MODULE - 4

NORMALIZATION: DATABASE DESIGN THEORY

INTRODUCTION TO NORMALIZATION USING
FUNCTIONAL AND MULTIVALUED DEPENDENCIES

NORMALIZATION ALGORITHMS

INTRODUCTION TO NORMALIZATION USING
FUNCTIONAL AND MULTIVALUED
DEPENDENCIES

Informal Design Guidelines for Relational
Databases

Functional Dependencies

Normal Forms:
1NF, 2NF, 3NF, BCNF, 4NF, 5NF

Inference Rules
Properties of Decompositions

Algorithms for Relational Database Schema
Design

Informal Design Guidelines for Relational

Databases (1)

What is relational database design?
The grouping of attributes to form "good" relation schemas

Two levels of relation schemas
The logical "user view" level

The storage "base relation” level

Design is concerned mainly with base relations

What are the criteria for "good" base relations?

Informal Design Guidelines for Relational
Databases (2)

We first discuss informal guidelines for good
relational design

Then we discuss formal concepts of functional
dependencies and normal forms

- I1NF (First Normal Form)

- 2NF (Second Normal Form)

- 3NF (Third Normal Form)

- BCNF (Boyce-Codd Normal Form)

Semantics of the Relation Atiributes

GUIDELINE 1: Informally, each tuple in a relation
should represent one entity or relationship instance.
(Applies to individual relations and their
attributes).

Attributes of different entities (EMPLOYEEs, DEPARTMENTs, PROJECTs)
should not be mixed in the same relation

Only foreign keys should be used to refer to other entities

Entity and relationship attributes should be kept apart as much as
possible.

Bottom Line: Design a schema that can be explained
easily relation by relation. The semantics of
attributes should be easy to interpret.

A simplified COMPANY relational
database schema

Figure 14.1 Simplified version of the
COMPANY relational database schema.

EMPLOYEE fk.

| ENAME I SSN L BDATE ‘ ADDRESS l DNUMBER I
pk.
DEPARTMENT fk.
| DNAME | DNUMBER | DMGRSSN |
p.k.

DEPT_LOCATIONS

f.k
DNUMBER | DLOCATION
8 B
W
pk
PROJECT fk
PNAME PNUMBER PLOCATION DNUM
pk.
WORKS_ON
fk. fk.
| SSN PNUMBER | HOURS
-~
p.k.

© Addison Wesley Longman, Inc. 2000, EImasri/Navathe, Fundamentals of Database Systems, Third Edition

Redundant Information in Tuples and Update

Anomalies

Mixing attributes of multiple entities may cause
problems
Information is stored redundantly wasting storage
Problems with update anomalies

Insertion anomalies

Deletion anomalies

Modification anomalies

EXAMPLE OF AN UPDATE ANOMALY
(1)

Consider the relation:
EMP_PROJ (Emp#, Proj#, Ename, Pname, No_hours)

Update Anomaly: Changing the name of project
number P1 from “Billing” to “Customer-Accounting”
may cause this update to be made for all 100
employees working on project P1.

EXAMPLE OF AN UPDATE ANOMALY
(2)

Insert Anomaly: Cannot insert a project unless an
employee is assigned to .

Inversely - Cannot insert an employee unless an
he /she is assigned to a project.

Delete Anomaly: When a project is deleted, it will
result in deleting all the employees who work on that
project. Alternately, if an employee is the sole
employee on a project, deleting that employee would
result in deleting the corresponding project.

Two relation schemas suffering from update anomalies

Figure 14.3 Two relation schemas and their functional
dependencies. Both suffer from update anomalies. (a) The EMP_DEPT
relation schema. (b) The EMP_PROJ relation schema.

@) EMP_DEPT

ENAME SSN BDATE ADDRESS DNUMBER DNAME DMGRSSN

t A ¢ $
| f t

(b) EMP_PROJ

| SSN I PNUMBER |HOURS | ENAME | PNAME | PLOCATION |
FD1 | I +
| }
| 1 !

FD2

FD3

® Addison Wesley Longman, Inc. 2000, Elmasri/Navathe, Fundamentals of Database Systems, Third Edition

Example States for EMP_DEPT and EMP_PROJ
12|

Figure 14.4 Example relations for the schemas in Figure 14.3 that
result from applying NATURAL JOIN to the relations in Figure 14.2. These
may be stored as base relations for performance reasons.

EMP__DEPT

EMNAME SSN BDATE ADDRESS DNUMEBER DINAMIE DMGRSSN
Smith,John B. 123456789 1965-01-09 731 Fondren, Houston, Tx 5 Research 333445555
Wong, Franklin T. 333445555 1955-12-08 638 Voss Houston, TX 5 Research 333445555
Zelaya, Alicia J. Le98877TT 1968-07-19 3321 Castle, Spring, TX 4 Administration 987654321
Wallace Jennifer S. PE7654321 184 1-06-20 291 Bearry,Bellaire, TX 4 Administration B7654321
Narayan, Ramesh K. GE6884444 1862-09-15 975 FireQak,Humble, Tx 5 Research 333445555
English,Joyce A. 453453453 1972-07-31 5631 Rice Houston, TX 5 Research 333448555
JabbarAhrmad V. QB7H8TIET 1969-03-29 980 Dallas,Houston, T Pl Adrninistration OB7EEA321
Borg.James E. 888665555 1937-11-10 450 Stone, Houston, TX 1 Headguarters 888665555

EMP_PRCOJ

SSN FNUMBER HOURS EMNAMIE FMNAME PLOCATION
128456789 1 325 Smith John B, Froduct>C Beallaire
123456789 2 75 Smith . John B. Froducty Sugarand
666884444 3 40.0 MNarayan,Ramesh K. Products Houston
453453453 1 20.0 English,Joyce A, Froduct Bellaire
453453453 2 20.0 English,Joyce A, FProducty Sugarand
333445555 2 10.0 Wong, Franklin T. FProducty Sugarland
3334455855 3 10.0 Wong,Franklin T. FProductZ. Houston
333445555 10 10.0 Wong, Franiklin T. Computerization Stafford
333445555 20 10.0 Waong, Franklin T, Reorganization Houston
LAVBGBTTIT 30 30.0 Zelaya,Alicia J. MNewbenefits Stafford
Q988 TTIT 10 10.0 Zelaya.,Alicia J. Computerization Stafford
DHTABTOB7 10 35.0 JabbarAhmad V. Computerization Stafford
Q87987087 30 5.0 Jabbar.Ahmad V. Newbenefits Stafford
287654321 30 20.0 Wallace Jennifer 5. MNewbenefits Stafford
a7654321 20 15.0 Wallace Jennifer S. Reorganization Houston
888665555 20 null Borg.James E. Reorganization Houston

© Addison Wesley Longman, Inc. 2000, EiImasri/Navathe, Fundamentals of Database Systems, Third Edition

Guideline to Redundant Information in Tuples and
Update Anomalies

GUIDELINE 2: Design a schema that does not suffer
from the insertion, deletion and update anomalies. If
there are any present, then note them so that
applications can be made to take them into account

Null Values in Tuples

GUIDELINE 3: Relations should be designed such that
their tuples will have as few NULL values as possible

Attributes that are NULL frequently could be placed
in separate relations (with the primary key)

Reasons for nulls:
attribute not applicable or invalid

attribute value unknown (may exist)

value known to exist, but unavailable

Spurious Tuples

Bad designs for a relational database may result in
erroneous results for certain JOIN operations

The "lossless join" property is used to guarantee
meaningful results for join operations

GUIDELINE 4: The relations should be designed to
satisfy the lossless join condition. No spurious tuples
should be generated by doing a natural-join of any
relations.

Spurious Tuples (2)

There are two important properties of decompositions:
non-additive or losslessness of the corresponding
join

preservation of the functional dependencies.

Note that property (a) is extremely important and
cannot be sacrificed. Property (b) is less stringent
and may be sacrificed.

Functional Dependencies (1)

Functional dependencies (FDs) are used to specify
formal measures of the "goodness" of relational
designs
FDs and keys are used to define normal forms for
relations

FDs are constraints that are derived from the
meaning and interrelationships of the data
attributes

A set of attributes X functionally determines a set
of attributes Y if the value of X determines a
unique value for Y

Functional Dependencies (2)

X ->Y holds if whenever two tuples have the same value for X,
they must have the same value for Y

For any two tuples t1 and t2 in any relation instance r(R): If
t1[X]=t2[X], then t1[Y]=12[Y]

X -> Y in R specifies a constraint on all relation instances r(R)

Written as X -> Y; can be displayed graphically on a relation
schema as in Figures. (denoted by the arrow:).

FDs are derived from the real-world constraints on the

attributes

Examples of FD constraints (1)

social security number determines employee name
SSN -> ENAME
project number determines project name and location

PNUMBER -> {PNAME, PLOCATION}

employee ssn and project number determines the
hours per week that the employee works on the
project

{SSN, PNUMBER} -> HOURS

Examples of FD constraints (2)

An FD is a property of the attributes in the schema R
The constraint must hold on every relation instance r(R)

If Kis a key of R, then K functionally determines all

attributes in R (since we never have two distinct tuples
with t1[K]=12[K])

Normal Forms Based on Primary Keys

Normalization of Relations
Practical Use of Normal Forms

Definitions of Keys and Attributes Participating in
Keys

First Normal Form

Second Normal Form

Third Normal Form

Normalization of Relations (1)

Normalization: The process of decomposing
unsatisfactory "bad" relations by breaking up their
attributes into smaller relations

Normal form: Condition using keys and FDs of o
relation to certify whether a relation schema is in @
particular normal form

Normalization of Relations (2)

2NF, 3NF, BCNF based on keys and FDs of a relation
schema

ANF based on keys, multi-valued dependencies :
MVDs; 5NF based on keys, join dependencies : JDs

Additional properties may be needed to ensure a
good relational design (lossless join, dependency
preservation)

Lossless join or nonadditive join property

Guarantees that the spurious tuples will not be
generated

The dependency preservation property

Ensures that each functional dependency is represented
in some individual relation resulting after decomposition

Practical Use of Normal Forms

Normalization is carried out in practice so that the resulting
designs are of high quality and meet the desirable properties

The practical utility of these normal forms becomes
questionable when the constraints on which they are based are
hard to understand or to detect

The database designers need not normalize to the highest
possible normal form. (usually up to 3NF, BCNF or 4NF)

Denormalization: the process of storing the join of higher
normal form relations as a base relation—which is in a lower

normal form

Definitions of Keys and Attributes Participating in
Keys (1)

A superkey of a relation schema R = {A,, A,, ..., A }
is a set of attributes S subset-of R with the property

that no two tuples t, and t, in any legal relation state
r of R will have t,[S] = t,[S]

A key K is a superkey with the additional property
that removal of any attribute from K will cause K not
to be a superkey any more.

Definitions of Keys and Attributes Participating in
Keys (2)

If a relation schema has more than one key, each is
called a candidate key. One of the candidate keys is
arbitrarily designated to be the primary key, and the
others are called secondary keys.

A Prime attribute must be a member of some
candidate key

A Nonprime attribute is not a prime attribute—that
is, it is not a member of any candidate key.

First Normal Form

Disallows composite attributes, multivalued attributes,
and nested relations; attributes whose values for an
individual tuple are non-atomic

Considered to be part of the definition of relation

1NF Definition:

It states that the domain of an attribute must include only
atomic (simple) values and that the value of any attribute
in a tuple must be a single value from the domain of that
attribute

Normalization into TNF

Figure 14.8 Normalization into INF. (a) Relation schema that is not in
INF. (b) Example relation instance. (¢) INF relation with redundancy.

@ DEPARTMENT
DNAME DNUMBER DMGRSSN DLOCATIONS
(o) DEPARTMENT
DNAME DNUMBER DMGRSSN DLOCATIONS
Research 55 333445555 {Bellaire, Sugarland, Houston}
Administration 4 987654321 {Stafford}
Headquarters 1 888665555 {Houston}
© DEPARTMENT
DNAME DNUMBER DMGRSSN DLOCATION
Research 5 333445555 Bellaire
Research 5 333445555 Sugarland
Research 5 333445555 Houston
Administration 4 987654321 Stafford
Headquarters 1 888665555 Houston

© Addison Wesley Longman, Inc. 2000, EiImasri/Navathe, Fundamentals of Database Systems, Third Edition

Normalization nested relations into 1NF

Figurs 1510
MMarmalkring nesteaed rels-
tons o 1 MNE (=)
Schesna of the
EMP_FPR0O) relation with
a nesmed relapon atiriborke
FPFROJAS (b Ssenple
axtension of the
EMP_FRC) relatian
shoredng ested nela@Sons
within each tuple. {ch

D om postscen of
ERMMP_FPRO) into relamons
EMP_FPRO =nd
ERMPFP_FEOIED by prope
gaEting the primany key:

(1]
EME_PRC
S=n En=me Pnumber Hour=:
123A0ETES Smith, Johin B 1 o Th
= - |
| 6666882444 | Marayan Bamesh®. | a3 = | 400 ~— =~~~]
anganzang Englizh, Joyca A, 1 oD
. - 4 = 1 e N
= B k2 L B Ba il e e Wilong Framnklm TC = L]
= § L]
b L] L]
ek | L]
aomaarrs?r | Zalaya, Alicia) | =0 2 | aoeo
. 4w _ __ 1 e 000 |
SETREETIET Jabbar, Ahvmeed W) L] e e
=0 =
lasFESaaz1 | | Walace, lennier 5. | 02020 =0 0 | m=oo
- o = V=
SEBE D00 Borg. James E] FLFLE
ik
EMPE_ PRI
EMP_ PRIz
| Ssn | Poumibar | Howrs |

Second Normal Form (1)

Uses the concepts of FDs, primary key

Definitions:
Prime attribute - attribute that is member of the
primary key K

Full functional dependency - a FD Y -> Z where
removal of any attribute from Y means the FD does

not hold any more

Examples: - {SSN, PNUMBER} -> HOURS is a full FD since
neither SSN -> HOURS nor PNUMBER -> HOURS hold

- {SSN, PNUMBER} -> ENAME is not a full FD (it is called «
partial dependency) since SSN -> ENAME also holds

Second Normal Form (2)

2NF Definition

A relation schema R is in second normal form (2NF)
if every non-prime attribute A in R is fully
functionally dependent on the primary key of R

R can be decomposed into 2NF relations via the
process of 2NF normalization

Normalizing into 2NF and 3NF
I T

{a)
EMPF_FRO)

T

EPF1 EPz EP=
FD1| | T e 3 }
L=
EMP_DEFT

[I [} 4 [] -i t

|

FNHF Mormmallzatkom l
EL¥1 El=

¥ [% ; } | ¥ y

Figure 15.11
MMaormalzing Imo ZHNE and 3NF (58) NMormaiizeng ERMP_FPROL o
MF redatons. () Momaliizong EMP_DEFPT mba 3dF redstions.

Normalization into 2NF and 3NF

Figuars 15 12
FMormaEabrsmon mea 2hF amed Z3Z3NE (G The LHOTS reliston with Bs funcsonal depssmedencies
FiD1 shrough FiDd. (b Decompoaireg meo theae Z2hF o relations LIOTS1 ad LIOTSS (o)

Ceecomposimng LIOTS1 moo thee 3 F redanoms LOTS 18 =nd LT ST B (d Susmmany ot the
progresshve normaEaliEassion of LOTS.

- I GH.I'H:E‘II15H:.E:|' I
[Propeny id# | Gounty name | Lot# | Area | Price | Tax rate |
For | 1 F__t 1 f
Fo= f | | 4 t
FO= | $
Fa [
® L orsa LOTS>
[Properiy id# | County name | Lot® | Area | Poce | [County name | Tax raie |
Fou | 4 t T t Fo= |

<y LTS48 LTS 18
FD1 | * [+ Fia || +

L=

LTS Lﬂ'II'E:E 2MF
LTS48 LODOTS18 LOTS=2

SINF

Third Normal Form (1)

Definition:

Transitive functional dependency - a FD X -> Z that
can be derived fromtwo FDs X ->Y and Y -> Z

Examples:

- SSN -> DMGRSSN is a transitive FD since
SSN -> DNUMBER and DNUMBER -> DMGRSSN hold

- SSN -> ENAME is non-transitive since there is no set of
attributes X where SSN -> X and X -> ENAME

Third Normal Form (2)

3NF Definition

A relation schema R is in third normal form (3NF) if it
satisfies 2NF and no non-prime attribute of R is
transitively dependent on the primary key

R can be decomposed into 3NF relations via the
process of 3NF normalization
NOTE:

In X ->Y and Y -> Z, with X as the primary key, we consider this a problem
only if Y is not a candidate key. When Y is a candidate key, there is no
problem with the transitive dependency .

E.g., Consider EMP (SSN, Emp#, Salary).
Here, SSN -> Emp# -> Salary and Emp# is a candidate key.

General Normal Form Definitions (For Multiple
Keys) (])

The above definitions consider the primary key only

The following more general definitions take into
account relations with multiple candidate keys

A relation schema R is in second normal form (2NF)
if every non-prime attribute A in R is fully functionally
dependent on every key of R

General Normal Form Definitions (2)

Definition:

Superkey of relation schema R - a set of attributes S
of R that contains a key of R

A relation schema R is in third normal form (3NF) if
whenever a FD X -> A holds in R, then either:

(a) X is a superkey of R, or
(b) A is a prime attribute of R

NOTE: Boyce-Codd normal form disallows condition (b) above

BCNF (Boyce-Codd Normal Form)

A relation schema R is in Boyce-Codd Normal Form
(BCNF) if whenever an FD X -> A holds in R, then X is
a superkey of R
Each normal form is strictly stronger than the previous one

Every 2NF relation is in TNF

Every 3NF relation is in 2NF
Every BCNF relation is in 3NF

There exist relations that are in 3NF but not in BCNF

The goal is to have each relation in BCNF (or 3NF)

Boyce-Codd normal form

Figure 14.12 Boyce-Codd normal form. (a) BCNF normalization
with the dependency of FD2 being “lost” in the decomposition.
(b) A relation R in 3NF but not in BCNF.

(@) LOTS1A
| PROPERTY_ID# | COUNTY_NAME | LOT# | AREA |

FD1 | * * *
. |)
FD5 * |

lJ/ BCNF Normalization

LOTS1AX LOTS1AY
| PROPERTY_ID# | AREA | LOT# | | AREA COUNTY_NAME
(b) R
lals]c]
FD1 L | A
FD2 ‘u

© Addison Wesley Longman, Inc. 2000, Eimasri/Navathe, Fundamentals of Database Systems, Third Edition

A relation TEACH that is in 3NF but not in BCNF
ey

Figure 14.13 A relation TEACH that is in 3NF but not in BCNF.

TEACH
STUDENT COURSE INSTRUCTOR
Narayan Database Mark
Smith Database Navathe
Smith Operating Systems Ammar
Smith Theory Schulman
Walllace Database Mark
Wallace Operating Systems Ahamad
Wong Database Omiecinski
Zelaya Database Navathe

© Addison Wesley Longman, Inc. 2000, EImasri/Navathe, Fundamentals of Database Systems, Third Edition

Achieving the BCNF by Decomposition (1)

Two FDs exist in the relation TEACH:
fd1: { student, course} -> instructor
fd2: instructor -> course

{student, course} is a candidate key for this relation and that
the dependencies shown follow the pattern in Figure 10.12 (b).
So this relation is in 3NF but not in BCNF

A relation NOT in BCNF should be decomposed so as to meet
this property, while possibly forgoing the preservation of all
functional dependencies in the decomposed relations. (See

Algorithm 11.3)

Achieving the BCNF by Decomposition (2)

Three possible decompositions for relation TEACH

{student, instructor} and {student, course}

{course, instructor } and {course, student}

{instructor, course } and {instructor, student}

All three decompositions will lose fd1. We have to settle for sacrificing the
functional dependency preservation. But we cannot sacrifice the non-additivity
property after decomposition.

Out of the above three, only the 3 decomposition will not generate spurious
tuples after join.(and hence has the non-additivity property).

A test to determine whether a binary decomposition (decomposition into two
relations) is nonadditive (lossless) is discussed in section 11.1.4 under Property
LJ1. Verify that the third decomposition above meets the property.

Multivalued Dependencies and Fourth Normal Form

(1)

(a) The EMP relation with two MVDs: ENAME —>> PNAME and ENAME —>>
DNAME.

(b) Decomposing the EMP relation into two 4NF relations EMP_PROJECTS and
EMP_DEPENDENTS.

(a) EMP
ENAME PNAME DNAME
Smith X John
Smith Y Anna
Smith X Anna
Smith Y John
(b) EMP_PROJECTS EMP_DEPENDENTS
ENAME PNAME ENAME DNAME
Smith X Smith John

Smith Y Smith Anna

Multivalued Dependencies and Fourth Normal Form

(1)
K

(c) The relation SUPPLY with no MVDs is in 4NF but not in 5NF if it has the
JD(R1, R2, R3). (d) Decomposing the relation SUPPLY into the 5NF relations
R1, R2, and R3.

(©) SUPPLY

SNAME PARTNAME PROJNAME

Smith Bolt ProjX

Smith Nut ProjY

Adamsky Bolt ProjY

Walton Nut ProjZ
_ Adamsky _ _ __ Nail | ProX _ _ _

Adamsky Bolt ProjX

Smith Bolt ProjY

@ R R2 R3

SNAME PARTNAME SNAME PROJNAME PARTNAME PROJNAME
Smith Bolt Smith ProjX Bolt ProjX
Smith Nut Smith ProjY Nut ProjY
Adamsky Bolt Adamsky ProjY Bolt ProjY
Walton Nut Walton ProjZ Nut ProjZ

Adamsky Nail Adamsky ProjX Nail ProjX

Multivalued Dependencies and Fourth Normal Form

(2)

Definition:

A multivalued dependency (MVD) X —>> Y specified on relation
schema R, where X and Y are both subsets of R, specifies the following
constraint on any relation state r of R: If two tuples t, and t, exist in r such
that +,[X] = t,[X], then two tuples t; and t, should also exist in r with the

following properties, where we use Z to denote (R - (X U Y)):
tIX] = £,[X] = #[X] = ,[X].
LY = K[Y] and £,[Y] = 1,[Y].
t,1Z] = 1,[Z] and 1,[Z] = +,[Z].

An MVYD X —>> Y in R is called a trivial MVD if (a) Y is a subset of X, or
(b) XU Y =R.

Multivalued Dependencies and Fourth Normal Form

(3)

Inference Rules for Functional and
Multivalued Dependencies:
IRT (reflexive rule for FDs): If X O Y, then X —> Y.
IR2 (augmentation rule for FDs): {X —> Y} |: XZ—>YLZ.
IR3 (transitive rule for FDs): {X —> Y, Y —>Z} =x—> 2z
IR4 (complementation rule for MVDs): {X —>> Y} |: X —>>
(R— (X U Y)}.
IR5 (augmentation rule for MVDs): If X —>> Y and W O Z
then WX —>> YZ.
IR6 (transitive rule for MVDs): {X —>> Y, Y —>> 7} |= X—>> (Z 2
Y).
IR7 (replication rule for FD to MVD): {X —> Y} |= X—>>Y.

IR8 (coalescence rule for FDs and MVDs): If X —>> Y and there exists
W with the properties that

(a) WN Yis empty, (b) W—>Z,and (c) Y D Z, then X—> Z.

Multivalued Dependencies and Fourth Normal Form
(4)

Definition:

A relation schema R is in 4NF with respect to a set of
dependencies F (that includes functional dependencies and
multivalued dependencies) if, for every nontrivial multivalued
dependency X —>> Y in F*, X is a superkey for R.

Note: F' is the (complete) set of all dependencies (functional or
multivalued) that will hold in every relation state r of R that
satisfies F. It is also called the closure of F.

Multivalued Dependencies and Fourth Normal Form (5)

Decomposing a relation state of EMP that is not in 4NF:

(a) EMP relation with additional tuples.

(b) Two corresponding 4NF relations EMP_PROJECTS and
EMP_DEPENDENTS.

(@) EMP () EMP_PROJECTS

ENAME PNAME DNAME ENAME PNAME
Smith X John Smith X
Smith Y Anna Smith Y
Smith X Anna Brown W
Smith Y John Brown X
Brown w Jim Brown Y
Brown X Jim Brown z
Brown Y Jim
Brown Z Jim EMP_DEPENDENTS
Brown w Joan
Brown X Joan ENAME DNAME
Brown Y Joan
Brown Z Joan Smith Anna
Brown w Bob Smith John
Brown X Bob Brown Jim
Brown Y Bob Brown Joan
Brown y4 Bob Brown Bob

Multivalued Dependencies and Fourth Normal Form (6)

Lossless (Non-additive) Join Decomposition into
4NF Relations:

PROPERTY LJY

The relation schemas R, and R, form a lossless (non-
additive) join decomposition of R with respect to a set F
of functional and multivalued dependencies if and only if
(R,N R,)—>> (R, - R,)
or by symmetry, if and only if
(R, N R,) —>> (R, - R,)).

Multivalued Dependencies and Fourth Normal Form (7)

Algorithm 11.5: Relational decomposition into 4NF relations
with non-additive join property

Input: A universal relation R and a set of functional and multivalued
dependencies F.

SetD:={R };

While there is a relation schema Q in D that is not in 4NF do {
choose a relation schema Q in D that is not in 4NF;
find a nontrivial MVYD X —>> Y in Q that violates 4NF;
replace Q in D by two relation schemas (Q - Y) and (X U Y);

}i

Join Dependencies and Fifth Normal Form (1)

Definition:

A join dependency (JD), denoted by ID(R,, R, .., R),
specified on relation schema R, specifies a constraint on the
states r of R.

The constraint states that every legal state r of R should have a
non-additive join decomposition into R, R,, ..., R ; that is, for
every such r we have
* (Tcm(r)l TCRQ(r)I seey TCRn(I')) = r
Note: an MVD is a special case of a JD where n = 2.
A join dependency ID(R,, R,, ..., R), specified on relation
schema R, is a trivial JD if one of the relation schemas R. in
JD(R,, R,, ..., R) is equal to R.

Join Dependencies and Fifth Normal Form (2)

Definition:

A relation schema R is in fifth normal form (SNF)
(or Project-Join Normal Form (PJNF)) with respect
to a set F of functional, multivalued, and join
dependencies if,
for every nontrivial join dependency JD(R., R,, ..., R)
in F™ (that is, implied by F),

every R. is a superkey of R.

Relation SUPPLY with Join Dependency and conversion to

Fifth Normal Form
osa 4

Figure 11.4

Fourth and fifth normal forms.

(a) The EMP relation with two MVDs: Ename —> Pname and Ename —> Dname.

(b) Decomposing the EMP relation into two 4NF relations EMP_PROJECTS and EMP_DEPENDENTS.
(c) The relation SUPPLY with no MVDs is in 4NF but not in BNF if it has the JD(R;, Ry, Rs).

(d) Decomposing the relation SUPPLY into the BNF relations Ry, Ry, Ra.

(c) SUPPLY d R, R,
Sname Part_ name | Proj name Sname Part_name Sname | Proj name
Smith Bolt ProjX Smith Bolt Smith ProjX
Smith Nut ProjY Smith Nut Smith ProjY
Adamsky Bolt ProjY Adamsky Bolt Adamsky ProjY
Walton Nut ProjZ Walton Nut Walton ProjZ
| Adamsky | Nail | ProX Adamsky Nail Adamsky ProjX
Adamsky Bolt ProjX R
Smith Bolt ProjY 3 :
Part name Proj name

Bolt ProjX

Nut ProjY

Bolt ProjY

Nut ProjZ

Nail ProjX

NORMALIZATION ALGORITHMS

Closure of f

The set of all dependencies that include F as well as all
dependencies that can be inferred from F is called the closure
of F; it is denoted by F+.

Example...

F = {Ssn — {Ename, Bdate, Address, Dnumber}, Dnumber — {Dname, Dmgr_ssn} }
Some of the additional functional dependencies that we can infer from F are the following:
Ssn — {Dname, Dmgr_ssn}

Ssn — Ssn

Dnumber — Dname

2.2 Inference Rules for FDs (1)

Given a set of FDs F, we can infer additional FDs that
hold whenever the FDs in F hold
Armstrong's inference rules:
IR1. (Reflexive) If Y subset-of X, then X ->Y
IR2. (Augmentation) If X -> Y, then XZ -> YZ
(Notation: XZ stands for X U Z)
IR3. (Transitive) If X ->Y and Y -> Z, then X -> Z

IR1, IR2, IR3 form a sound and complete set of
inference rules

Inference Rules for FDs (2)

Some additional inference rules that are useful:
(Decomposition) If X -> YZ, then X -> Y and X -> Z
(Union) If X -> Y and X -> Z, then X -> YZ
(Psuedotransitivity) If X -> Y and WY -> Z, then WX -> Z

The last three inference rules, as well as any other
inference rules, can be deduced from IR1, IR2, and
IR3 (completeness property)

PROOF

Proof of IR1.

Suppose that X 2 Y and that two tuples t1 and 12 exist in some relation instance
r of R such that t1 [X] = t2 [X]. Then t1[Y] = t2[Y] because X 2 Y; hence, X—Y
must hold in r.

Proof of IR2 (by contradiction).

Assume that X—Y holds in a relation instance r of R but that XZ—YZ does not
hold. Then there must exist two tuples t1 and t2 in r such that (1) t1 [X] = t2 [X],
(2) t1 [Y] = 12 [Y], (3) 11 [XZ] = t2 [XZ], and (4) t1 [YZ] # t2 [YZ]. This is not
possible because from (1) and (3) we deduce (5) t1 [Z] = 12 [Z], and from (2)
and (5) we deduce (6) t1 [YZ] = 12 [YZ], contradicting (4).

Proof of IR3.

Assume that (1) X — Y and (2) Y — Z both hold in a relation r. Then for any two
tuples t1 and 12 in r such that t1 [X] = 12 [X], we must have (3) t1 [Y] = t2 [Y],
from assumption (1); hence we must also have (4) t1 [Z] = t2 [Z] from (3) and
assumption (2); thus X—Z must hold in r.

CONTD

Proof of IR4 (Using IR1 through IR3).
X—YZ (given).
YZ—Y (using IR1T and knowing that YZ 2 Y).
X—Y (using IR3 on 1 and 2).

Proof of IR5 (using IR1 through IR3).

X—Y (given).

X—Z (given).

X—XY (using IR2 on 1 by augmenting with X; notice that XX = X).
XY—YZ (using IR2 on 2 by augmenting with Y).

X—YZ (using IR3 on 3 and 4).

Proof of IR6 (using IRT through IR3).
X—Y (given).
WY —Z (given).
WX—WY (using IR2 on 1 by augmenting with W).
WX—Z (using IR3 on 3 and 2).

The inference rules IR1 through IR3 are sound and
complete

sound because given a set of functional dependencies F
specified on a relation schema R, any dependency that we
can infer from F by using IR1 through IR3 holds in every
relation state r or R that satisfies the dependencies in F.

complete because using IR1 through IR3 repeatedly to infer
dependencies until no more dependencies can be inferred
results in the complete set of all possible dependencies that
can be inferred from F.

Closure of x under f

For each set of attributes X, we determine the set X™
of attributes that are functionally determined by X
based on F; X" is called the closure of X under F.

Algorithm: Determining X+, the

Closure of X under F
e

Input: A set F of FDs on a relation schema R, and a set
of attributes X, which is a subset of R.
Ta= X;

repeat

oldX*:=XT;

for each functional dependency Y—Z in F do

if XT2YthenX*:=X"UZ

until (X ™ = oldX ¥);

Equivalence of sets of functional dependencies

A set of functional dependencies F is said to cover another set
of functional dependencies E if every FD in E is also in F+; that
is, if every dependency in E can be inferred from F;
alternatively, we can say that E is covered by F.

Two sets of functional dependencies E and F are equivalent if
E+ = F+. Therefore, equivalence means that every FD in E can
be inferred from F, and every FD in F can be inferred from E;
that is, E is equivalent to F if both the conditions—E covers F
and F covers E—hold.

Minimal Sets of FDs

A set of functional dependencies F to be minimal if it
satisfies the following conditions:

Every dependency in F has a single attribute for its right-
hand side.

We cannot replace any dependency X — A in F with a
dependency Y — A, where Y is a proper subset of X, and
still have a set of dependencies that is equivalent to F.

We cannot remove any dependency from F and still have
a set of dependencies that is equivalent to F.

Minimal cover

A minimal cover of a set of functional dependencies
E is a minimal set of dependencies (in the standard

canonical form and without redundancy) that is
equivalent to E

Algorithm: Finding a Minimal Cover F for
a Set of Functional Dependencies E

Input: A set of functional dependencies E.
Set F :=E.

Replace each functional dependency X—{A1, A2, ..., An} in F
by the n functional dependencies X—A1, X—A2, ..., X—An.

For each functional dependency X—A in F for each attribute
B that is an element of X if { {F — {X—A} } U{ (X - {B}) —A}
} is equivalent to F then replace X—A with (X —{B}) —AinF.

For each remaining functional dependency X—A in F if {F —
{X—A} } is equivalent to F, then remove X—A from F.

Example

Find the minimal cover for the following set of
functional dependencies:

E: {B—A, D—A, AB—D}.

SOLUTION

All above dependencies are in canonical form (that is, they have only one attribute
on the right-hand side), so we have completed step 1 of Algorithm and can proceed
to step 2. In step 2 we need to determine if AB—D has any redundant attribute on
the left-hand side; that is, can it be replaced by B—D or A—D?

Since B —A, by augmenting with B on both sides (IR2), we have BB — AB, or B—AB
(i). However, AB—D as given (ii).

Hence by the transitive rule (IR3), we get from (i) and (ii), B — D. Thus AB—D may be
replaced by B—D.

We now have a set equivalent to original E, say E: {B—A, D—A, B—D}. No further
reduction is possible in step 2 since all FDs have a single attribute on the left-hand
side.

In step 3 we look for a redundant FD in E. By using the transitive rule on B— D
and D — A, we derive B— A. Hence B — A is redundant in E and can be eliminated.

Therefore, the minimal cover of E is {B—D, D—A}.

DESIGNING A SET OF RELATIONS (1)

The Approach of Relational Synthesis (Bottom-up
Design):
Assumes that all possible functional dependencies are
known.

First constructs a minimal set of FDs

Then applies algorithms that construct a target set of
3NF or BCNF relations.

Additional criteria may be needed to ensure the set of
relations in a relational database are satisfactory (see
Algorithms 11.2 and 11.4).

DESIGNING A SET OF RELATIONS (2)

Goals:

Lossless join property (a must)
Algorithm 11.1 tests for general losslessness.

Dependency preservation property

Algorithm 11.3 decomposes a relation into BCNF
components by sacrificing the dependency preservation.

Additional normal forms
ANF (based on multi-valued dependencies)

5NF (based on join dependencies)

1. Properties of Relational
Decompositions (1)

Relation Decomposition and
Insufficiency of Normal Forms:

Universal Relation Schema:

A relation schema R = {A1, A2, ..., An}
that includes all the attributes of the

database.

Universal relation assumption:
Every attribute name is unique.

Properties of Relational
Decompositions (2)

Relation Decomposition and Insufficiency of
Normal Forms (cont.):

Decomposition:
The process of decomposing the universal relation schema R
into a set of relation schemas D = {R1,R2, ..., Rm} that will
become the relational database schema by using the

functional dependencies.

Attribute preservation condition:
Each attribute in R will appear in at least one relation
schema Ri in the decomposition so that no attributes are
“lost”.

Properties of Relational
Decompositions (2)

Another goal of decomposition is to have each
individual relation Ri in the decomposition D be in

BCNF or 3NF.

Additional properties of decomposition are
needed to prevent from generating spurious tuples

Properties of Relational
Decompositions (3)

Dependency Preservation Property of a
Decomposition:

Definition: Given a set of dependencies F on R, the
projection of F on R, denoted by p..(F) where R. is a
subset of R, is the set of dependencies X = Y in F such
that the attributes in X U Y are all contained in R..

Hence, the projection of F on each relation schema R; in
the decomposition D is the set of functional
dependencies in F*, the closure of F, such that all their
left- and right-hand-side attributes are in R..

Properties of Relational
Decompositions (4)

Dependency Preservation Property of a
Decomposition (cont.):

Dependency Preservation Property:

A decomposition D = {R1, R2, ..., Rm} of R is dependency-
preserving with respect to F if the union of the projections
of F on each Ri in D is equivalent to F; that is

((mte;(F)) U ... U (an(F)))+ — F+
(See examples in Fig 10.12a and Fig 10.11)

Claim 1:

It is always possible to find a dependency-preserving
decomposition D with respect to F such that each
relation Ri in D is in 3nf.

Properties of Relational
Decompositions (5)

Lossless (Non-additive) Join Property of a Decomposition:

Definition: Lossless join property: a decomposition D = {R1, R2, ...,
Rm} of R has the lossless (nonadditive) join property with respect
to the set of dependencies F on R if, for every relation state r of R
that satisfies F, the following holds, where * is the natural join of all

the relations in D:

F(TC R (F)) veey T(F)) = 1
Note: The word loss in lossless refers to loss of information, not to loss
of tuples. In fact, for “loss of information” a better term is “addition
of spurious information”

Properties of Relational
Decompositions (6)

Lossless (Non-additive) Join Property of a Decomposition (cont.):

Algorithm 11.1: Testing for Lossless Join Property

Input: A universal relation R, a decomposition D = {R1, R2, ..., Rm} of
R, and a set F of functional dependencies.

1. Create an initial matrix S with one row i for each relation Ri in D, and one
column | for each attribute Aj in R.

2. Set S(i,j):=bij for all matrix entries. (* each bij is a distinct symbol associated
with indices (i,j) *).
3. For each row i representing relation schema Ri
{for each column j representing attribute Aj
{if (relation Ri includes attribute Aj) then set S(i,j):= aj;};};

(* each aj is a distinct symbol associated with index (j) *)
CONTINUED on NEXT SLIDE

Properties of Relational
Decompositions (/)

Lossless (Non-additive) Join Property of a Decomposition (cont.):
Algorithm 11.1: Testing for Lossless Join Property

4. Repeat the following loop until a complete loop execution results in no changes to S
{for each functional dependency X =Y in F

{for all rows in S which have the same symbols in the columns corresponding to attributes
in X

{make the symbols in each column that correspond to an attribute in Y be
the same in all these rows as follows:

If any of the rows has an “a” symbol for the column, set the
other rows to that same “a” symbol in the column.

1Pk

If no “a” symbol exists for the attribute in any of the rows,
choose one of the “b” symbols that appear in one of the rows for the attribute and set the
other rows to that same “b” symbol in the column ;};

}i
}i

5. If a row is made up entirely of “a” symbols, then the decomposition has the lossless join
property; otherwise it does not.

Properties of Relational Decompositions (8)

Lossless (nonadditive) join test for n-ary decompositions.

(a) Case 1: Decomposition of EMP_PROJ into EMP_PROJ1 and EMP_LOCS fails

test.

(b) A decomposition of EMP_PRQOJ that has the lossless join property.

(@ R={SSN, ENAME, PNUMBER, PNAME, PLOCATION, HOURS} D={Ry, Ro}
R1=EMP_LOCS={ENAME, PLOCATION}
Ro=EMP_PROJ1={SSN, PNUMBER, HOURS, PNAME, PLOCATION}
F={SSN—ENAME;PNUMBER—{PNAME, PLOCATION} ;{SSN,PNUMBER}—HOURS}
SSN ENAME PNUMBER PNAME PLOCATION HOURS
Ri | Py 3 ° 13 ® 14 %5 ® 16
Ra | ay b a3 4 45 26
(no changes to matrix after applying functional dependencies)
(b)
EMP PROJECT WORKS_ON
SSN | ENAME PNUMBER PNAME | PLOCATION SSN PNUMBER | HOURS

Properties of Relational Decompositions (8)

.. (© R={SSN, ENAME, PNUMBER, PNAME, PLOCATION, HOURS} D={Ry, R, Ra}
Lossless (nonadditive) join test Ry=EMP={SSN, ENAME}
for n-ary decompositions Ro=PROJ={PNUMBER, PNAME, PLOCATION}

R3=WORKS_ON={SSN, PNUMBER, HOURS}
(c) Case 2: Decomposition of

EMP_PROJ into EMP, PROJECT,

F={SSN—{ENAME;PNUMBER—{PNAME, PLOCATION} ;{SSN,PNUMBER}—HOURS}

and WORKS_ON satisfies SSN ENAME PNUMBER PNAME PLOCATION HOURS
test. Ri | a, a, b4 b, b,e b6
R2 | by ® 2 a3 24 A5 PD
Rs | a, b3 a3 Py P 35 26

(original matrix S at start of algorithm)

SSN ENAME PNUMBER PNAME PLOCATION HOURS

R
T ay a2 b3 by b s b6

R; b
2 b a a a b26

4 5
a a a
R3 a, 5\3%2 ag hSQZL }’35 5 ag

(matrix S after applying the first two functional dependencies -
last row is all "a" symbols, so we stop)

Properties of Relational
Decompositions (?)

Testing Binary Decompositions for Lossless Join
Property

Binary Decomposition: Decomposition of a relation R
into two relations.

PROPERTY LJ1 (lossless join test for binary
decompositions): A decomposition D = {R1, R2} of R
has the lossless join property with respect to a set of
functional dependencies F on R if and only if either
The f.d. ((R1 M R2) = (R1- R2))isin F*, or
The f.d. (R1 N R2) = (R2 - R1)) is in F*.

Properties of Relational
Decompositions (10)

Successive Lossless Join Decomposition:

Claim 2 (Preservation of non-additivity in successive
decompositions):

If a decomposition D = {R1, R2, ..., Rm} of R has the lossless
(non-additive) join property with respect to a set of
functional dependencies F on R,

and if a decomposition Di = {Q1, Q2, ..., Qk} of Ri has the
lossless (non-additive) join property with respect to the
projection of F on Rj,
then the decomposition D2 = {R1, R2, ..., Ri-1, Q1, Q2, ..., Qk,
Ri+1, ..., Rm} of R has the non-additive join property with respect
to F.

2. Algorithms for Relational Database
Schema Design (1)

Algorithm 11.2: Relational Synthesis into 3NF with Dependency
Preservation (Relational Synthesis Algorithm)

Input: A universal relation R and a set of functional dependencies F
on the attributes of R.

1. Find a minimal cover G for F (use Algorithm 10.2);
2. For each left-hand-side X of a functional dependency that appearsin G,
create a relation schema in D with attributes {X U {A1} U {A2} ... U

{Ak}},
where X = A1, X = A2, ..., X = Ak are the only dependencies in G
with X as left-hand-side (X is the key of this relation) ;

3. Place any remaining attributes (that have not been placed in any relation) in
a single relation schema to ensure the attribute preservation property.

Claim 3: Every relation schema created by Algorithm 11.2 is in 3NF.

Algorithms for Relational Database
Schema Design (2)

Algorithm 11.3: Relational Decomposition into BCNF with Lossless
(non-additive) join property

Input: A universal relation R and a set of functional dependencies F
on the attributes of R.

1. Set D := {R};
2. While there is a relation schema Q in D that is not in BCNF
do {
choose a relation schema Q in D that is not in BCNF;
find a functional dependency X = Y in Q that violates BCNF;
replace Q in D by two relation schemas (Q - Y) and (X U Y);

}i

Assumption: No null values are allowed for the join attributes.

Algorithms for Relational Database
Schema Design (3)

Algorithm 11.4 Relational Synthesis into 3NF with Dependency
Preservation and Lossless (Non-Additive) Join Property

Input: A universal relation R and a set of functional dependencies F
on the attributes of R.

1. Find a minimal cover G for F (Use Algorithm 10.2).
2. For each left-hand-side X of a functional dependency that appears in G,

create a relation schema in D with attributes {X U {A1} U {A2} ... U
{Ak}},

where X = A1, X = A2, ..., X =>Ak are the only dependencies in G
with X as left-hand-side (X is the key of this relation).

3. If none of the relation schemas in D contains a key of R, then create one
more relation schema in D that contains attributes that form a key of R. (Use
Algorithm 11.4a to find the key of R)

Algorithms for Relational Database
Schema Design (4)

Algorithm 11.4a Finding a Key K for R Given a
set F of Functional Dependencies

Input: A universal relation R and a set of
functional dependencies F on the attributes of R.

1. Set K:=R;
2. For each attribute A in K {
Compute (K - A)+ with respect to F;
If (K - A)+ contains all the attributes in R,
then set K := K - {A};

Algorithms for Relational Database Schema Design (5)

(a)
EMPLOYEE
Ename Ssn Bdate Address Dnum
Smith, John B. 123456789 | 1965-01-09 | 731 Fondren, Houston, TX 5
Wong, Franklin T. 333445555 | 1955-12-08 | 638 Voss, Houston, TX 5
Zelaya, Alicia J. 999887777 | 1968-07-19 | 3321 Castle, Spring, TX 4
Wallace, Jennifer S. 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX 4
Narayan, Ramesh K. | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX 5
English, Joyce A. 453453453 | 1972-07-31 | 5631 Rice, Houston, TX 5
Jabbar, Ahmad V. 987987987 | 1969-03-29 | 980 Dallas, Houston, TX A
Borg, James E. 888665555 | 1937-11-10 | 450 Stone, Houston, TX 1
Berger, Anders C. 999775555 | 1965-04-26 | 6530 Braes, Bellaire, TX NULL
Benitez, Carlos M. 888664444 [1963-01-09 | 7654 Beech, Houston, TX NULL
DEPARTMENT
Dname Dnum. Dmgr_ssn
Research 5 333445555
Administration 4 987654321
Headquarters 1 888665555

Figure 11.2

Issues with NULL-value
joins. (a) Some EMPLOYEE
tuples have NULL for the
join attribute Dnum.

(b) Result of applying
NATURAL JOIN to the
EMPLOYEE and
DEPARTMENT relations.
(c) Result of applying
LEFT OUTER JOIN to
EMPLOYEE and
DEPARTMENT.

Algorithms for Relational Database Schema Design (5)

(b)

Ename Ssn Bdate Address Dnum Dname Dmgr_ssn
Smith, John B. 123456789 | 1965-01-09 | 731 Fondren, Houston, TX 5 Research 333445555
Wong, Franklin T. 333445555 | 19556-12-08 | 638 Voss, Houston, TX 5 Research 333445555
Zelaya, Alicia J. 999887777 | 1968-07-19 | 3321 Castle, Spring, TX 4 Administration | 987654321
Wallace, Jennifer S. | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX 4 Administration | 987654321
Narayan, Ramesh K. | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX 5 Research 333445555
English, Joyce A. 453453453 | 1972-07-31 | 5631 Rice, Houston, TX 5 Research 333445555
Jabbar, Ahmad V. 987987987 | 1969-03-29 | 980 Dallas, Houston, TX 4 Administration | 987654321
Borg, James E. 888665555 | 1937-11-10 | 450 Stone, Houston, TX 1 Headquarters | 888665555

(©)

Ename Ssn Bdate Address Dnum Dname Dmgr_ssn
Smith, John B. 123456789 | 1965-01-09 | 731 Fondren, Houston, TX 5 Research 333445555
Wong, Franklin T. 333445555 | 1955-12-08 | 638 Voss, Houston, TX 5 Research 333445555
Zelaya, Alicia J. 999887777 | 1968-07-19 | 3321 Castle, Spring, TX 4 Administration | 987654321
Wallace, Jennifer S. | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX 4 Administration | 987654321
Narayan, Ramesh K. | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX 5 Research 333445555
English, Joyce A. 453453453 | 1972-07-31 | 5631 Rice, Houston, TX 5 Research 333445555
Jabbar, Ahmad V. 987987987 | 1969-03-29 | 980 Dallas, Houston, TX 4 Administration | 987654321
Borg, James E. 888665555 | 1937-11-10 | 450 Stone, Houston, TX 1 Headquarters | 888665555
Berger, Anders C. 999775555 | 1965-04-26 | 6530 Braes, Bellaire, TX NULL | NULL NULL
Benitez, Carlos M. 888665555 | 1963-01-09 | 7654 Beech, Houston, TX NULL | NULL NULL

Figure 11.2

Issues with NULL-value
joins. (a) Some EMPLOYEE
tuples have NULL for the
join attribute Dnum.

(b) Result of applying
NATURAL JOIN to the
EMPLOYEE and
DEPARTMENT relations.
(c) Result of applying
LEFT OUTER JOIN to
EMPLOYEE and
DEPARTMENT.

Algorithms for Relational Database Schema Design (6)

Figure 11.3
The dangling tuple problem.

(a) The relation EMPLOYEE_1 (includes all attributes of EMPLOYEE from Figure 11.2(a) except Dnum).
(b) The relation EMPLOYEE_2 (includes Dnum attribute with NULL values).
(c) The relation EMPLOYEE_3 (includes Dnum attribute but does not include tuples for which Dnum has

NULL values).

(a) EMPLOYEE_1

Ename Ssn Bdate Address

Smith, John B. 123456789 | 1965-01-09 | 731 Fondren, Houston, TX
Wong, Franklin T. 333445555 | 1955-12-08 | 638 Voss, Houston, TX
Zelaya, Alicia J. 990887777 | 1968-07-19 | 3321 Castle, Spring, TX
Wallace, Jennifer S. | 987654321 | 1941-06-20 | 291 Berry, Bellaire, TX
Narayan, Ramesh K. | 666884444 | 1962-09-15 | 975 Fire Oak, Humble, TX
English, Joyce A. 453453453 | 1972-07-31 5631 Rice, Houston, TX
Jabbar, Ahmad V. 987987987 | 1969-03-29 | 980 Dallas, Houston, TX
Borg, James E. 888665555 | 1937-11-10 | 450 Stone, Houston, TX
Berger, Anders C. 999775555 | 1965-04-26 | 6530 Braes, Bellaire, TX
Benitez, Carlos M. 888665555 | 1963-01-09 | 7654 Beech, Houston, TX

Algorithms for Relational Database Schema Design (6)

Figure 11.3

The dangling tuple problem.

(a) The relation EMPLOYEE_1 (includes all attributes of EMPLOYEE from Figure 11.2(a) except Dnum).
(b) The relation EMPLOYEE_2 (includes Dnum attribute with NULL values).

(c) The relation EMPLOYEE_3 (includes Dnum attribute but does not include tuples for which Dnum has
NULL values).

(b) EMPLOYEE_2 (c) EMPLOYEE_3
Ssn Dnum Ssn. Dnum

123456789 5 123456789 5
333445555 5 333445555 5
999887777 4 999887777 4
987654321 4 987654321 4
666884444 5 666884444 5
453453453 5 453453453 5
987987987 4 987987987 4
888665555 1 888665555 1
999775555 NULL

888664444 NULL

Algorithms for Relational Database Schema Design (7)

Discussion of Normalization Algorithms:

Problems:

The database designer must first specify all the
relevant functional dependencies among the database
attributes.

These algorithms are not deterministic in general.

It is not always possible to find a decomposition into
relation schemas that preserves dependencies and

allows each relation schema in the decomposition to be
in BCNF (instead of 3NF as in Algorithm 11.4).

Algorithms for Relational Database Schema Design (8)

Table 11.1

Summary of the Algorithms Discussed in Sections 11.1 and 11.2

Algorithm
11.1

11.2

11.3

11.4

11.4a

Input

A decomposition
D of R and a set F
of functional
dependencies

Set of functional
dependencies F

Set of functional
dependencies F

Set of functional
dependencies F

Relation schema
R with a set of
functional
dependencies F

Output

Boolean result: yes
or no for nonaddi-

tive join property

A set of relations
in 3NF

A set of relations
in BCNF

A set of relations
in 3NF

Key K of R

Properties/Purpose

Testing for
nonadditive join
decomposition

Dependency
preservation

Nonadditive join
decomposition

Nonadditive join
and dependency-
preserving
decomposition

To find a key K
(that is a subset
of R)

Remarks

See a simpler test
in Section 11.1.4
for binary
decompositions

No guarantee of
satisfying lossless join
property

No guarantee of
dependency
preservation

May not achieve
BCNE, but achieves
all desirable proper-
ties and 3NF

The entire relation R
is always a default
superkey

5. Inclusion Dependencies (1)

Definition:

An inclusion dependency R.X < S.Y between two sets of
attributes—X of relation schema R, and Y of relation schema

S—specifies the constraint that, at any specific time when r is a
relation state of R and s a relation state of S, we must have

T, (r(R)) = m(s(S))
Note:

The ? (subset) relationship does not necessarily have to be a
proper subset.

The sets of attributes on which the inclusion dependency is
specified—X of R and Y of S—must have the same number of
attributes.

In addition, the domains for each pair of corresponding
attributes should be compatible.

Inclusion Dependencies (2)

Obijective of Inclusion Dependencies:

To formalize two types of interrelational constraints which cannot
be expressed using F.D.s or MVDs:

Referential integrity constraints
Class/subclass relationships

Inclusion dependency inference rules

IDIR1 (reflexivity): R.X < R.X.

IDIR2 (attribute correspondence): If R.X < S.Y
where X = {A, A, .., A} aoand Y = (B,
B,, .., B.} and A. Corresponds-to B, then R.A. < S.B.
for1 < i<n.

IDIR3 (transitivity): If RX < S.Y and S.Y < T.Z, then R.X <
T.Z.

6. Other Dependencies and Normal Forms (1)

Template Dependencies:

Template dependencies provide a technique for representing constraints in
relations that typically have no easy and formal definitions.

The idea is to specify a template—or example—that defines each
constraint or dependency.

There are two types of templates:
tuple-generating templates
constraint-generating templates.

A template consists of a number of hypothesis tuples that are meant to
show an example of the tuples that may appear in one or more relations.
The other part of the template is the template conclusion.

Other Dependencies and Normal Forms (2)

s

Figure 11.6

Templates for some common type of dependencies.
(a) Template for functional dependency X — V.

(b) Template for the multivalued dependency X —> Y.
(c) Template for the inclusion dependency RX < SY.

(@ R={A, B, C, D}
Hypothesis a; | by | ¢y | dy X={A, B}
a; | by | cy|dy Y ={C, D}
Conclusion cy=Cyand d; =d,
(b) R={A, B, C, D}
Hypothesis a; | by | oy | dy X={A, B}
a, b, Cy | dy Y ={C}
Conclusion a; | by | cyp | dy
a, b-| Cq d2

(© R={A, B, C, D} s={E F G} X={C, D}
Hypothesis a; | by | ¢ | dy Y ={E, F}

Conclusion c, | di | g

Other Dependencies and Normal Forms (3)

EMPLOYEE = {Name, Ssn, ..., Salary, Supervisor_ssn}

Figure 11.7 a b c d
Templates for the constraint
that an employee’s salary Hypothesis e | d f g

must be less than the

supervisor's salary. Conclusion c<f

Other Dependencies and Normal Forms (4)

Domain-Key Normal Form (DKNF):

Definition:

A relation schema is said to be in DKNF if all constraints and
dependencies that should hold on the valid relation states can be

enforced simply by enforcing the domain constraints and key constraints
on the relation.

The idea is to specify (theoretically, at least) the “ultimate normal form™ that
takes into account all possible types of dependencies and constraints. .

For a relation in DKNF, it becomes very straightforward to enforce all
database constraints by simply checking that each attribute value in a tuple
is of the appropriate domain and that every key constraint is enforced.

The practical utility of DKNF is limited

Questions

Explain the informal design guidelines for the
database design.

Which normal form is based on full functional
dependency?¢ Explain the normal form which is
based on this.

What is transitive dependency? Explain 3NF with
example.

What is multivalued dependency? Explain 4NF
with example.

Write an algorithm to find the minimal cover.

