
MODULE – 1

Mr. C. R. Belavi, Dept. of CSE, HIT, NDS

INTRODUCTION TO DATABASES

OVERVIEW OF DATABASE LANGUAGES AND

ARCHITECTURES

CONCEPTUAL DATA MODELING USING ENTITIES

AND RELATIONSHIPS

 Numeric and Textual Databases

 Multimedia Databases

 Geographic Information Systems (GIS)

 Data Warehouses and Online Analytical Processing (OLAP)

 Real-time and Active Databases

Types of Databases and Database

Applications
2

 Database: A collection of related data.

 Data: Known facts that can be recorded and have an implicit meaning.

 Mini-world or Universe of discourse(UoD): Some part of the real world about

which data is stored in a database. For example, student grades and transcripts

at a university.

 Database Management System (DBMS): A collection of programs that enables

users to create and maintain database. DBMS is a general purpose software

system that facilitates the processes of defining, constructing, manipulating and

sharing databases among various users and applications.

 Database System: The DBMS software together with the database. Sometimes,

the applications are also included.

Basic Definitions

3

 Define a database : In terms of data types, structures
and constraints.

 Construct or Load the Database on a secondary storage
medium.

 Manipulating the database : Querying, generating
reports, insertions, deletions and modifications to its
content.

 Concurrent Processing and Sharing by a set of users and
programs – yet, keeping all data valid and consistent.

Typical DBMS Functionality
4

Other features:

 Metadata : The information present in the database
in the form of data catalog or data dictionary.

 Protection or Security measures to prevent
unauthorized access

 “Active” processing to take internal actions on data

 Presentation and Visualization of data

Typical DBMS Functionality
5

 Mini-world for the example: Part of a UNIVERSITY
environment.

 Some mini-world entities:
 STUDENTs

 COURSEs

 SECTIONs (of COURSEs)

 (academic) DEPARTMENTs

 INSTRUCTORs

Note: The above could be expressed in the ENTITY-
RELATIONSHIP data model.

Example of a Database

(with a Conceptual Data Model)
6

A Simplified Database System

Environment
7

 Some mini-world relationships:

 SECTIONs are of specific COURSEs

 STUDENTs take SECTIONs

 COURSEs have prerequisite COURSEs

 INSTRUCTORs teach SECTIONs

 COURSEs are offered by DEPARTMENTs

 STUDENTs major in DEPARTMENTs

Note: The above could be expressed in the ENTITY-
RELATIONSHIP data model.

Example of a Database

(with a Conceptual Data Model)
8

Example of a Database System

9

 Self-describing nature of a database system:
 A DBMS catalog stores the description of the database. The description is

called meta-data. This allows the DBMS software to work with different
databases.

 Insulation between programs and data:
 Program – data independence

 Allows changing data storage structures and operations
without having to change the DBMS access programs.

 Program – operation independence
 User application programs can operate on the data by

invoking operations through their names and parameters
regardless how operations are implemented.

Main Characteristics of the Database Approach

10

 Data Abstraction:

 The characteristics that allows program – data independence and

program – operation independence is called data abstraction.

 A data model is used to hide storage details and present the users

with a conceptual view of the database.

 Support of multiple views of the data:

 Each user may see a different view of the database, which describes

only the data of interest to that user.

Main Characteristics of the Database Approach

11

 Sharing of data and multiuser transaction processing :

 Allowing a set of concurrent users to retrieve and to update the database.

Concurrency control within the DBMS guarantees that each transaction is

correctly executed or completely aborted.

 OLTP (Online Transaction Processing) is a major part of database

applications.

Main Characteristics of the Database Approach

12

Users may be divided into those who actually use

and control the content (called “Actors on the

Scene”) and those who enable the database to be

developed and the DBMS software to be designed

and implemented (called “Workers Behind the

Scene”).

Database Users
13

Actors on the scene

 Database administrators: responsible for authorizing access to the
database, for co – ordinating and monitoring its use, acquiring software,
and hardware resources, controlling its use and monitoring efficiency of
operations.

 Database Designers: responsible to define the content, the structure, the
constraints, and functions or transactions against the database. They must
communicate with the end-users and understand their needs.

 End-users: they use the data for queries, reports and some of them
actually update the database content.

 System Analysts and Application Programmers(Software Engineers):
 System Analyst determine the requirements of end users, especially Naïve and parametric

end users and develop specifications for canned transactions that meet these requirements.

 Application Programmers implement these specifications as programs, then they test,
debug, document and maintain these canned transactions.

Database Users
14

 Casual : access database occasionally when

needed

 Naive or Parametric : they make up a large section

of the end-user population. They use previously well-

defined functions in the form of “canned

transactions” against the database. Examples are

bank-tellers or reservation clerks who do this activity

for an entire shift of operations.

Categories of End-users
15

 Sophisticated : these include business analysts,

scientists, engineers, others thoroughly familiar with

the system capabilities. Many use tools in the form

of software packages that work closely with the

stored database.

 Stand-alone : mostly maintain personal databases

using ready-to-use packaged applications. An

example is a tax program user that creates his or

her own internal database.

Categories of End-users
16

Workers behind the scene

 DBMS System Designers and Implementers

 Tool Developers

 Operators and Maintenance Personnel

Database Users
17

 Controlling redundancy in data storage and in development and
maintenance efforts.

 Restricting unauthorized access to data.

 Providing persistent storage for program Objects

 Providing Storage Structures for efficient Query Processing

Advantages of Using the Database Approach

18

 Providing backup and recovery services.

 Providing multiple interfaces to different classes of users.

 Representing complex relationships among data.

 Enforcing integrity constraints on the database.

 Permitting Inferencing and Actions using rules

Advantages of Using the Database Approach

19

 Potential for enforcing standards:
 This is very crucial for the success of database applications in large

organizations Standards refer to data item names, display formats, screens,

report structures, meta-data (description of data) etc.

 Reduced application development time:

 Incremental time to add each new application is reduced.

Additional Implications of Using the Database

Approach
20

 Flexibility to change data structures:
 Database structure may evolve as new requirements are defined.

 Availability of up-to-date information:
 Very important for on-line transaction systems such as airline, hotel, car

reservations.

 Economies of scale:

 By consolidating data and applications across departments wasteful overlap of

resources and personnel can be avoided.

Additional Implications of Using the Database

Approach
21

 Early Database Applications: The Hierarchical and
Network Models were introduced in mid 1960’s and
dominated during the seventies. A bulk of the
worldwide database processing still occurs using
these models.

 Relational Model based Systems: The model that
was originally introduced in 1970 was heavily
researched and experimented with in IBM and the
universities. Relational DBMS Products emerged in the
1980’s.

Brief History of Database Applications

22

 Object-oriented applications: OODBMSs were introduced in
late 1980’s and early 1990’s to cater to the need of complex
data processing in CAD and other applications. Their use has not
taken off much.

 Data on the Web and E-commerce Applications: Web contains
data in HTML (Hypertext markup language) with links among
pages. This has given rise to a new set of applications and E-
commerce is using new standards like XML (eXtended Markup
Language).

Historical Development of Database Technology

23

 New functionality is being added to DBMSs in the
following areas:

 Scientific Applications

 Image Storage and Management

 Audio and Video data management

 Data Mining

 Spatial data management

 Time Series and Historical Data Management

The above gives rise to new research and development in incorporating new
data types, complex data structures, new operations and storage and
indexing schemes in database systems.

Extending Database Capabilities

24

 Main inhibitors (costs) of using a DBMS:

 High initial investment and possible need for additional hardware.

 Overhead for providing generality, security, concurrency control, recovery,
and integrity functions.

 When a DBMS may be unnecessary:

 If the database and applications are simple, well defined, and not
expected to change.

 If there are stringent real-time requirements that may not be met because
of DBMS overhead.

 If access to data by multiple users is not required.

When not to use a DBMS
25

 When no DBMS may suffice:

 If the database system is not able to handle the

complexity of data because of modeling limitations

 If the database users need special operations not

supported by the DBMS.

When not to use a DBMS
26

 Data Model: A set of concepts to describe the

structure of a database, and certain constraints that

the database should obey.

 Data Model Operations: Operations for specifying

database retrievals and updates by referring to the

concepts of the data model. Operations on the data

model may include basic operations and user-defined

operations.

Data Models
27

 Conceptual (high-level, semantic) data models
 Provide concepts that are close to the way many users perceive data. (Also

called entity-based or object-based data models.)

 Physical (low-level, internal) data models
 Provide concepts that describe details of how data is stored in the computer.

 Implementation (representational) data models
 Provide concepts that fall between the above two, balancing user views with

some computer storage details.

Categories of data models
28

 Database Schema
 The description of a database. Includes descriptions of the database structure and the

constraints that should hold on the database.

 Schema Diagram
 A diagrammatic display of (some aspects of) a database schema.

 Schema Construct
 A component of the schema or an object within the schema, e.g., STUDENT, COURSE.

 Database State
 The actual data stored in a database at a particular moment in time. Also called

snapshot or instance or occurrence.

Schemas, Instances and Database State

29

 Initial Database State
 Refers to the database when it is loaded

 Valid State
 A state that satisfies the structure and constraints of the database.

 Distinction
 The database schema changes very infrequently. The database state changes every time the database is

updated.

 Schema is also called intension, whereas state is called extension.

Database Schema Vs. Database State

30

 Proposed to support DBMS characteristics of:

 Program-data independence.

 Support of multiple views of the data.

Three-Schema Architecture
31

 Defines DBMS schemas at three levels:

 Internal schema at the internal level to describe physical storage
structures and access paths. Typically uses a physical data model.

 Conceptual schema at the conceptual level to describe the
structure and constraints for the whole database for a community
of users. Uses a conceptual or an implementation data model.

 External schemas at the external level to describe the various
user views. Usually uses the same data model as the conceptual
level.

Three-Schema Architecture
32

Three-Schema Architecture
33

Mappings among schema levels are needed to

transform requests and data. Programs refer to an

external schema, and are mapped by the DBMS to

the internal schema for execution.

Three-Schema Architecture
34

 The capacity to change the schema at one level of a
database system without having to change the system at the
next higher level.

 Two types of data independences:

 Logical Data Independence: The capacity to change the conceptual
schema without having to change the external schemas and their
application programs.

 Physical Data Independence: The capacity to change the internal
schema without having to change the conceptual schema.

Data Independence
35

 When a schema at a lower level is changed, only

the mappings between this schema and higher-level

schemas need to be changed in a DBMS that fully

supports data independence.

 The higher-level schemas themselves are unchanged.

 Hence, the application programs need not be

changed since they refer to the external schemas.

Data Independence
36

• Data Definition Language (DDL): Used by the DBA

and database designers to specify the conceptual

schema of a database. In many DBMSs, the DDL is

also used to define internal and external schemas

(views). In some DBMSs, separate storage definition

language (SDL) and view definition language (VDL)

are used to define internal and external schemas.

DBMS Languages
37

 Data Manipulation Language (DML): Used to
specify database retrievals and updates.

 DML commands (data sublanguage) can be embedded
in a general-purpose programming language (host
language), such as COBOL, C or an Assembly
Language.

 Alternatively, stand-alone DML commands can be
applied directly (query language).

DBMS Languages
38

 High Level or Non-procedural DML: e.g., SQL, are

set-oriented and specify what data to retrieve than

how to retrieve. Also called declarative languages.

 Low Level or Procedural DML: record-at-a-time;

they specify how to retrieve data and include

constructs such as looping.

DML Types
39

 Stand-alone query language interfaces.

 Programmer interfaces for embedding DML in
programming languages:

 Pre-compiler Approach

 Procedure (Subroutine) Call Approach

DBMS Interfaces
40

 User-friendly interfaces:

 Menu-based, popular for browsing on the web

 Forms-based, designed for naïve users

 Graphics-based (Point and Click, Drag and Drop etc.)

 Natural language: requests in written English

 Speech as Input and Output

 Web Browser as an interface

 Parametric interfaces (e.g., bank tellers) using function keys.

 Interfaces for the DBA:

 Creating accounts, granting authorizations

 Setting system parameters

 Changing schemas or access path

DBMS Interfaces
41

DBMS Component Modules
42

Using High – Level Conceptual Data Models for

Database Design

43

An Example Database Application

 Requirements of the Company (oversimplified for

illustrative purposes)

 The company is organized into DEPARTMENTs. Each

department has a name, number and an employee who

manages the department. We keep track of the start date of

the department manager. A department may have several

locations.

 Each department controls a number of PROJECTs. Each project

has a name, number and is located at a single location.

44

Contd…

 We store each EMPLOYEE’s social security number, address,

salary, sex, and birth date. Each employee works for one

department but may work on several projects. We keep

track of the number of hours per week that an employee

currently works on each project. We also keep track of the

direct supervisor of each employee.

 Each employee may have a number of DEPENDENTs. For

each dependent, we keep track of their name, sex, birth

date, and relationship to employee.

45

Entity Types, Entity Sets, Attributes and Keys

 Entity

 A thing in the real world with an independent existence.

 Eg: A particular person, Car, House or an Employee

 Attribute

 The particular property that describes the entity.

 Eg: An Employee’s name, age, address, salary and job

46

Types of Attributes

 Composite versus simple(Atomic) Attributes

 Single Valued versus Multivalued Attributes

 Stored versus Derived Attributes

 Complex Attributes

 For example, {Address_phone({Phone(Area_Code,
Phone_Number)}, Address(Street_Address(Number, Street,
Apartment_Number), City, Zip_Code))}

 Null Values

47

Entity Types

 A collection of entities that have the same attributes.

 Each entity type in the database is described by its name and
attributes.

 An entity type describes the schema or intension for a set of
entities that share the same structure.

 Eg: EMPLOYEE and COMPANY and a list of attributes for each.

 An entity type is represented in ER diagrams as a rectangular box
enclosing the entity type name.

48

Entity Set

 The collection of entities of a particular entity type

is grouped into an entity set.

 This is also called as Extension of the entity type.

49

Key Attribute of an Entity Type

 An entity type usually has an attribute whose values are
distinct for each individual entity in the entity set.

 Such an attribute is called as key attribute and its
values can be used to identify each entity uniquely.

 Eg: No two companies will have the same name, so
name attribute is the key attribute in COMPANY.

 In ER diagrammatic notation, each key attribute has its
name underlined inside the oval.

50

Value Sets (Domains) of Attributes

 Each simple attribute of an entity type is associated

with a value set (or domain of values), which

specifies the set of values that may be assigned to

that attribute for each individual entity.

 Value sets are typically specified using the basic

data types.

51

ENTITY SET corresponding to the

ENTITY TYPE CAR

car1

((ABC 123, TEXAS), TK629, Ford Mustang, convertible, 1999, (red, black))

car2

((ABC 123, NEW YORK), WP9872, Nissan 300ZX, 2-door, 2002, (blue))

car3

((VSY 720, TEXAS), TD729, Buick LeSabre, 4-door, 2003, (white, blue))

.

.

.

CAR

Registration(RegistrationNumber, State), VehicleID, Make, Model, Year, (Color)

Entity Type

Entity Set

52

Relationship Types, Relationship Sets, and

Instances

 A relationship type R among n entity types E1, E2,

… En defines a set of associations – or a

relationship set – among entities from these entity

types.

 Mathematically, the relationship set R is a set of

relationship instances ri, where each ri associates n

individual entities.

53

Example 1…

e1

e2

e3

e4

e5

e6

e7

EMPLOYEE

r1

r2

r3

r4

r5

r6

r7

WORKS_FOR

d1

d2

d3

DEPARTMENT
54

Example 2…
EMPLOYEE WORKS_ON PROJECT

e1

e2

e3

e4

e5

e6

e7

r1

r2

r3

r4

r5

r6

r7

p1

p2

p3

r8

r9

55

Relationship Degree

 The degree of a relationship type is the number of

participating entity types.

 A relationship type of degree two is called binary,

and one of degree three is called ternary.

56

Role Names and Recursive Relationships

 Each entity type that participates in a relationship type
plays a particular role in the relationship.

 The role name signifies the role that a participating
entity from the entity type plays in each relationship
instance, and helps to explain what the relationship
means.

 Some entity types participates more than once in a
relationship type in different roles. Such relationship
types are called recursive relationships.

57

Example…

e1

e2

e3

e4

e5

e6

e7

EMPLOYEE

r1

r2

r3

r4

r5

r6

SUPERVISION

2

1

1
2

2

1

1

1

2

1

2

2

(1) Supervisor Role

(2) Subordinate Role

58

Constraints on Relationship Types

 There are two types of relationship constraints:

 Cardinality ratio

 The cardinality ratio for binary relationship specifies the maximum number of
relationship instances that an entity can participate in.

 The possible cardinality ratio for binary relationship types are 1:1, 1:N, N:1
and M:N

 Participation

 The participation constraint specifies whether the existence of an entity
depends on its being related to another entity via the relationship type.

 This constraint specifies the minimum number of relationship instances that
each entity can participate in.

 The cardinality ratio and participation constraint together called as
structural constraint.

59

1:1 Relationship

e1

e2

e3

e4

e5

e6

e7

EMPLOYEE

r1

r2

r3

.

.

.

MANAGES

d1

d2

d3

DEPARTMENT60

1:N Relationship

e1

e2

e3

e4

e5

e6

e7

EMPLOYEE

r1

r2

r3

r4

r5

r6

r7

WORKS_FOR

d1

d2

d3

DEPARTMENT61

M:N Relationship
EMPLOYEE WORKS_ON PROJECT

e1

e2

e3

e4

e5

e6

e7

r1

r2

r3

r4

r5

r6

r7

p1

p2

p3

r8

r9

62

Participation Constraint and Existence

Dependence

 The participation constraint specifies whether the
existence of an entity depends on its being related
to another entity via the relationship type.

 This is also called as minimum cardinality constraint.

 Two types of participation constraint:

 Total Participation, also called as Existence
Dependency

 Partial Participation

63

Attributes as Relationship Types

 A relationship type can have attributes; for

example, HoursPerWeek of WORKS_ON; its value

for each relationship instance describes the number

of hours per week that an EMPLOYEE works on a

PROJECT.

64

Weak Entity Types

 Entity types that do not have key attributes of their own are called weak entity types.

 The entity types which contain key attributes of their own are called regular entity
types or strong entity types.

 Entities belonging to weak entity type are identified by being related to specific entities
from another entity type in combination with one of their attribute values. This other
entity type is called as identifying entity type or owner entity type.

 The relationship type that relates a weak entity type to its owner is called as
identifying relationship of the weak entity type.

 The weak entity type normally has a partial key, which is the set of attributes that can
uniquely identify weak entities that are related to the same owner entity.

65

Example…

Example:

Suppose that a DEPENDENT entity is identified by
the dependent’s first name and birth date, and the
specific EMPLOYEE that the dependent is related to.

DEPENDENT is a weak entity type with EMPLOYEE
as its identifying entity type via the identifying
relationship type DEPENDENT_OF.

66

Notations Used in ER Diagrams
Meaning

ENTITY TYPE

WEAK ENTITY TYPE

RELATIONSHIP TYPE

IDENTIFYING RELATIONSHIP TYPE

ATTRIBUTE

KEY ATTRIBUTE

MULTIVALUED ATTRIBUTE

COMPOSITE ATTRIBUTE

DERIVED ATTRIBUTE

TOTAL PARTICIPATION OF E2 IN R

CARDINALITY RATIO 1:N FOR E1:E2 IN R

STRUCTURAL CONSTRAINT (min, max) ON PARTICIPATION OF E IN R

Symbol

E1 R E2

E1 R E2

R
(min,max)

E

N1

67

Proper Naming of Schema Constructs

 Use singular names for entity types, rather than

plural one.

 Verbs tend to indicate the relationship types.

 Another naming consideration involves choosing the

binary relationship names to make the ER diagram

of the schema readable from left to right and top

to bottom.

68

E – R Diagram for COMPANY
69

Alternative Notations for ER Diagrams

70

Relationships of Higher Degree

 Relationship types of degree 2 are called binary

 Relationship types of degree 3 are called ternary

and of degree n are called n-ary

 In general, an n-ary relationship is not equivalent to

n binary relationships

71

Subclasses and Superclasses

EMPLOYEE

SECRETARY

ENGINEER

TECHNICIAN

SALARIED_EMPLOYEE

HOURLY_EMPLOYEE

Every entity that is a member of one of these subgroupings is

also an employee

Superclasses: EMPLOYEE

Subclasses: SECRETARY, ENGINEER,

TECHNICIAN,

SALARIED_EMPLOYEE,

HOURLY_EMPLOYEE

An entity type may have additional meaningful

subgroupings of its entities

Manjunatha A S, Senior Asst. Prof. Dept. of Computer Science & Engg
72

Example

SECRETARY

d

TECHNICIAN ENGINEER

d

SALARIED_EMP

HOURLY_EMP
MANAGER

EMPLOYEE

MANAGES

PROJECT

BELONGS_TO

TRADE_UNION

WORKSDEPARTMENT

EMPLOYEE: WORKS

SECRETARY: WORKS

TECHNICIAN: WORKS

ENGINEER: WORKS

MANAGER: WORKS, MANAGES

SALARIED_EMP: WORKS

HOURLY_EMP: WORKS, BELONGS_TO

TypingSpeed
TGrade EngType

Fname

Lname SSN
Addr

73

Why class/subclass relationships and

specializations

 Certain attributes may apply to some but not all entities
of the superclass.

 A subclass is defined in order to group the entities to which
these attributes apply.

 The members of the subclass may still share the majority of
their attributes with the other members of the superclass.

EMPLOYEE (Name, SSN, BirthDate, Address)

SECRETARY (Name, SSN, BirthDate, Address, TypingSpeed)

ENGINEER (Name, SSN, BirthDate, Address, EngineerType)

TECHNICIAN (Name, SSN, BirthDate, Address, TGrade)

74

Why need class/subclass relationships

and specializations

 Some relationship types may be participated in

only by entities that are members of the subclass.

75

Subclasses vs. Superclasses

 The set of entities in each subclasses is a subset of
the entities that belong to EMPLOYEE

 Each is called a subclass of EMPLOYEE

 EMPLOYEE is the superclass for each of these
subclasses

 The relationship between a superclass and any one
of its subclass is called a superclass/subclass or
class/subclass relationship.

e.g., EMPLOYEE/SECRETARY and EMPLOYEE/TECHNICIAN are two

class/subclass relationships.

76

Properties of Superclasses and

Subclasses

 A member entity of the subclass represents the same
real-world entity as some member of the superclass.

 The subclass member is the same as the entity in the
superclass, but in a distinct specific role.

 When implementing a superclass/subclass
relationship, a member of the subclass may be
represented as a distinct database object – a distinct
record that is related via the key attribute to its
superclass entity.

77

Properties of Superclasses and

Subclasses (cont.)

 An entity CANNOT exist in the DB merely by being
a member of a subclass. It must also be a member
of the superclass.

 An entity can be a member of more than one
subclass.
 Example: A salaried employee who is also an engineer belongs to the two

subclasses ENGINEER and SALARIED_EMPLOYEE

 It is not necessary that every entity in a superclass
be a member of some subclass
 Example: A technical writer is an employee but does not belong to any

subclasses.

78

Type inheritance

 The type of an entity is defined by the attributes it

possesses and the relationship types which it

participates.

 An entity that is a member of a subclass inherits all

the attributes of the entity as a member of the

superclass, as well as all the relationships in which

the superclass participates.

79

Example

EMPLOYEE

SECRETARY
TECHNICIAN

d

Fname

Lname SSN

TypingSpeed

TGrade

ENGINEER

EngType

SECRETARY

Fname, Lname, SSN, Addr TypingSpeed

TECHNICIAN

Fname, Lname, SSN, Addr, TGrade

ENGINEER

Fname, Lname, SSN, Addr, EngType

Addr EMPLOYEE

Fname, Lname, SSN, Addr

80

Example

SECRETARY

d

TECHNICIAN ENGINEER

d

SALARIED_EMP

HOURLY_EMP
MANAGER

EMPLOYEE

MANAGES

PROJECT

BELONGS_TO

TRADE_UNION

WORKSDEPARTMENT

Entity Type: Relationship Type

EMPLOYEE: WORKS

SECRETARY: WORKS

TECHNICIAN: WORKS

ENGINEER: WORKS

MANAGER: WORKS, MANAGES

SALARIED_EMP: WORKS

HOURLY_EMP: WORKS, BELONGS_TO

TypingSpeed
TGrade EngType

81

Specialization

 The process of defining a set of subclass of an

entity type (the superclass of the specialization).

 The set of subclasses that form a specialization is

defined on the basis of some distinguishing

characteristics of the entities in the superclass.

{SECRETARY, ENGINEER, TECHNICIAN} is a specialization of EMPLOYEE

based on the job type of each entity.

82

Specialization (cont.)

 The same entity type may have several specializations based

on different distinguishing characteristics.

 The EMPLOYEE entity type may have two specializations:

 Based on the methods of pay:

{SALARIED_EMPLOYEE, HOURLY_EMPLOYEE}

 Based on the type of job:

{SECRETARY, ENGINEER, TECHNICIAN}

 A subclass can participate in specific relationship type

83

Diagrammatically representation of

specialization in an EER diagram

Esuper

…

E1

…

E2

…

Specific attributes
Specific attributes

84

Example

SECRETARY

d

TECHNICIAN ENGINEER

d

SALARIED_EMP

HOURLY_EMP
MANAGER

EMPLOYEE

MANAGES

PROJECT

BELONGS_TO

TRADE_UNION

85

Specialization

The specialization process allows us to do the

following:

 Define a set of subclass of an entity type

 Establish additional specific attributes with each

subclass

 Establish additional specific relationship types

between each subclass and other entity types or

other subclasses

86

Generalization

 Generalization is the reverse of specialization

process. It defines a generalized entity type from

the given entity types.

87

Generalization (cont.)

CAR

LicensePlateNo

Price
MaxSpeed

VehicleID

NoOfPassengers

TRUCK

LicensePlateNo

Price
Tonnage

VehicleID

NoOfAxles

VEHICLE

LicensePlateNoPriceVehicleID

d

CAR
MaxSpeed

NoOfPassengers

TRUCK Tonnage

NoOfAxles

88

Generalization (cont.)

 We can view {CAR, TRUCK} as a specialization of

VEHICLE

 Alternatively, we can view VEHICLE as a

generalization of CAR and TRUCK

89

Generalization (cont.)

 Generalization suppresses the difference among

several entity types, identifying their common

features, and generalize them into a single

superclass of which the original types are special

subclasses.

 The decision as to which process, generalization or

specialization, is more appropriate in a particular

situation is often subjective.

90

Generalization (cont.)

 Generalization suppresses the difference among

several entity types, identifying their common

features, and generalize them into a single

superclass of which the original types are special

subclasses.

 The decision as to which process, generalization or

specialization, is more appropriate in a particular

situation is often subjective.

91

Questions

1. What are the advantages of DBMS. Explain.

2. Explain the three-schema architecture with a neat
diagram.

3. With a neat diagram, explain the various components of
DBMS.

4. Explain the different ways of interacting with the
databases.

5. Explain the different types of attributes with examples for
each.

6. Write an E-R diagram for hospital database by
considering at least 5 entities.

7. Differentiate between specialization and generalization.

92

