SET OF RELATIONS (1)

 The Approach of Relational Synthesis (Bottom-up

Design):

 Assumes that all possible functional dependencies are

known.

 First constructs a minimal set of FDs

 Then applies algorithms that construct a target set of

3NF or BCNF relations.

 Additional criteria may be needed to ensure the set of

relations in a relational database are satisfactory (see

Algorithms 11.2 and 11.4).

70

DESIGNING A SET OF RELATIONS (2)

 Goals:

 Lossless join property (a must)

 Algorithm 11.1 tests for general losslessness.

 Dependency preservation property

 Algorithm 11.3 decomposes a relation into BCNF

components by sacrificing the dependency preservation.

 Additional normal forms

 4NF (based on multi-valued dependencies)

 5NF (based on join dependencies)

71

1. Properties of Relational

Decompositions (1)

Relation Decomposition and

Insufficiency of Normal Forms:

Universal Relation Schema:

A relation schema R = {A1, A2, …, An}

that includes all the attributes of the

database.

Universal relation assumption:

Every attribute name is unique.

72

Properties of Relational

Decompositions (2)

 Relation Decomposition and Insufficiency of
Normal Forms (cont.):
Decomposition:
 The process of decomposing the universal relation schema R

into a set of relation schemas D = {R1,R2, …, Rm} that will

become the relational database schema by using the

functional dependencies.

Attribute preservation condition:
 Each attribute in R will appear in at least one relation

schema Ri in the decomposition so that no attributes are
―lost‖.

73

Properties of Relational

Decompositions (2)

 Another goal of decomposition is to have each

individual relation Ri in the decomposition D be in

BCNF or 3NF.

 Additional properties of decomposition are

needed to prevent from generating spurious tuples

74

Properties of Relational

Decompositions (3)

 Dependency Preservation Property of a
Decomposition:
 Definition: Given a set of dependencies F on R, the

projection of F on Ri, denoted by pRi(F) where Ri is a
subset of R, is the set of dependencies X Y in F+ such
that the attributes in X υ Y are all contained in Ri.

 Hence, the projection of F on each relation schema Ri in
the decomposition D is the set of functional
dependencies in F+, the closure of F, such that all their
left- and right-hand-side attributes are in Ri.

75

Properties of Relational

Decompositions (4)

 Dependency Preservation Property of a
Decomposition (cont.):
 Dependency Preservation Property:
 A decomposition D = {R1, R2, ..., Rm} of R is dependency-

preserving with respect to F if the union of the projections
of F on each Ri in D is equivalent to F; that is

((R1(F)) υ . . . υ (Rm(F)))+ = F+

 (See examples in Fig 10.12a and Fig 10.11)

 Claim 1:
 It is always possible to find a dependency-preserving

decomposition D with respect to F such that each
relation Ri in D is in 3nf.

76

Properties of Relational

Decompositions (5)

 Lossless (Non-additive) Join Property of a Decomposition:

 Definition: Lossless join property: a decomposition D = {R1, R2, ...,
Rm} of R has the lossless (nonadditive) join property with respect
to the set of dependencies F on R if, for every relation state r of R
that satisfies F, the following holds, where * is the natural join of all
the relations in D:

* (R1(r), ..., Rm(r)) = r

 Note: The word loss in lossless refers to loss of information, not to loss
of tuples. In fact, for ―loss of information‖ a better term is ―addition
of spurious information‖

77

Properties of Relational

Decompositions (6)

 Lossless (Non-additive) Join Property of a Decomposition (cont.):

 Algorithm 11.1: Testing for Lossless Join Property

 Input: A universal relation R, a decomposition D = {R1, R2, ..., Rm} of
R, and a set F of functional dependencies.

1. Create an initial matrix S with one row i for each relation Ri in D, and one
column j for each attribute Aj in R.

2. Set S(i,j):=bij for all matrix entries. (* each bij is a distinct symbol associated
with indices (i,j) *).

3. For each row i representing relation schema Ri

{for each column j representing attribute Aj

{if (relation Ri includes attribute Aj) then set S(i,j):= aj;};};

 (* each aj is a distinct symbol associated with index (j) *)

 CONTINUED on NEXT SLIDE

78

Properties of Relational

Decompositions (7)

 Lossless (Non-additive) Join Property of a Decomposition (cont.):

 Algorithm 11.1: Testing for Lossless Join Property

4. Repeat the following loop until a complete loop execution results in no changes to S

{for each functional dependency X Y in F

{for all rows in S which have the same symbols in the columns corresponding to attributes
in X

{make the symbols in each column that correspond to an attribute in Y be
the same in all these rows as follows:

If any of the rows has an ―a‖ symbol for the column, set the
other rows to that same ―a‖ symbol in the column.

If no ―a‖ symbol exists for the attribute in any of the rows,
choose one of the ―b‖ symbols that appear in one of the rows for the attribute and set the
other rows to that same ―b‖ symbol in the column ;};

};

};

5. If a row is made up entirely of ―a‖ symbols, then the decomposition has the lossless join
property; otherwise it does not.

79

Properties of Relational Decompositions (8)

Lossless (nonadditive) join test for n-ary decompositions.

(a) Case 1: Decomposition of EMP_PROJ into EMP_PROJ1 and EMP_LOCS fails

test.

(b) A decomposition of EMP_PROJ that has the lossless join property.

80

Properties of Relational Decompositions (8)

Lossless (nonadditive) join test

for n-ary decompositions.

(c) Case 2: Decomposition of

EMP_PROJ into EMP, PROJECT,

and WORKS_ON satisfies

test.

81

Properties of Relational

Decompositions (9)

 Testing Binary Decompositions for Lossless Join
Property

 Binary Decomposition: Decomposition of a relation R
into two relations.

 PROPERTY LJ1 (lossless join test for binary
decompositions): A decomposition D = {R1, R2} of R
has the lossless join property with respect to a set of
functional dependencies F on R if and only if either

 The f.d. ((R1 ∩ R2) (R1- R2)) is in F+, or

 The f.d. ((R1 ∩ R2) (R2 - R1)) is in F+.

82

Properties of Relational

Decompositions (10)

 Successive Lossless Join Decomposition:

 Claim 2 (Preservation of non-additivity in successive
decompositions):

 If a decomposition D = {R1, R2, ..., Rm} of R has the lossless
(non-additive) join property with respect to a set of
functional dependencies F on R,

 and if a decomposition Di = {Q1, Q2, ..., Qk} of Ri has the
lossless (non-additive) join property with respect to the
projection of F on Ri,

 then the decomposition D2 = {R1, R2, ..., Ri-1, Q1, Q2, ..., Qk,
Ri+1, ..., Rm} of R has the non-additive join property with respect
to F.

83

2. Algorithms for Relational Database

Schema Design (1)

 Algorithm 11.2: Relational Synthesis into 3NF with Dependency
Preservation (Relational Synthesis Algorithm)

 Input: A universal relation R and a set of functional dependencies F
on the attributes of R.

1. Find a minimal cover G for F (use Algorithm 10.2);

2. For each left-hand-side X of a functional dependency that appears in G,

create a relation schema in D with attributes {X υ {A1} υ {A2} ... υ
{Ak}},

where X A1, X A2, ..., X Ak are the only dependencies in G
with X as left-hand-side (X is the key of this relation) ;

3. Place any remaining attributes (that have not been placed in any relation) in
a single relation schema to ensure the attribute preservation property.

 Claim 3: Every relation schema created by Algorithm 11.2 is in 3NF.

84

Algorithms for Relational Database

Schema Design (2)

 Algorithm 11.3: Relational Decomposition into BCNF with Lossless
(non-additive) join property

 Input: A universal relation R and a set of functional dependencies F
on the attributes of R.

1. Set D := {R};

2. While there is a relation schema Q in D that is not in BCNF

do {

choose a relation schema Q in D that is not in BCNF;

find a functional dependency X Y in Q that violates BCNF;

replace Q in D by two relation schemas (Q - Y) and (X υ Y);

};

Assumption: No null values are allowed for the join attributes.

85

Algorithms for Relational Database

Schema Design (3)

 Algorithm 11.4 Relational Synthesis into 3NF with Dependency
Preservation and Lossless (Non-Additive) Join Property

 Input: A universal relation R and a set of functional dependencies F
on the attributes of R.

1. Find a minimal cover G for F (Use Algorithm 10.2).

2. For each left-hand-side X of a functional dependency that appears in G,

create a relation schema in D with attributes {X υ {A1} υ {A2} ... υ
{Ak}},

where X A1, X A2, ..., X –>Ak are the only dependencies in G
with X as left-hand-side (X is the key of this relation).

3. If none of the relation schemas in D contains a key of R, then create one
more relation schema in D that contains attributes that form a key of R. (Use
Algorithm 11.4a to find the key of R)

86

Algorithms for Relational Database

Schema Design (4)

 Algorithm 11.4a Finding a Key K for R Given a
set F of Functional Dependencies

 Input: A universal relation R and a set of
functional dependencies F on the attributes of R.

1. Set K := R;

2. For each attribute A in K {

Compute (K - A)+ with respect to F;

If (K - A)+ contains all the attributes in R,

then set K := K - {A};

}

87

Algorithms for Relational Database Schema Design (5)

88

Algorithms for Relational Database Schema Design (5)

89

Algorithms for Relational Database Schema Design (6)

90

Algorithms for Relational Database Schema Design (6)

91

Algorithms for Relational Database Schema Design (7)

 Discussion of Normalization Algorithms:

 Problems:

 The database designer must first specify all the
relevant functional dependencies among the database
attributes.

 These algorithms are not deterministic in general.

 It is not always possible to find a decomposition into
relation schemas that preserves dependencies and
allows each relation schema in the decomposition to be
in BCNF (instead of 3NF as in Algorithm 11.4).

92

Algorithms for Relational Database Schema Design (8)

93

5. Inclusion Dependencies (1)

Definition:

 An inclusion dependency R.X < S.Y between two sets of
attributes—X of relation schema R, and Y of relation schema
S—specifies the constraint that, at any specific time when r is a
relation state of R and s a relation state of S, we must have

X
(r(R))

Y
(s(S))

 Note:
 The ? (subset) relationship does not necessarily have to be a

proper subset.

 The sets of attributes on which the inclusion dependency is
specified—X of R and Y of S—must have the same number of
attributes.

 In addition, the domains for each pair of corresponding
attributes should be compatible.

94

Inclusion Dependencies (2)

 Objective of Inclusion Dependencies:

 To formalize two types of interrelational constraints which cannot
be expressed using F.D.s or MVDs:

 Referential integrity constraints

 Class/subclass relationships

 Inclusion dependency inference rules
 IDIR1 (reflexivity): R.X < R.X.

 IDIR2 (attribute correspondence): If R.X < S.Y

 where X = {A1, A2 ,..., An} and Y = {B1,
B2, ..., Bn} and Ai Corresponds-to Bi, then R.Ai < S.Bi

 for 1 ≤ i ≤ n.

 IDIR3 (transitivity): If R.X < S.Y and S.Y < T.Z, then R.X <
T.Z.

95

6. Other Dependencies and Normal Forms (1)

Template Dependencies:

 Template dependencies provide a technique for representing constraints in

relations that typically have no easy and formal definitions.

 The idea is to specify a template—or example—that defines each

constraint or dependency.

 There are two types of templates:

 tuple-generating templates

 constraint-generating templates.

 A template consists of a number of hypothesis tuples that are meant to

show an example of the tuples that may appear in one or more relations.

The other part of the template is the template conclusion.

96

Other Dependencies and Normal Forms (2)

97

Other Dependencies and Normal Forms (3)

98

Other Dependencies and Normal Forms (4)

Domain-Key Normal Form (DKNF):

 Definition:

 A relation schema is said to be in DKNF if all constraints and
dependencies that should hold on the valid relation states can be
enforced simply by enforcing the domain constraints and key constraints
on the relation.

 The idea is to specify (theoretically, at least) the ―ultimate normal form‖ that
takes into account all possible types of dependencies and constraints. .

 For a relation in DKNF, it becomes very straightforward to enforce all
database constraints by simply checking that each attribute value in a tuple
is of the appropriate domain and that every key constraint is enforced.

 The practical utility of DKNF is limited

99

Questions
100

1. Explain the informal design guidelines for the
database design.

2. Which normal form is based on full functional
dependency? Explain the normal form which is
based on this.

3. What is transitive dependency? Explain 3NF with
example.

4. What is multivalued dependency? Explain 4NF
with example.

5. Write an algorithm to find the minimal cover.

