
MODULE – 3

SQL : ADVANCE QUERIES

DATABASE APPLICATION DEVELOPMENT

INTERNET APPLICATIONS

Mr. C. R. Belavi, Dept. of CSE, HIT, NDS

SQL : ADVANCE QUERIES

2

Constraints as Assertions

 General constraints: constraints that do not fit in

the basic SQL categories (presented in chapter 8)

 Mechanism: CREATE ASSERTION

 components include: a constraint name, followed by

CHECK, followed by a condition

2

Assertions: An Example

 “The salary of an employee must not be greater

than the salary of the manager of the department

that the employee works for‟‟

CREATE ASSERTION SALARY_CONSTRAINT

CHECK (NOT EXISTS (SELECT *

FROM EMPLOYEE E, EMPLOYEE M, DEPARTMENT D

WHERE E.SALARY > M.SALARY AND

E.DNO=D.NUMBER AND D.MGRSSN=M.SSN))

4

Using General Assertions

 Specify a query that violates the condition; include

inside a NOT EXISTS clause

 Query result must be empty

 if the query result is not empty, the assertion has been

violated

5

SQL Triggers

 Objective: to monitor a database and take action
when a condition occurs

 Triggers are expressed in a syntax similar to
assertions and include the following:

 event (e.g., an update operation)

 condition

 action (to be taken when the condition is satisfied)

6

SQL Triggers: An Example

 A trigger to compare an employee‟s salary to his/her
supervisor during insert or update operations:

CREATE TRIGGER INFORM_SUPERVISOR

BEFORE INSERT OR UPDATE OF

SALARY, SUPERVISOR_SSN ON EMPLOYEE

FOR EACH ROW

WHEN

(NEW.SALARY> (SELECT SALARY FROM EMPLOYEE

WHERE SSN=NEW.SUPERVISOR_SSN))

INFORM_SUPERVISOR (NEW.SUPERVISOR_SSN,NEW.SSN;

7

Views in SQL

 A view is a “virtual” table that is derived from other

tables

 Allows for limited update operations (since the table

may not physically be stored)

 Allows full query operations

 A convenience for expressing certain operations

8

Specification of Views

 SQL command: CREATE VIEW

 a table (view) name

 a possible list of attribute names (for example, when

arithmetic operations are specified or when we want

the names to be different from the attributes in the

base relations)

 a query to specify the table contents

9

SQL Views: An Example

 Specify a different WORKS_ON table

CREATE VIEW WORKS_ON_NEW AS

SELECT FNAME, LNAME, PNAME, HOURS

FROM EMPLOYEE, PROJECT, WORKS_ON

WHERE SSN=ESSN AND PNO=PNUMBER

GROUP BY PNAME;

10

Using a Virtual Table

 We can specify SQL queries on a newly create

table (view):

SELECT FNAME, LNAME FROM WORKS_ON_NEW

WHERE PNAME=‘Seena’;

 When no longer needed, a view can be dropped:

DROP VIEW WORKS_ON_NEW;

11

Efficient View Implementation

 Query modification: present the view query in terms

of a query on the underlying base tables

 disadvantage: inefficient for views defined via complex

queries (especially if additional queries are to be

applied to the view within a short time period)

12

Efficient View Implementation

 View materialization: involves physically creating

and keeping a temporary table

 assumption: other queries on the view will follow

 concerns: maintaining correspondence between the

base table and the view when the base table is

updated

 strategy: incremental update

13

View Update

 Update on a single view without aggregate

operations: update may map to an update on the

underlying base table

 Views involving joins: an update may map to an

update on the underlying base relations

 not always possible

14

Un-updatable Views

 Views defined using groups and aggregate
functions are not updateable

 Views defined on multiple tables using joins are
generally not updateable

 WITH CHECK OPTION: must be added to the
definition of a view if the view is to be updated

 to allow check for updatability and to plan for an
execution strategy

15

DATABASE APPLICATION DEVELOPMENT

16

Justification for access to databases via

programming languages :

 SQL is a direct query language; as such, it has

limitations.

 via programming languages :

 Complex computational processing of the data.

 Specialized user interfaces.

 Access to more than one database at a time.

17

SQL in Application Code

 SQL commands can be called from within a host

language (e.g., C++ or Java) program.

 SQL statements can refer to host variables (including

special variables used to return status).

Must include a statement to connect to the right

database.

18

SQL in Application Code (Contd.)

Impedance mismatch:

 SQL relations are (multi-) sets of records, with no a

priori bound on the number of records. No such

data structure exist traditionally in procedural

programming languages such as C++. (Though

now: STL)

 SQL supports a mechanism called a cursor to handle

this.

19

Desirable features of such systems:

 Ease of use.

 Conformance to standards for existing
programming languages, database query
languages, and development environments.

 Interoperability: the ability to use a common
interface to diverse database systems on different
operating systems

20

Vendor specific solutions

 Oracle PL/SQL: A proprietary PL/1-like language which
supports the execution of SQL queries:

 Advantages:

 Many Oracle-specific features, not common to other systems, are
supported.

 Performance may be optimized to Oracle based systems.

 Disadvantages:

 Ties the applications to a specific DBMS.

 The application programmer must depend upon the vendor for the
application development environment.

 It may not be available for all platforms.

21

Vendor Independent solutions based on SQL

There are three basic strategies which may be

considered:

 Embed SQL in the host language (Embedded SQL,

SQLJ)

SQL modules

SQL call level interfaces

22

Embedded SQL

 Approach: Embed SQL in the host language.

 A preprocessor converts the SQL statements into
special API calls.

 Then a regular compiler is used to compile the code.

 Language constructs:

 Connecting to a database:

EXEC SQL CONNECT

 Declaring variables:

EXEC SQL BEGIN (END) DECLARE SECTION

 Statements:

EXEC SQL Statement;

23

Embedded SQL: Variables

EXEC SQL BEGIN DECLARE SECTION

char c_sname[20];

long c_sid;

short c_rating;

float c_age;

EXEC SQL END DECLARE SECTION

 Two special “error” variables:

 SQLCODE (long, is negative if an error has occurred)

 SQLSTATE (char[6], predefined codes for common errors)

24

Cursors

 Can declare a cursor on a relation or query statement
(which generates a relation).

 Can open a cursor, and repeatedly fetch a tuple then
move the cursor, until all tuples have been retrieved.

Can use a special clause, called ORDER BY, in queries that are
accessed through a cursor, to control the order in which tuples
are returned.

 Fields in ORDER BY clause must also appear in SELECT clause.

 The ORDER BY clause, which orders answer tuples, is only
allowed in the context of a cursor.

 Can also modify/delete tuple pointed to by a cursor.

25

Cursor that gets names of sailors who‟ve

reserved a red boat, in alphabetical order

 Note that it is illegal to replace S.sname by, say,

S.sid in the ORDER BY clause! (Why?)

 Can we add S.sid to the SELECT clause and replace

S.sname by S.sid in the ORDER BY clause?

EXEC SQL DECLARE sinfo CURSOR FOR

SELECT S.sname

FROM Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’

ORDER BY S.sname

26

Embedding SQL in C: An Example

char SQLSTATE[6];

EXEC SQL BEGIN DECLARE SECTION

char c_sname[20]; short c_minrating; float c_age;

EXEC SQL END DECLARE SECTION

c_minrating = random();

EXEC SQL DECLARE sinfo CURSOR FOR

SELECT S.sname, S.age FROM Sailors S

WHERE S.rating > :c_minrating

ORDER BY S.sname;

do {

EXEC SQL FETCH sinfo INTO :c_sname, :c_age;

printf(“%s is %d years old\n”, c_sname, c_age);

} while (SQLSTATE != ‘02000’);

EXEC SQL CLOSE sinfo;

27

Dynamic SQL

 SQL query strings are not always known at compile time (e.g.,

spreadsheet, graphical DBMS frontend): Allow construction of

SQL statements on-the-fly

 Example:

char c_sqlstring[]=

{“DELETE FROM Sailors WHERE rating>5”};

EXEC SQL PREPARE readytogo FROM :c_sqlstring;

EXEC SQL EXECUTE readytogo;

28

Disadvantages:

 It is a real pain to debug preprocessed programs.

 The use of a program-development environment is

compromised substantially.

 The preprocessor must be vendor and platform

specific.

29

SQL Modules

 In the module approach, invocations to SQL are made via
libraries of procedures , rather than via preprocessing

 Special standardized interface: procedures/objects

 Pass SQL strings from language, presents result sets in a
language-friendly way

 Supposedly DBMS-neutral
 a “driver” traps the calls and translates them into DBMS-specific

code

 database can be across a network

30

Example module based

 Sun‟s JDBC: Java API

 Part of the java.sql package

31

 Advantages over embedded SQL:

 Clean separation of SQL from the host programming

language.

 Debugging is much more straightforward, since no

preprocessor is involved.

 Disadvantages:

 The module libraries are specific to the

programming language and environment. Thus,

portability is compromised greatly.

32

JDBC: Architecture

 Four architectural components:

 Application (initiates and terminates connections,

submits SQL statements)

 Driver manager (load JDBC driver)

 Driver (connects to data source, transmits requests and

returns/translates results and error codes)

 Data source (processes SQL statements)

33

JDBC Architecture (Contd.)

Four types of drivers:

Bridge:
 Translates SQL commands into non-native API.

Example: JDBC-ODBC bridge. Code for ODBC and JDBC driver
needs to be available on each client.

Direct translation to native API, non-Java driver:
 Translates SQL commands to native API of data source. Need OS-

specific binary on each client.

Network bridge:
 Send commands over the network to a middleware server that talks

to the data source. Needs only small JDBC driver at each client.

Direction translation to native API via Java driver:
 Converts JDBC calls directly to network protocol used by DBMS.

Needs DBMS-specific Java driver at each client.

34

35

JDBC Classes and Interfaces

Steps to submit a database query:

 Load the JDBC driver

 Connect to the data source

 Execute SQL statements

 Process the results returned by DBMS

 Terminate the connection

36

JDBC Driver Management

 All drivers are managed by the DriverManager

class

 Loading a JDBC driver:

 In the Java code:

Class.forName(“oracle/jdbc.driver.Oracledriver”);

When starting the Java application:

-Djdbc.drivers=oracle/jdbc.driver

37

Connections in JDBC

We interact with a data source through sessions. Each connection
identifies a logical session.

 JDBC URL:
jdbc:<subprotocol>:<otherParameters>

Example:

String url=“jdbc:oracle:www.bookstore.com:3083”;

Connection con;

try{

con = DriverManager.getConnection(url,usedId,password);

} catch SQLException excpt { …}

38

Connection Class Interface

 public int getTransactionIsolation() and
void setTransactionIsolation(int level)
Gets/Sets isolation level for the current connection.

 public boolean getReadOnly() and
void setReadOnly(boolean b)
Specifies if transactions in this connection are read-only

 public boolean getAutoCommit() and
void setAutoCommit(boolean b)
If autocommit is set, then each SQL statement is considered its own transaction.
Otherwise, a transaction is committed using commit(), or aborted using rollback().

 public boolean isClosed()
Checks whether connection is still open.

39

Executing SQL Statements

 Three different ways of executing SQL
statements:
 Statement (both static and dynamic SQL

statements)

 PreparedStatement (semi-static SQL statements)

CallableStatment (stored procedures)

 PreparedStatement class:
Precompiled, parametrized SQL statements:
 Structure is fixed

 Values of parameters are determined at run-time

40

Executing SQL Statements (Contd.)

String sql=“INSERT INTO Sailors VALUES(?,?,?,?)”;

PreparedStatment pstmt=con.prepareStatement(sql);

pstmt.clearParameters();

pstmt.setInt(1,sid);

pstmt.setString(2,sname);

pstmt.setInt(3, rating);

pstmt.setFloat(4,age);

// we know that no rows are returned, thus we use
executeUpdate()

int numRows = pstmt.executeUpdate();

41

ResultSets

 PreparedStatement.executeUpdate only returns the
number of affected records

 PreparedStatement.executeQuery returns data,
encapsulated in a ResultSet object (a cursor)

ResultSet rs=pstmt.executeQuery(sql);

// rs is now a cursor

While (rs.next()) {

// process the data

}

42

ResultSets (Contd.)

A ResultSet is a very powerful cursor:

 previous(): moves one row back

 absolute(int num): moves to the row with the

specified number

 relative (int num): moves forward or backward

 first() and last()

43

Matching Java and SQL Data Types

getTimestamp()java.sql.TimeStampTIMESTAMP

getTime()java.sql.TimeTIME

getDate()java.sql.DateDATE

getFloat()DoubleREAL

getInt()IntegerINTEGER

getDouble()DoubleFLOAT

getDouble()DoubleDOUBLE

getString()StringVARCHAR

getString()StringCHAR

getBoolean()BooleanBIT

ResultSet get methodJava classSQL Type

44

Examining Database Metadata

DatabaseMetaData object gives information about

the database system and the catalog.

DatabaseMetaData md = con.getMetaData();

// print information about the driver:

System.out.println(

“Name:” + md.getDriverName() +

“version: ” + md.getDriverVersion());

45

Database Metadata (Contd.)

DatabaseMetaData md=con.getMetaData();

ResultSet trs=md.getTables(null,null,null,null);

String tableName;

While(trs.next()) {

tableName = trs.getString(“TABLE_NAME”);

System.out.println(“Table: “ + tableName);

//print all attributes

ResultSet crs = md.getColumns(null,null,tableName, null);

while (crs.next()) {

System.out.println(crs.getString(“COLUMN_NAME” + “, “);

}

}

46

A (Semi-)Complete Example
 import java.sql.*;

 /**

 * This is a sample program with jdbc odbc Driver

 */

 public class localdemo {

 public static void main(String[] args) {

 try {

 // Register JDBC/ODBC Driver in jdbc DriverManager

 // On some platforms with some java VMs, newInstance() is necessary...

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver").newInstance();

 // Test with MS Access database (sailors ODBC data source)

 String url = "jdbc:odbc:mysailors";

 java.sql.Connection c = DriverManager.getConnection(url);

47

A (Semi-)Complete Example cont

 java.sql.Statement st = c.createStatement();

 java.sql.ResultSet rs = st.executeQuery("select * from Sailors");

 java.sql.ResultSetMetaData md = rs.getMetaData();

 while(rs.next()) {

 System.out.print("\nTUPLE: | ");

 for(int i=1; i<= md.getColumnCount(); i++) {

 System.out.print(rs.getString(i) + " | ");

 }

 }

 rs.close();

 } catch(Exception e) {

 e.printStackTrace();

 }

 }

 };

48

SQLJ

Complements JDBC with a (semi-)static query model: Compiler

can perform syntax checks, strong type checks, consistency

of the query with the schema

 All arguments always bound to the same variable:

#sql x = {

SELECT name, rating INTO :name, :rating

FROM Books WHERE sid = :sid;

 Compare to JDBC:

sid=rs.getInt(1);

if (sid==1) {sname=rs.getString(2);}

else { sname2=rs.getString(2);}

 SQLJ (part of the SQL standard) versus embedded SQL

(vendor-specific)

49

SQLJ Code

Int sid; String name; Int rating;

// named iterator

#sql iterator Sailors(Int sid, String name, Int rating);

Sailors sailors;

// assume that the application sets rating

#sailors = {

SELECT sid, sname INTO :sid, :name
FROM Sailors WHERE rating = :rating

};

// retrieve results

while (sailors.next()) {

System.out.println(sailors.sid + “ “ + sailors.sname));

}

sailors.close();

50

SQLJ Iterators

Two types of iterators (“cursors”):

 Named iterator

 Need both variable type and name, and then allows retrieval of
columns by name.

 See example on previous slide.

 Positional iterator

 Need only variable type, and then uses FETCH .. INTO construct:
#sql iterator Sailors(Int, String, Int);
Sailors sailors;
#sailors = …
while (true) {

#sql {FETCH :sailors INTO :sid, :name} ;
if (sailors.endFetch()) { break; }
// process the sailor

}

51

SQL call level interfaces

 A call-level interface provides a library of functions

for access to DBMS‟s.

 The DBMS drivers are stored separately; thus the

library used by the programming language is DBMS

independent.

 The programming language functions provided only

an interface to the DBMS drivers.

52

SQL call level interfaces

 Advantages:

 The development environment is not tied to a particular

DBMS, operating sytem, or even a particular

development environment.

 Disadvantages:

 Some low-level optimization may be more difficult or

impossible to achieve.

53

Key example:

 The SQL CLI (X/Open CLI)

 Microsoft ODBC (Open Database Connectivity)

 · The two are closely aligned.

54

Open DataBase Connectivity

 Shorten to ODBC, a standard database access method

 The goal: make it possible to access any data from any application,
regardless of which (DBMS).

 ODBC manages this by inserting a middle layer, called a database
driver , between an application and the DBMS.

 The purpose of this layer is to translate the application's data queries
into commands that the DBMS understands.

 For this to work, both the application and the DBMS must be ODBC-
compliant -- that is, the application must be capable of issuing ODBC
commands and the DBMS must be capable of responding to them.

55

56

Configuring a datasource (Access) under

Windows

 Open the ODBC menu in the control panel.

 Click on the User DSN tab.

 click on Add.

 From the menu in the new window,

 select Microsoft Access Driver (sailors.mdb),

 click on Finish.

 From the menu in the new window,

 type in a data source name (mysailors), and optionally, a description.

 Then click on either Select or Create, depending upon whether you want to link
to an existing database, or create a new blank one.

 In the new window, give the path to the database.

 “OK” away the pile of subwindows; the new database should appear
under the top-level ODBC User DSN tab.

57

// program connects to an ODBC data source called “mysailors“ then executes SQL statement
“SELECT * FROM Sailors';"

#include <windows.h>

#include <sqlext.h>

#include <stdio.h>

int main(void)

{

HENV hEnv = NULL; // Env Handle from SQLAllocEnv()

HDBC hDBC = NULL; // Connection handle

HSTMT hStmt = NULL; // Statement handle

UCHAR szDSN[SQL_MAX_DSN_LENGTH] = “mysailors";// Data Source Name buffer
UCHAR* szUID = NULL; // User ID buffer

UCHAR* szPasswd = NULL; // Password buffer

UCHAR szname[255]; // buffer

SDWORD cbname; // bytes recieved

UCHAR szSqlStr[] = "Select * From Sailors”; // SQL string

RETCODE retcode; // Return code

// Allocate memory for ODBC Environment handle

SQLAllocEnv (&hEnv);

// Allocate memory for the connection handle

SQLAllocConnect (hEnv, &hDBC);

58

// Connect to the data source “mysailors" using userid and password.

retcode = SQLConnect (hDBC, szDSN, SQL_NTS, szUID, SQL_NTS, szPasswd, SQL_NTS);

if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO)

{

// Allocate memory for the statement handle

retcode = SQLAllocStmt (hDBC, &hStmt);

// Prepare the SQL statement by assigning it to the statement handle

retcode = SQLPrepare (hStmt, szSqlStr, sizeof (szSqlStr));

// Execute the SQL statement handle

retcode = SQLExecute (hStmt);

// Project only column 2 which is the name

SQLBindCol (hStmt, 2, SQL_C_CHAR, szname, sizeof(szname), &cbModel);

// Get row of data from the result set defined above in the statement

retcode = SQLFetch (hStmt);

59

while (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO)

{ printf ("\t%s\n", szname); // Print row (sname)

retcode = SQLFetch (hStmt); // Fetch next row from result set

}

// Free the allocated statement handle

SQLFreeStmt (hStmt, SQL_DROP);

// Disconnect from datasource

SQLDisconnect (hDBC);

}

// Free the allocated connection handle

SQLFreeConnect (hDBC);

// Free the allocated ODBC environment handle

SQLFreeEnv (hEnv);

return 0;

}

60

Stored Procedures

 What is a stored procedure:

 Program executed through a single SQL statement

 Executed in the process space of the server

 Advantages:

 Can encapsulate application logic while staying “close”

to the data

 Reuse of application logic by different users

 Avoid tuple-at-a-time return of records through cursors

61

Stored Procedures: Examples

CREATE PROCEDURE ShowNumReservations
SELECT S.sid, S.sname, COUNT(*)
FROM Sailors S, Reserves R
WHERE S.sid = R.sid
GROUP BY S.sid, S.sname

Stored procedures can have parameters:

 Three different modes: IN, OUT, INOUT

CREATE PROCEDURE IncreaseRating(
IN sailor_sid INTEGER, IN increase INTEGER)

UPDATE Sailors

SET rating = rating + increase
WHERE sid = sailor_sid

62

Stored Procedures: Examples (Contd.)

Stored procedure do not have to be written in SQL:

CREATE PROCEDURE TopSailors(

IN num INTEGER)

LANGUAGE JAVA

EXTERNAL NAME “file:///c:/storedProcs/rank.jar”

63

Calling Stored Procedures

EXEC SQL BEGIN DECLARE SECTION

Int sid;

Int rating;

EXEC SQL END DECLARE SECTION

// now increase the rating of this sailor

EXEC CALL IncreaseRating(:sid,:rating);

64

Calling Stored Procedures (Contd.)

JDBC:

CallableStatement cstmt=

con.prepareCall(“{call

ShowSailors});

ResultSet rs =

cstmt.executeQuery();

while (rs.next()) {

…

}

SQLJ:

#sql iterator

ShowSailors(…);

ShowSailors showsailors;

#sql showsailors={CALL

ShowSailors};

while (showsailors.next()) {

…

}

65

SQL/PSM

Most DBMSs allow users to write stored procedures in a simple,
general-purpose language (close to SQL)  SQL/PSM standard
is a representative

Declare a stored procedure:

CREATE PROCEDURE name(p1, p2, …, pn)

local variable declarations

procedure code;

Declare a function:

CREATE FUNCTION name (p1, …, pn) RETURNS
sqlDataType
local variable declarations

function code;

66

Main SQL/PSM Constructs

CREATE FUNCTION rate Sailor
(IN sailorId INTEGER)
RETURNS INTEGER

DECLARE rating INTEGER

DECLARE numRes INTEGER

SET numRes = (SELECT COUNT(*)

FROM Reserves R
WHERE R.sid = sailorId)

IF (numRes > 10) THEN rating =1;

ELSE rating = 0;

END IF;

RETURN rating;

67

Main SQL/PSM Constructs (Contd.)

 Local variables (DECLARE)

 RETURN values for FUNCTION

 Assign variables with SET

 Branches and loops:

 IF (condition) THEN statements;

ELSEIF (condition) statements;

… ELSE statements; END IF;

 LOOP statements; END LOOP

 Queries can be parts of expressions

 Can use cursors naturally without “EXEC SQL”

68

69

INTERNET APPLICATIONS

 Internet Concepts

 Web data formats

 HTML, XML, DTDs

 Introduction to three-tier architectures

 The presentation layer

 HTML forms; HTTP Get and POST, URL encoding; Javascript; Stylesheets. XSLT

 The middle tier

 CGI, application servers, Servlets, JavaServerPages, passing arguments,
maintaining state (cookies)

70

Uniform Resource Identifiers

 Uniform naming schema to identify resources on the
Internet

 A resource can be anything:
 Index.html

 mysong.mp3

 picture.jpg

 Example URIs:
 http://www.cs.wisc.edu/~dbbook/index.html

 mailto:webmaster@bookstore.com

71

Structure of URIs

 http://www.cs.wisc.edu/~dbbook/index.html

 URI has three parts:

 Naming schema (http)

 Name of the host computer (www.cs.wisc.edu)

 Name of the resource (~dbbook/index.html)

 URLs are a subset of URIs

72

http://www.cs.wisc.edu/

Hypertext Transfer Protocol

 What is a communication protocol?

 Set of standards that defines the structure of messages

 Examples: TCP, IP, HTTP

 What happens if you click on

 www.cs.wisc.edu/~dbbook/index.html?

 Client (web browser) sends HTTP request to server

 Server receives request and replies

 Client receives reply; makes new requests

73

HTTP (Contd.)
74

HTTP Protocol Structure

 HTTP Requests

 Request line: GET ~/index.html HTTP/1.1

GET: Http method field (possible values are GET and

POST

 ~/index.html: URI field

 HTTP/1.1: HTTP version field

 Type of client: User-agent: Mozilla/4.0

 What types of files will the client accept:

 Accept: text/html, image/gif, image/jpeg

75

HTTP Protocol Structure (Contd.)

 HTTP Responses

 Status line: HTTP/1.1 200 OK

 HTTP version: HTTP/1.1

 Status code: 200

 Server message: OK

 Common status code/server message combinations:

 200 OK: Request succeeded

 400 Bad Request: Request could not be fulfilled by the server

 404 Not Found: Requested object does not exist on the server

 505 HTTP Version not Supported

 Date when the object was created:

 Last-Modified: Mon, 01 Mar 2002 09:23:24 GMT

 Number of bytes being sent: Content-Length: 1024

 What type is the object being sent: Content-Type: text/html

 Other information such as the server type, server time, etc.

76

Some Remarks About HTTP

 HTTP is stateless

 No “sessions”

 Every message is completely self-contained

 No previous interaction is “remembered” by the protocol

 Tradeoff between ease of implementation and ease of application

development: Other functionality has to be built on top

 Implications for applications:

 Any state information (shopping carts, user login-information) need to be

encoded in every HTTP request and response!

 Popular methods on how to maintain state:

 Cookies

 Dynamically generate unique URL‟s at the server level

77

Web Data Formats

 HTML

 The presentation language for the Internet

 Xml

 A self-describing, hierarchal data model

 DTD

 Standardizing schemas for Xml

 XSLT

78

HTML: An Example

<HTML>

<HEAD></HEAD>

<BODY>

<h1>Barns and Nobble Internet Bookstore</h1>

Our inventory:

<h3>Science</h3>

The Character of Physical Law

Author: Richard Feynman

Published 1980

Hardcover

<h3>Fiction</h3>

Waiting for the Mahatma

Author: R.K. Narayan

Published 1981

The English Teacher

Author: R.K. Narayan

Published 1980

Paperback

</BODY>

</HTML>

79

HTML: A Short Introduction

 HTML is a markup language

 Commands are tags:
 Start tag and end tag

 Examples:
 <HTML> … </HTML>

 …

 Many editors automatically generate HTML directly
from your document (e.g., Microsoft Word has an “Save
as html” facility)

80

HTML: Sample Commands

 <HTML>:

 : unordered list

 : list entry

 <h1>: largest heading

 <h2>: second-level heading, <h3>, <h4>

analogous

 Title: Bold

81

XML: An Example

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<BOOKLIST>

<BOOK genre="Science" format="Hardcover">

<AUTHOR>

<FIRSTNAME>Richard</FIRSTNAME><LASTNAME>Feynman</LASTNAME>

</AUTHOR>

<TITLE>The Character of Physical Law</TITLE>

<PUBLISHED>1980</PUBLISHED>

</BOOK>

<BOOK genre="Fiction">

<AUTHOR>

<FIRSTNAME>R.K.</FIRSTNAME><LASTNAME>Narayan</LASTNAME>

</AUTHOR>

<TITLE>Waiting for the Mahatma</TITLE>

<PUBLISHED>1981</PUBLISHED>

</BOOK>

<BOOK genre="Fiction">

<AUTHOR>

<FIRSTNAME>R.K.</FIRSTNAME><LASTNAME>Narayan</LASTNAME>

</AUTHOR>

<TITLE>The English Teacher</TITLE>

<PUBLISHED>1980</PUBLISHED>

</BOOK>

</BOOKLIST>

82

XML – The Extensible Markup Language

 Language

 A way of communicating information

 Markup

 Notes or meta-data that describe your data or

language

 Extensible

 Limitless ability to define new languages or data sets

83

XML – What‟s The Point?

 You can include your data and a description of what the
data represents

 This is useful for defining your own language or protocol

 Example: Chemical Markup Language
<molecule>

<weight>234.5</weight>

<Spectra>…</Spectra>

<Figures>…</Figures>

</molecule>

 XML design goals:

 XML should be compatible with SGML

 It should be easy to write XML processors

 The design should be formal and precise

84

XML – Structure

 XML: Confluence of SGML and HTML

 Xml looks like HTML

 Xml is a hierarchy of user-defined tags called

elements with attributes and data

 Data is described by elements, elements are

described by attributes

<BOOK genre="Science" format="Hardcover">…</BOOK>

Closing Tag
Open tag

Element name dataAttribute valueattribute

85

XML – Elements

 Xml is case and space sensitive

 Element opening and closing tag names must be

identical

 Opening tags: “<” + element name + “>”

 Closing tags: “</” + element name + “>”

 Empty Elements have no data and no closing tag:

 They begin with a “<“ and end with a “/>”

 <BOOK/>

86

XML – Attributes

 Attributes provide additional information for element
tags.

 There can be zero or more attributes in every element;
each one has the form:

attribute_name=‘attribute_value’
 There is no space between the name and the “=„”

 Attribute values must be surrounded by “ or „ characters

 Multiple attributes are separated by white space (one
or more spaces or tabs).

87

XML – Data and Comments

 Xml data is any information between an opening

and closing tag

 Xml data must not contain the „<„ or „>‟ characters

 Comments:

<!- comment ->

88

XML – Nesting & Hierarchy

 Xml tags can be nested in a tree hierarchy

 Xml documents can have only one root tag

 Between an opening and closing tag you can insert:

 Data

 More Elements

 A combination of data and elements

<root>

<tag1>

Some Text

<tag2>More</tag2>

</tag1>

</root>

89

Xml – Storage

 Storage is done just like an n-ary tree (DOM)

<root>

<tag1>

Some Text

<tag2>More</tag2>

</tag1>

</root>

90

DTD – Document Type Definition

 A DTD is a schema for Xml data

 Xml protocols and languages can be standardized

with DTD files

 A DTD says what elements and attributes are

required or optional

 Defines the formal structure of the language

91

DTD – An Example

<?xml version='1.0'?>

<!ELEMENT Basket (Cherry+, (Apple | Orange)*) >

<!ELEMENT Cherry EMPTY>

<!ATTLIST Cherry flavor CDATA #REQUIRED>

<!ELEMENT Apple EMPTY>

<!ATTLIST Apple color CDATA #REQUIRED>

<!ELEMENT Orange EMPTY>

<!ATTLIST Orange location „Florida‟>

<Basket>

<Cherry flavor=„good‟/>

<Apple color=„red‟/>

<Apple color=„green‟/>

</Basket>

<Basket>

<Apple/>

<Cherry flavor=„good‟/>

<Orange/>

</Basket>

92

DTD - !ELEMENT

 <!ELEMENT Basket (Cherry+, (Apple | Orange)*) >

 !ELEMENT declares an element name, and what children elements it
should have

 Content types:

 Other elements

 #PCDATA (parsed character data)

 EMPTY (no content)

 ANY (no checking inside this structure)

 A regular expression

Name Children

93

DTD - !ELEMENT (Contd.)

 A regular expression has the following structure:

 exp1, exp2, exp3, …, expk: A list of regular expressions

 exp*: An optional expression with zero or more

occurrences

 exp+: An optional expression with one or more

occurrences

 exp1 | exp2 | …| expk: A disjunction of expressions

94

DTD - !ATTLIST

<!ATTLIST Cherry flavor CDATA #REQUIRED>

<!ATTLIST Orange location CDATA #REQUIRED

color „orange‟>

 !ATTLIST defines a list of attributes for an Element

 Attributes can be of different types, can be required or
not required, and they can have default values.

Element TypeAttribute Flag

95

DTD – Well-Formed and Valid

<?xml version='1.0'?>

<!ELEMENT Basket (Cherry+)>

<!ELEMENT Cherry EMPTY>

<!ATTLIST Cherry flavor CDATA #REQUIRED>

Not Well – Formed Well – Formed but Invalid

Well – Formed and Valid

<basket>

<Cherry flavor=good>

</Basket>

<Job>

<Location>Home</Location>

</Job>

<Basket>

<Cherry flavor=„good‟/>

</Basket>

96

XML and DTDs

 More and more standardized DTDs will be developed

 MathML

 Chemical Markup Language

 Allows light-weight exchange of data with the same
semantics

 Sophisticated query languages for XML are available:

 Xquery

 XPath

97

Components of Data-Intensive Systems

 Three separate types of functionality:

 Data management

 Application logic

 Presentation

 The system architecture determines whether these

three components reside on a single system (“tier) or

are distributed across several tiers

98

Single-Tier Architectures

 All functionality combined into a single tier, usually on a
mainframe
 User access through dumb Terminals

 Advantages:
 Easy maintenance and administration

 Disadvantages:
 Today, users expect graphical user interfaces.

 Centralized computation of all of them is too much for a
central system

99

Client-Server Architectures

 Work division: Thin client

 Client implements only the graphical user interface

 Server implements business logic and data

management

 Work division: Thick client

 Client implements both the graphical user interface and

the business logic

 Server implements data management

100

Client-Server Architectures (Contd.)

 Disadvantages of thick clients

 No central place to update the business logic

 Security issues: Server needs to trust clients

 Access control and authentication needs to be managed at the
server

 Clients need to leave server database in consistent state

 One possibility: Encapsulate all database access into stored
procedures

 Does not scale to more than several 100s of clients

 Large data transfer between server and client

 More than one server creates a problem: x clients, y servers: x*y
connections

101

The Three-Tier Architecture
102

The Three Layers

 Presentation tier

 Primary interface to the user

 Needs to adapt to different display devices (PC, PDA, cell phone,
voice access?)

 Middle tier

 Implements business logic (implements complex actions, maintains
state between different steps of a workflow)

 Accesses different data management systems

 Data management tier

 One or more standard database management systems

103

Example 1: Airline reservations

 Build a system for making airline reservations

 What is done in the different tiers?

 Database System

 Airline info, available seats, customer info, etc.

 Application Server

 Logic to make reservations, cancel reservations, add new airlines, etc.

 Client Program

 Log in different users, display forms and human readable output

104

Example 2: Course Enrollment

 Build a system using which students can enroll in courses

 Database System

 Student info, course info, instructor info, course availability, pre-
requisites, etc.

 Application Server

 Logic to add a course, drop a course, create a new course, etc.

 Client Program

 Log in different users (students, staff, faculty), display forms and
human-readable output

105

Technologies
106

Advantages of the Three-Tier Architecture

 Heterogeneous systems

 Tiers can be independently maintained, modified, and replaced

 Thin clients

 Only presentation layer at clients (web browsers)

 Integrated data access

 Several database systems can be handled transparently at the middle tier

 Central management of connections

 Scalability

 Replication at middle tier permits scalability of business logic

 Software development

 Code for business logic is centralized

 Interaction between tiers through well-defined APIs: Can reuse standard components at each tier

107

Overview of the Presentation Tier

 Recall: Functionality of the presentation tier

 Primary interface to the user

 Needs to adapt to different display devices (PC, PDA, cell
phone, voice access?)

 Simple functionality, such as field validity checking

 We will cover:

 HTML Forms: How to pass data to the middle tier

 JavaScript: Simple functionality at the presentation tier

 Style sheets: Separating data from formatting

108

HTML Forms

 Common way to communicate data from client to middle tier

 General format of a form:

<FORM ACTION=“page.jsp” METHOD=“GET” NAME=“LoginForm”>

…

</FORM>

 Components of an HTML FORM tag:

 ACTION: Specifies URI that handles the content

 METHOD: Specifies HTTP GET or POST method

 NAME: Name of the form; can be used in client-side scripts to refer to
the form

109

Inside HTML Forms

 INPUT tag

 Attributes:

 TYPE: text (text input field), password (text input field where input is, reset (resets all

input fields)

 NAME: symbolic name, used to identify field value at the middle tier

 VALUE: default value

 Example: <INPUT TYPE=“text” Name=“title”>

 Example form:

<form method="POST" action="TableOfContents.jsp">

<input type="text" name="userid">

<input type="password" name="password">

<input type="submit" value="Login“ name="submit">

<input type=“reset” value=“Clear”>

</form>

110

Passing Arguments

 Two methods: GET and POST

 GET

 Form contents go into the submitted URI

 Structure:

 action?name1=value1&name2=value2&name3=value3

 Action: name of the URI specified in the form

 (name,value)-pairs come from INPUT fields in the form; empty

fields have empty values (“name=“)

 Example from previous password form:

 TableOfContents.jsp?userid=john&password=johnpw

 Note that the page named action needs to be a program, script, or

page that will process the user input

111

HTTP GET: Encoding Form Fields

 Form fields can contain general ASCII characters that
cannot appear in an URI

 A special encoding convention converts such field values
into “URI-compatible” characters:

 Convert all “special” characters to %xyz, were xyz is the
ASCII code of the character. Special characters include &,
=, +, %, etc.

 Convert all spaces to the “+” character

 Glue (name,value)-pairs from the form INPUT tags together
with “&” to form the URI

112

HTML Forms: A Complete Example

<form method="POST" action="TableOfContents.jsp">

<table align = "center" border="0" width="300">

<tr>

<td>Userid</td>

<td><input type="text" name="userid" size="20"></td>

</tr>

<tr>

<td>Password</td>

<td><input type="password" name="password" size="20"></td>

</tr>

<tr>

<td align = "center"><input type="submit" value="Login“

name="submit"></td>

</tr>

</table>

</form>

113

JavaScript

 Goal: Add functionality to the presentation tier.

 Sample applications:

 Detect browser type and load browser-specific page

 Form validation: Validate form input fields

 Browser control: Open new windows, close existing windows (example: pop-up ads)

 Usually embedded directly inside the HTML with the <SCRIPT>… </SCRIPT> tag.

 <SCRIPT> tag has several attributes:

 LANGUAGE: specifies language of the script (such as javascript)

 SRC: external file with script code

 Example:

 <SCRIPT LANGUAGE=“JavaScript” SRC=“validate.js>

 </SCRIPT>

114

JavaScript (Contd.)

 If <SCRIPT> tag does not have a SRC attribute, then the JavaScript
is directly in the HTML file.

 Example:

<SCRIPT LANGUAGE=“JavaScript”>

<!-- alert(“Welcome to our bookstore”)

//-->

</SCRIPT>

 Two different commenting styles

 <!-- comment for HTML, since the following JavaScript code should be
ignored by the HTML processor

 // comment for JavaScript in order to end the HTML comment

115

JavaScript (Contd.)

 JavaScript is a complete scripting language

 Variables

 Assignments (=, +=, …)

 Comparison operators (<,>,…), boolean operators (&&, ||,
!)

 Statements

 if (condition) {statements;} else {statements;}

 for loops, do-while loops, and while-loops

 Functions with return values

 Create functions using the function keyword

 f(arg1, …, argk) {statements;}

116

JavaScript: A Complete Example

HTML Form:

<form method="POST“

action="TableOfContents.jsp">

<input type="text"

name="userid">

<input type="password"

name="password">

<input type="submit"

value="Login“

name="submit">

<input type=“reset”

value=“Clear”>

</form>

Associated JavaScript:

<script language="javascript">

function testLoginEmpty()

{

loginForm = document.LoginForm

if ((loginForm.userid.value == "") ||

(loginForm.password.value == ""))

{

alert('Please enter values for userid and

password.');

return false;

}

else return true;

}

</script>

117

Stylesheets

 Idea: Separate display from contents, and adapt display to different presentation

formats

 Two aspects:

 Document transformations to decide what parts of the document to display in what order

 Document rending to decide how each part of the document is displayed

 Why use stylesheets?

 Reuse of the same document for different displays

 Tailor display to user‟s preferences

 Reuse of the same document in different contexts

 Two stylesheet languages

 Cascading style sheets (CSS): For HTML documents

 Extensible stylesheet language (XSL): For XML documents

118

CSS: Cascading Style Sheets

 Defines how to display HTML documents

 Many HTML documents can refer to the same CSS

 Can change format of a website by changing a single style sheet

 Example:

<LINK REL=“style sheet” TYPE=“text/css” HREF=“books.css”/>

 Each line consists of three parts:

 selector {property: value}

 Selector: Tag whose format is defined

 Property: Tag‟s attribute whose value is set

 Value: value of the attribute

119

CSS: Cascading Style Sheets

Example style sheet:

body {background-color: yellow}

h1 {font-size: 36pt}

h3 {color: blue}

p {margin-left: 50px; color: red}

The first line has the same effect as:

<body background-color=“yellow>

120

XSL

 Language for expressing style sheets

 Three components

 XSLT: XSL Transformation language

 Can transform one document to another

 XPath: XML Path Language

 Selects parts of an XML document

 XSL Formatting Objects

 Formats the output of an XSL transformation

121

Overview of the Middle Tier

 Recall: Functionality of the middle tier

 Encodes business logic

 Connects to database system(s)

 Accepts form input from the presentation tier

 Generates output for the presentation tier

 We will cover

 CGI: Protocol for passing arguments to programs running at the middle
tier

 Application servers: Runtime environment at the middle tier

 Servlets: Java programs at the middle tier

 JavaServerPages: Java scripts at the middle tier

 Maintaining state: How to maintain state at the middle tier. Main focus:
Cookies.

122

CGI: Common Gateway Interface

 Goal: Transmit arguments from HTML forms to application
programs running at the middle tier

 Details of the actual CGI protocol unimportant à libraries
implement high-level interfaces

 Disadvantages:

 The application program is invoked in a new process at every
invocation (remedy: FastCGI)

 No resource sharing between application programs (e.g.,
database connections)

 Remedy: Application servers

123

CGI: Example

Perl code:

use CGI;

$dataIn=new CGI;

$dataIn->header();

$authorName=$dataIn->param(„authorName‟);

print(“<HTML><TITLE>Argument passing

test</TITLE>”);

print(“The author name is “ + $authorName);

print(“</HTML>”);

exit;

HTML form:

<form action=“findbooks.cgi”

method=POST>

Type an author name:

<input type=“text” name=“authorName”>

<input type=“submit” value=“Send it”>

<input type=“reset” value=“Clear form”>

</form>

124

Application Servers

 Idea: Avoid the overhead of CGI

Main pool of threads of processes

Manage connections

 Enable access to heterogeneous data sources

Other functionality such as APIs for session management

125

Application Server: Process Structure
126

Servlets

 Java Servlets: Java code that runs on the middle tier

 Platform independent

 Complete Java API available, including JDBC

 Example:
import java.io.*;

import java.servlet.*;

import java.servlet.http.*;

public class ServetTemplate extends HttpServlet {

public void doGet(HTTPServletRequest request,

HTTPServletResponse response)

throws SerletExpection, IOException {

PrintWriter out=response.getWriter();

out.println(“Hello World”);

}

}

127

Servlets (Contd.)

 Life of a servlet?

Webserver forwards request to servlet container

 Container creates servlet instance (calls init() method;

deallocation time: calls destroy() method)

 Container calls service() method

 service() calls doGet() for HTTP GET or doPost() for HTTP

POST

 Usually, don‟t override service(), but override doGet() and

doPost()

128

Servlets: A Complete Example

public class ReadUserName extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpSevletResponse response)

throws ServletException, IOException {

reponse.setContentType(“text/html”);

PrintWriter out=response.getWriter();

out.println(“<HTML><BODY>\n \n” + “” + request.getParameter(“userid”) +

“\n” + “” + request.getParameter(“password”) + “\n” +

“\n<BODY></HTML>”);

}

public void doPost(HttpServletRequest request,

HttpSevletResponse response)

throws ServletException, IOException {

doGet(request,response);

}

}

129

Java Server Pages

 Servlets

Generate HTML by writing it to the “PrintWriter” object

 Code first, webpage second

 JavaServerPages

Written in HTML, Servlet-like code embedded in the

HTML

Webpage first, code second

 They are usually compiled into a Servlet

130

JavaServerPages: Example

<html>

<head><title>Welcome to B&N</title></head>

<body>

<h1>Welcome back!</h1>

<% String name=“NewUser”;

if (request.getParameter(“username”) != null) {

name=request.getParameter(“username”);

}

%>

You are logged on as user <%=name%>

<p>

</body>

</html>

131

Maintaining State

 HTTP is stateless.

 Advantages

 Easy to use: don‟t need anything

 Great for static-information applications

 Requires no extra memory space

 Disadvantages

 No record of previous requests means

 No shopping baskets

 No user logins

 No custom or dynamic content

 Security is more difficult to implement

132

Application State

 Server-side state

 Information is stored in a database, or in the application
layer‟s local memory

 Client-side state

 Information is stored on the client‟s computer in the form of a
cookie

 Hidden state

 Information is hidden within dynamically created web pages

133

Server-Side State

 Many types of Server side state:

 Store information in a database

 Data will be safe in the database

 BUT: requires a database access to query or update the
information

 Use application layer‟s local memory

 Can map the user‟s IP address to some state

 BUT: this information is volatile and takes up lots of server main
memory

5 million IPs = 20 MB

134

Server-Side State

 Should use Server-side state maintenance for

information that needs to persist

Old customer orders

 “Click trails” of a user‟s movement through a site

 Permanent choices a user makes

135

Client-side State: Cookies

 Storing text on the client which will be passed to the

application with every HTTP request.

 Can be disabled by the client.

 Are wrongfully perceived as "dangerous", and

therefore will scare away potential site visitors if asked

to enable cookies

 Are a collection of (Name, Value) pairs

136

Client State: Cookies

 Advantages

 Easy to use in Java Servlets / JSP

 Provide a simple way to persist non-essential data on the client even
when the browser has closed

 Disadvantages

 Limit of 4 kilobytes of information

 Users can (and often will) disable them

 Should use cookies to store interactive state

 The current user‟s login information

 The current shopping basket

 Any non-permanent choices the user has made

137

Creating A Cookie

Cookie myCookie = new Cookie(“username", “jeffd");

response.addCookie(userCookie);

 You can create a cookie at any time

138

Accessing A Cookie

Cookie[] cookies = request.getCookies();

String theUser;

for(int i=0; i<cookies.length; i++)

{

Cookie cookie = cookies[i];

if(cookie.getName().equals(“username”))

theUser = cookie.getValue();

}

// at this point theUser == “username”

 Cookies need to be accessed BEFORE you set your response header:

response.setContentType("text/html");

PrintWriter out = response.getWriter();

139

Cookie Features

 Cookies can have

 A duration (expire right away or persist even after the

browser has closed)

 Filters for which domains/directory paths the cookie is

sent to

140

Hidden State

 Often users will disable cookies

 You can “hide” data in two places:

 Hidden fields within a form

 Using the path information

 Requires no “storage” of information because the

state information is passed inside of each web

page

141

Hidden State: Hidden Fields

 Declare hidden fields within a form:

<input type=„hidden‟ name=„user‟ value=„username‟/>

 Users will not see this information (unless they view

the HTML source)

 If used prolifically, it‟s a killer for performance since

EVERY page must be contained within a form.

142

Hidden State: Path Information

 Path information is stored in the URL request:

http://server.com/index.htm?user=jeffd

 Can separate „fields‟ with an & character:

index.htm?user=jeffd&preference=pepsi

 There are mechanisms to parse this field in Java. Check

out the

javax.servlet.http.HttpUtils parserQueryString() method.

143

Multiple state methods

 Typically all methods of state maintenance are
used:

 User logs in and this information is stored in a cookie

 User issues a query which is stored in the path
information

 User places an item in a shopping basket cookie

 User purchases items and credit-card information is
stored/retrieved from a database

 User leaves a click-stream which is kept in a log on the
web server (which can later be analyzed)

144

Questions
145

1. Define view. Explain the problems related to

updating the view.

2. What is trigger? Explain with an example.

3. What are the various methods of accessing the

databases? Explain.

4. Differentiate between Embedded SQL and SQLJ.

5. What are the different statement objects? Explain.

6. Explain three-tier application architecture.

