
MODULE – 2

Mr. C. R. Belavi, Dept. of CSE, HIT, NDS

RELATIONAL MODEL

RELATIONAL ALGEBRA

MAPPING CONCEPTUAL DESIGN INTO A LOGICAL

DESIGN

SQL

Relational Model Concepts

 The relational Model of Data is based on the
concept of a Relation.

 A Relation is a mathematical concept based on the
ideas of sets.

 The strength of the relational approach to data
management comes from the formal foundation
provided by the theory of relations.

2

Informal Definitions

 RELATION: A table of values
 A relation may be thought of as a set of rows.

 A relation may alternately be though of as a set of columns.

 Each row represents a fact that corresponds to a real-world entity or
relationship.

 Each row has a value of an item or set of items that uniquely identifies
that row in the table.

 Sometimes row-ids or sequential numbers are assigned to identify the
rows in the table.

 Each column typically is called by its column name or column header or
attribute name.

3

Domains, Attributes, Tuples and Relations

 Domain

 A domain D is a set of atomic values.

 Atomic means that each value in the domain is indivisible as far
as the relational model is concerned.

 Relation Schema

 Relation schema R, denoted by R (A1, A2,An) is made up of a
relation name R and a list of attributes A1, A2, …, An

 Each attribute Ai is a name of a role played by some domain D in
the relation schema R.

 D is called the domain of Ai and is denoted by dom(Ai).

 Degree of the relation

 The degree or arity of a relation is the number of attributes n of
its relation schema.

4

Contd…

 Relation

 A relation or relation state r of the relation schema R (A1,
A2,An), also denoted by r(R), is a set of n – tuples r = {t1,
t2, …, tm}.

 Each n – tuple t is an ordered list of n values t = <v1, v2,
…,vn> , where each vi, 1≤ i ≤ n, is an element of dom(Ai) or
is a special NULL value.

 The terms relation intension for the relation schema R
and relation extension for a relation state r(R) are
commonly used.

5

Mathematical Definition

 A relation schema or relation state r(R) is a mathematical relation of degree n on

the domains dom(A1), dom(A2),…, dom(An) which is a subset of the Cartesian

product of the domains that defines R:

r(R) ⊆ (dom(A1) X dom(A2) X … X dom(An))

 The Cartesian product specifies all possible combinations of values from the

underlying domains.

 The total number of values, or cardinality in a domain D by |D|, the total number

of tuples in the Cartesian product is

|dom(A1)| X |dom(A2)| X … X |dom(An)|

 Current relation state

 A relation state at a given time is called the current relation state.

6

Example…
7

Characteristics of Relations

 Ordering of tuples in a relation

 Ordering of values within a tuple and an

Alternative definition of a relation

 Values and NULLs in tuples

 Interpretation (Meaning) of a relation

8

Ordering of Tuples in a Relation

 A relation is a set of tuples.

The tuples are not considered to be ordered, even

though they appear to be in the tabular form.

 Relation is not sensitive to the ordering of tuples.

9

Ordering of values within a tuple and an

Alternative definition of a relation

 From the definition of the relation, an n – tuple is a
ordered list of values, so the ordering of values in a
tuple is important.

 Alternative Definition

 A relation schema R = {A1, A2, …, An} is a set of
attributes, and a relation state r(R) is a finite set of
mappings r = {t1, t2, …, tm}, where each tuple ti is a
mapping from R to D, and D is the union of the attribute
domains; that is, D = dom(A1) U dom(A2) U … U
dom(An).

10

Values and NULLs in the Tuples

 All values are considered atomic (indivisible).

 This model sometimes called as the flat relational

model.

 A special NULL value is used to represent values

that are unknown or inapplicable to certain tuples.

11

Interpretation (Meaning) of a Relation

 The relation schema can be interpreted as a

declaration or a type of assertion.

 For example, the schema of the student entity has a

Name, SSN, HomePhone, Address, Officephone,

Age and GPA. Each tuple in the relation can then

be interpreted as a fact or a particular instance of

the relation.

12

Example…
13

Relational Model Notations

 Following notations are used in the Relational

Model:

 A relation schema R of degree n is denoted by R(A1,

A2, …, An).

 The letters Q, R, S denote relation names.

 The letters q, r, s denote relation states.

 The letters t, u, v denote tuples.

14

Relational Model Constraints and Relational

Database Schemas

 Constraints on databases can generally be divided into
three main categories:
 Inherent model based or Implicit constraint
 Constraints that are inherent to the data model

 Schema based or Explicit constraint
 Constraints that are directly expressed in schemas of the data

model

 Application based or Semantic constraint or Business rules
 Constraints that can not be directly expressed in schemas of the

data model and hence must be expressed and enforced by the
application programs

15

Constraints in the Relational Model

 Domain Constraints

 Key Constraints and Constraint on NULL values

 Entity integrity constraints

 Referential integrity constraints

16

Domain Constraints

 These constraints specify that within each tuple, the

value of each attribute A must be an atomic value

from the domain dom(A).

 The data types associated with domains typically

include standard numeric data types for integers

and real numbers.

17

Key Constraints and Constraints on

NULL values
 Super Key

 It is a subset of attributes SK where any two distinct tuples t1 and t2 in a relation
state r of R, we have the constraint that t1[SK] ≠ t2[SK]

 Key

 A key K of a relation schema R is a super key of R with the additional property that
removing any attribute A from K leaves set of attributes K‘ that is not a super key of
R any more.

 Candidate Key

 A relation schema may have more than one key. In this case, each of the keys is
called a candidate key.

 Primary Key

 This is the candidate key whose values are used to identify tuples in the relation.

 The primary key of the relation schema are underlined.

18

Relational Databases and Relational Database

Schemas

 Relational Database Schema

 A relational database schema S is a set of relation schemas S =
{R1, R2, …, Rm} and a set of integrity constraints IC.

 Relational Database State

 A relational database state DB of S is a set of relation states DB
= {r1, r2, …, rm} such that each ri is a state of Ri and such that the
ri relation states satisfy the integrity constraints specified in IC.

 A database state that does not obey all the integrity
constraints is called an invalid state, and a state that
satisfies all the constraints in IC is called a valid state.

19

Entity Integrity Constraints

 The entity integrity constraint states that no primary key can
be NULL.

 This is because the primary key value is used to identify
individual tuples in a relation.

 Having NULL values for the primary key implies that we can
not identify some tuples.

 For example, if two or more tuples had NULL for their
primary keys, we might not be able to distinguish them if we
tried to reference them from other relations.

20

Referential Integrity Constraints

 The referential integrity constraint is specified between two

relations and is used to maintain the consistency among tuples

in the two relations.

 Informally, the referential integrity constraint states that a

tuple in one relation that refers to another relation must refer

to an existing tuple in that relation.

 For example, the DNO of EMPLOYEE gives the department

number for which each employee works; hence, its value in

every EMPLOYEE tuple must match the DNUMBER value of

some tuple in the DEPARTMENT relation.

21

Foreign Key

 The condition for a foreign key specify a referential integrity constraint
between the two relation schemas R1 and R2.

 A set of attributes FK in the relation schema R1 is a foreign key of R1 that
references relation R2 if it satisfies the following rules:

 The attributes in FK have the same domain(s) as the primary key attributes PK of
R2; the attributes FK are said to reference or refer to the relation R2.

 The value of FK in a tuple t1 of the current state r1(R1) either occurs as a value of
PK for some tuple t2 in the current state r2(R2) or is NULL. In the former case, we
have t1[FK] = t2[PK], and we say that the tuple t1 references or refers to the
tuple t2.

 In this definition, R1 is called the referencing relation and R2 is the
referenced relation.`

22

Update Operations and Dealing with Constraint

Violations

 The operations of the relational model can be

categorized into retrievals and update.

 There are three basic update operations:

 Insert

 Delete

Modify

23

The Insert Operation

 The insert operation provides a list of attribute

values for a new tuple t that is to be inserted into a

relation R.

 Insert can violate any of the four types of

constraints.

24

Example…

1. Insert <‗Cecilia‘, ‗F‘, ‗Kolonsky‘, null, ‗1960-04-05‘, ‗6357 Windy
Lane, Katy, TX‘, F, 28000, null, 4> into EMPLOYEE.

2. Insert <‗Alicia‘, ‗J‘, ‗Zelaya‘, ‗999887777‘, ‗1960-04-05‘, ‗6357
Windy Lane, Katy, TX‘, F, 28000, ‗987654321‘, 4> into
EMPLOYEE.

3. Insert <‗Cecilia‘, ‗F‘, ‗Kolonsky‘, ‗677678989‘, ‗1960-04-05‘,
‗6357 Windswept, Katy, TX‘, F, 28000, ‗987654321‘, 7> into
EMPLOYEE.

4. Insert <‗Cecilia‘, ‗F‘, ‗Kolonsky‘, ‗677678989‘, ‗1960-04-05‘,
‗6357 Windy Lane, Katy, TX‘, F, 28000, null, 4> into EMPLOYEE.

25

The Delete Operation

 The delete operation is used to delete the tuples from the
relation.

 Eg:

 Delete the WORKS_ON tuple with ESSN = ‗999887777‘
and PNO = 10.

 Delete the EMPLOYEE tuple with SSN = ‗999887777‘.

 Delete the EMPLOYEE tuple with SSN = ‗333445555‘.

26

The Update Operation

 The update(or Modify) operation is used to change the values of one or
more attributes in a tuple(or tuples) of some relation R.

 Eg:

 Update the SALARY of the EMPLOYEE tuple with SSN = ‗999887777‘ to
28000.

 Update the DNO of the EMPLOYEE tuple with SSN = ‗999887777‘ to 1.

 Update the DNO of the EMPLOYEE tuple with SSN = ‗999887777‘ to 7.

 Update the SSN of the EMPLOYEE tuple with SSN = ‗999887777‘ to
‗987654321‘.

27

The Transaction Concept

 A database application program running against a relational database
typically runs a series of transactions.

 A transaction involves reading from the database as well as doing
insertions, deletions and updates to existing values in the database.

 These transactions must leave the database in a consistent state.

 A single transaction may involve any number of retrieval operations that
reads from the database and any number of update operations.

 A large number of commercial applications running against relational
databases in the Online Transaction Processing(OLTP) systems are
executing transactions at rates several hundreds per second.

28

Relational Algebra Overview

 Relational algebra is the basic set of operations for

the relational model

 These operations enable a user to specify basic

retrieval requests (or queries)

 The result of an operation is a new relation, which

may have been formed from one or more input

relations

 This property makes the algebra ―closed‖ (all objects in

relational algebra are relations)

29

Relational Algebra Overview (continued)

 The algebra operations thus produce new relations

 These can be further manipulated using operations of

the same algebra

 A sequence of relational algebra operations forms

a relational algebra expression

 The result of a relational algebra expression is also a

relation that represents the result of a database query

(or retrieval request)

30

Relational Algebra Overview

 Relational Algebra consists of several groups of operations

 Unary Relational Operations

 SELECT (symbol:  (sigma))

 PROJECT (symbol:  (pi))

 RENAME (symbol:  (rho))

 Relational Algebra Operations From Set Theory

 UNION (), INTERSECTION (), DIFFERENCE (or MINUS, –)

 CARTESIAN PRODUCT (x)

 Binary Relational Operations

 JOIN (several variations of JOIN exist)

 DIVISION

 Additional Relational Operations

 OUTER JOINS, OUTER UNION

 AGGREGATE FUNCTIONS (These compute summary of information: for
example, SUM, COUNT, AVG, MIN, MAX)

31

Database State for COMPANY

 All examples discussed below refer to the COMPANY database shown

here.

32

Unary Relational Operations: SELECT

 The SELECT operation (denoted by  (sigma)) is used to select a subset of

the tuples from a relation based on a selection condition.

 The selection condition acts as a filter

 Keeps only those tuples that satisfy the qualifying condition

 Tuples satisfying the condition are selected whereas the other
tuples are discarded (filtered out)

 Examples:

 Select the EMPLOYEE tuples whose department number is 4:

 DNO = 4 (EMPLOYEE)

 Select the employee tuples whose salary is greater than $30,000:

 SALARY > 30,000 (EMPLOYEE)

33

Unary Relational Operations: SELECT

 In general, the select operation is denoted by 
<selection condition>(R) where

 the symbol  (sigma) is used to denote the select operator

 the selection condition is a Boolean (conditional) expression

specified on the attributes of relation R

 tuples that make the condition true are selected

 appear in the result of the operation

 tuples that make the condition false are filtered out

 discarded from the result of the operation

34

Unary Relational Operations: SELECT (contd.)

 SELECT Operation Properties
 The SELECT operation  <selection condition>(R) produces a relation S that has the

same schema (same attributes) as R

 SELECT  is commutative:

  <condition1>( < condition2> (R)) =  <condition2> ( < condition1> (R))

 Because of commutativity property, a cascade (sequence) of SELECT
operations may be applied in any order:

 <cond1>(<cond2> (<cond3> (R)) = <cond2> (<cond3> (<cond1> (R)))

 A cascade of SELECT operations may be replaced by a single selection with
a conjunction of all the conditions:

 <cond1>(< cond2> (<cond3>(R)) =  <cond1> AND < cond2> AND < cond3>(R)))

 The number of tuples in the result of a SELECT is less than (or equal to)
the number of tuples in the input relation R

35

The following query results refer to this database

state
36

Unary Relational Operations: PROJECT

 PROJECT Operation is denoted by  (pi)

 This operation keeps certain columns (attributes)
from a relation and discards the other columns.

 PROJECT creates a vertical partitioning

 The list of specified columns (attributes) is kept in each tuple

 The other attributes in each tuple are discarded

 Example: To list each employee‘s first and last name
and salary, the following is used:

LNAME, FNAME,SALARY(EMPLOYEE)

37

Unary Relational Operations: PROJECT (cont.)

 The general form of the project operation is:

<attribute list>(R)
  (pi) is the symbol used to represent the project

operation

 <attribute list> is the desired list of attributes from
relation R.

 The project operation removes any duplicate tuples
 This is because the result of the project operation must

be a set of tuples
Mathematical sets do not allow duplicate elements.

38

Unary Relational Operations: PROJECT (contd.)

 PROJECT Operation Properties

 The number of tuples in the result of projection <list>(R)

is always less or equal to the number of tuples in R

 If the list of attributes includes a key of R, then the number

of tuples in the result of PROJECT is equal to the number of

tuples in R

 PROJECT is not commutative

  <list1> ( <list2> (R)) =  <list1> (R) as long as <list2>

contains the attributes in <list1>

39

Examples of applying SELECT and PROJECT

operations
40

Relational Algebra Expressions

 We may want to apply several relational algebra

operations one after the other

 Either we can write the operations as a single

relational algebra expression by nesting the

operations, or

We can apply one operation at a time and create

intermediate result relations.

 In the latter case, we must give names to the

relations that hold the intermediate results.

41

Single expression versus sequence of relational

operations (Example)

 To retrieve the first name, last name, and salary of all

employees who work in department number 5, we must apply

a select and a project operation

 We can write a single relational algebra expression as follows:

 FNAME, LNAME, SALARY( DNO=5(EMPLOYEE))

 OR We can explicitly show the sequence of operations, giving a

name to each intermediate relation:

 DEP5_EMPS   DNO=5(EMPLOYEE)

 RESULT   FNAME, LNAME, SALARY (DEP5_EMPS)

42

Unary Relational Operations: RENAME

 The RENAME operator is denoted by  (rho)

 In some cases, we may want to rename the attributes

of a relation or the relation name or both

Useful when a query requires multiple operations

Necessary in some cases (see JOIN operation later)

43

Unary Relational Operations: RENAME (contd.)

 The general RENAME operation  can be expressed

by any of the following forms:

 S (B1, B2, …, Bn)(R) changes both:

 the relation name to S, and

 the column (attribute) names to B1, B1, …..Bn

 S(R) changes:

 the relation name only to S

 (B1, B2, …, Bn)(R) changes:

 the column (attribute) names only to B1, B1, …..Bn

44

Unary Relational Operations: RENAME (contd.)

 For convenience, we also use a shorthand for
renaming attributes in an intermediate relation:

 If we write:
• RESULT   FNAME, LNAME, SALARY (DEP5_EMPS)
• RESULT will have the same attribute names as

DEP5_EMPS (same attributes as EMPLOYEE)

• If we write:
• RESULT (F, M, L, S, B, A, SX, SAL, SU, DNO) 

FNAME, LNAME, SALARY (DEP5_EMPS)
• The 10 attributes of DEP5_EMPS are renamed to F, M,

L, S, B, A, SX, SAL, SU, DNO, respectively

45

Example of applying multiple operations and

RENAME
46

Relational Algebra Operations from

Set Theory: UNION

 UNION Operation

 Binary operation, denoted by 

 The result of R  S, is a relation that includes all tuples
that are either in R or in S or in both R and S

 Duplicate tuples are eliminated

 The two operand relations R and S must be ―type
compatible‖ (or UNION compatible)

 R and S must have same number of attributes

 Each pair of corresponding attributes must be type
compatible (have same or compatible domains)

47

Relational Algebra Operations from

Set Theory: UNION

 Example:

 To retrieve the social security numbers of all employees who either
work in department 5 (RESULT1 below) or directly supervise an
employee who works in department 5 (RESULT2 below)

 We can use the UNION operation as follows:

DEP5_EMPS  DNO=5 (EMPLOYEE)

RESULT1   SSN(DEP5_EMPS)

RESULT2(SSN)  SUPERSSN(DEP5_EMPS)

RESULT  RESULT1  RESULT2

 The union operation produces the tuples that are in either RESULT1
or RESULT2 or both

48

Example of the result of a UNION operation

 UNION Example

49

Relational Algebra Operations from

Set Theory

 Type Compatibility of operands is required for the binary set

operation UNION , (also for INTERSECTION , and SET

DIFFERENCE –, see next slides)

 R1(A1, A2, ..., An) and R2(B1, B2, ..., Bn) are type compatible

if:

 they have the same number of attributes, and

 the domains of corresponding attributes are type compatible (i.e.

dom(Ai)=dom(Bi) for i=1, 2, ..., n).

 The resulting relation for R1R2 (also for R1R2, or R1–R2,

see next slides) has the same attribute names as the first

operand relation R1 (by convention)

50

Relational Algebra Operations from Set Theory:

INTERSECTION

 INTERSECTION is denoted by 

 The result of the operation R  S, is a relation

that includes all tuples that are in both R and S

The attribute names in the result will be the same

as the attribute names in R

 The two operand relations R and S must be

―type compatible‖

51

Relational Algebra Operations from Set Theory: SET

DIFFERENCE (cont.)

 SET DIFFERENCE (also called MINUS or EXCEPT) is

denoted by –

 The result of R – S, is a relation that includes all

tuples that are in R but not in S

The attribute names in the result will be the same

as the attribute names in R

 The two operand relations R and S must be

―type compatible‖

52

Example to illustrate the result of UNION, INTERSECT,

and DIFFERENCE
53

Some properties of UNION, INTERSECT, and

DIFFERENCE

 Notice that both union and intersection are commutative

operations; that is

 R  S = S  R, and R  S = S  R

 Both union and intersection can be treated as n-ary operations

applicable to any number of relations as both are associative

operations; that is

 R  (S  T) = (R  S)  T

 (R  S)  T = R  (S  T)

 The minus operation is not commutative; that is, in general

 R – S ≠ S – R

54

Relational Algebra Operations from Set Theory:

CARTESIAN PRODUCT

 CARTESIAN (or CROSS) PRODUCT Operation

 This operation is used to combine tuples from two relations in a

combinatorial fashion.

 Denoted by R(A1, A2, . . ., An) x S(B1, B2, . . ., Bm)

 Result is a relation Q with degree n + m attributes:

 Q(A1, A2, . . ., An, B1, B2, . . ., Bm), in that order.

 The resulting relation state has one tuple for each combination of

tuples—one from R and one from S.

 Hence, if R has nR tuples (denoted as |R| = nR), and S has nS

tuples, then R x S will have nR * nS tuples.

 The two operands do NOT have to be "type compatible‖

55

Relational Algebra Operations from Set Theory:

CARTESIAN PRODUCT (cont.)

 Generally, CROSS PRODUCT is not a meaningful
operation

 Can become meaningful when followed by other
operations

 Example (not meaningful):
 FEMALE_EMPS   SEX=‘F‘(EMPLOYEE)

 EMPNAMES   FNAME, LNAME, SSN (FEMALE_EMPS)

 EMP_DEPENDENTS  EMPNAMES x DEPENDENT

 EMP_DEPENDENTS will contain every combination of
EMPNAMES and DEPENDENT

 whether or not they are actually related

56

Relational Algebra Operations from Set Theory:

CARTESIAN PRODUCT (cont.)

 To keep only combinations where the DEPENDENT is
related to the EMPLOYEE, we add a SELECT
operation as follows

 Example (meaningful):
 FEMALE_EMPS   SEX=‘F‘(EMPLOYEE)

 EMPNAMES   FNAME, LNAME, SSN (FEMALE_EMPS)

 EMP_DEPENDENTS  EMPNAMES x DEPENDENT

 ACTUAL_DEPS   SSN=ESSN(EMP_DEPENDENTS)

 RESULT   FNAME, LNAME, DEPENDENT_NAME (ACTUAL_DEPS)

 RESULT will now contain the name of female employees and
their dependents

57

Example of applying CARTESIAN PRODUCT

58

Binary Relational Operations: JOIN

 JOIN Operation (denoted by)

 The sequence of CARTESIAN PRODECT followed by SELECT is
used quite commonly to identify and select related tuples from
two relations

 A special operation, called JOIN combines this sequence into a
single operation

 This operation is very important for any relational database with
more than a single relation, because it allows us combine related
tuples from various relations

 The general form of a join operation on two relations R(A1, A2, .
. ., An) and S(B1, B2, . . ., Bm) is:

R <join condition>S

 where R and S can be any relations that result from general
relational algebra expressions.

59

Binary Relational Operations: JOIN (cont.)

 Example: Suppose that we want to retrieve the name of the
manager of each department.

 To get the manager‘s name, we need to combine each DEPARTMENT
tuple with the EMPLOYEE tuple whose SSN value matches the
MGRSSN value in the department tuple.

 We do this by using the join operation.

 DEPT_MGR  DEPARTMENT MGRSSN=SSN EMPLOYEE

 MGRSSN=SSN is the join condition

 Combines each department record with the employee who manages
the department

 The join condition can also be specified as DEPARTMENT.MGRSSN=
EMPLOYEE.SSN

60

Example of applying the JOIN operation

61

Some properties of JOIN

 Consider the following JOIN operation:

 R(A1, A2, . . ., An) S(B1, B2, . . ., Bm)

R.Ai=S.Bj

 Result is a relation Q with degree n + m attributes:

 Q(A1, A2, . . ., An, B1, B2, . . ., Bm), in that order.

 The resulting relation state has one tuple for each combination of
tuples—r from R and s from S, but only if they satisfy the join
condition r[Ai]=s[Bj]

 Hence, if R has nR tuples, and S has nS tuples, then the join result
will generally have less than nR * nS tuples.

 Only related tuples (based on the join condition) will appear in
the result

62

Some properties of JOIN

 The general case of JOIN operation is called a
Theta-join: R S

theta

 The join condition is called theta

 Theta can be any general boolean expression on
the attributes of R and S; for example:

 R.Ai<S.Bj AND (R.Ak=S.Bl OR R.Ap<S.Bq)

 Most join conditions involve one or more equality
conditions ―AND‖ed together; for example:

 R.Ai=S.Bj AND R.Ak=S.Bl AND R.Ap=S.Bq

63

Binary Relational Operations: EQUIJOIN

 EQUIJOIN Operation

 The most common use of join involves join conditions
with equality comparisons only

 Such a join, where the only comparison operator
used is =, is called an EQUIJOIN.

 In the result of an EQUIJOIN we always have one or
more pairs of attributes (whose names need not be
identical) that have identical values in every tuple.

 The JOIN seen in the previous example was an
EQUIJOIN.

64

Binary Relational Operations:

NATURAL JOIN Operation

 NATURAL JOIN Operation

 Another variation of JOIN called NATURAL JOIN — denoted by

* — was created to get rid of the second (superfluous) attribute

in an EQUIJOIN condition.

 because one of each pair of attributes with identical values is

superfluous

 The standard definition of natural join requires that the two join

attributes, or each pair of corresponding join attributes, have

the same name in both relations

 If this is not the case, a renaming operation is applied first.

65

Binary Relational Operations NATURAL

JOIN (contd.)

 Example: To apply a natural join on the DNUMBER attributes of
DEPARTMENT and DEPT_LOCATIONS, it is sufficient to write:

 DEPT_LOCS  DEPARTMENT * DEPT_LOCATIONS

 Only attribute with the same name is DNUMBER

 An implicit join condition is created based on this attribute:

DEPARTMENT.DNUMBER=DEPT_LOCATIONS.DNUMBER

 Another example: Q  R(A,B,C,D) * S(C,D,E)

 The implicit join condition includes each pair of attributes with the same
name, ―AND‖ed together:

 R.C=S.C AND R.D.S.D

 Result keeps only one attribute of each such pair:

 Q(A,B,C,D,E)

66

Example of NATURAL JOIN operation

67

Complete Set of Relational Operations

 The set of operations including SELECT , PROJECT

 , UNION , DIFFERENCE - , RENAME , and

CARTESIAN PRODUCT X is called a complete set

because any other relational algebra expression

can be expressed by a combination of these five

operations.

 For example:

 R  S = (R  S) – ((R - S)  (S - R))

 R <join condition>S =  <join condition> (R X S)

68

Binary Relational Operations: DIVISION

 DIVISION Operation

 The division operation is applied to two relations

 R(Z)  S(X), where X subset Z. Let Y = Z - X (and hence Z = X
 Y); that is, let Y be the set of attributes of R that are not
attributes of S.

 The result of DIVISION is a relation T(Y) that includes a tuple t if
tuples tR appear in R with tR [Y] = t, and with

 tR [X] = ts for every tuple ts in S.

 For a tuple t to appear in the result T of the DIVISION, the values
in t must appear in R in combination with every tuple in S.

69

Example of DIVISION

70

Recap of Relational Algebra Operations

71

Additional Relational Operations: Aggregate

Functions and Grouping

 A type of request that cannot be expressed in the basic
relational algebra is to specify mathematical aggregate
functions on collections of values from the database.

 Examples of such functions include retrieving the average or
total salary of all employees or the total number of employee
tuples.

 These functions are used in simple statistical queries that
summarize information from the database tuples.

 Common functions applied to collections of numeric values
include

 SUM, AVERAGE, MAXIMUM, and MINIMUM.

 The COUNT function is used for counting tuples or values.

72

Aggregate Function Operation

 Use of the Aggregate Functional operation ℱ

 ℱMAX Salary (EMPLOYEE) retrieves the maximum salary value from

the EMPLOYEE relation

 ℱMIN Salary (EMPLOYEE) retrieves the minimum Salary value from

the EMPLOYEE relation

 ℱSUM Salary (EMPLOYEE) retrieves the sum of the Salary from the

EMPLOYEE relation

 ℱCOUNT SSN, AVERAGE Salary (EMPLOYEE) computes the count (number)

of employees and their average salary

 Note: count just counts the number of rows, without removing

duplicates

73

Using Grouping with Aggregation

 The previous examples all summarized one or more attributes
for a set of tuples

 Maximum Salary or Count (number of) Ssn

 Grouping can be combined with Aggregate Functions

 Example: For each department, retrieve the DNO, COUNT
SSN, and AVERAGE SALARY

 A variation of aggregate operation ℱ allows this:

 Grouping attribute placed to left of symbol

 Aggregate functions to right of symbol

 DNO ℱCOUNT SSN, AVERAGE Salary (EMPLOYEE)

 Above operation groups employees by DNO (department
number) and computes the count of employees and average
salary per department

74

Examples of applying aggregate functions and

grouping
75

Illustrating aggregate functions and grouping

76

Additional Relational Operations (cont.)

 Recursive Closure Operations

Another type of operation that, in general, cannot
be specified in the basic original relational algebra
is recursive closure.
 This operation is applied to a recursive relationship.

An example of a recursive operation is to retrieve
all SUPERVISEES of an EMPLOYEE e at all levels —
that is, all EMPLOYEE e’ directly supervised by e; all
employees e’’ directly supervised by each employee
e’; all employees e’’’ directly supervised by each
employee e’’; and so on.

77

Additional Relational Operations (cont.)

 Although it is possible to retrieve employees at each

level and then take their union, we cannot, in

general, specify a query such as ―retrieve the

supervisees of ‗James Borg‘ at all levels‖ without

utilizing a looping mechanism.

 The SQL3 standard includes syntax for recursive

closure.

78

Additional Relational Operations (cont.)

79

Additional Relational Operations (cont.)

 The OUTER JOIN Operation

 In NATURAL JOIN and EQUIJOIN, tuples without a matching (or

related) tuple are eliminated from the join result

 Tuples with null in the join attributes are also eliminated

 This amounts to loss of information.

 A set of operations, called OUTER joins, can be used when we

want to keep all the tuples in R, or all those in S, or all those in

both relations in the result of the join, regardless of whether or

not they have matching tuples in the other relation.

80

Additional Relational Operations (cont.)

 The left outer join operation keeps every tuple in
the first or left relation R in R S; if no matching
tuple is found in S, then the attributes of S in the join
result are filled or ―padded‖ with null values.

 A similar operation, right outer join, keeps every
tuple in the second or right relation S in the result of
R S.

 A third operation, full outer join, denoted by
keeps all tuples in both the left and the right
relations when no matching tuples are found,
padding them with null values as needed.

81

Additional Relational Operations (cont.)

82

Additional Relational Operations (cont.)

 OUTER UNION Operations
 The outer union operation was developed to take the

union of tuples from two relations if the relations are
not type compatible.

 This operation will take the union of tuples in two
relations R(X, Y) and S(X, Z) that are partially
compatible, meaning that only some of their attributes,
say X, are type compatible.

 The attributes that are type compatible are
represented only once in the result, and those attributes
that are not type compatible from either relation are
also kept in the result relation T(X, Y, Z).

83

Additional Relational Operations (cont.)

 Example: An outer union can be applied to two relations whose
schemas are STUDENT(Name, SSN, Department, Advisor) and
INSTRUCTOR(Name, SSN, Department, Rank).

 Tuples from the two relations are matched based on having the same
combination of values of the shared attributes— Name, SSN,
Department.

 If a student is also an instructor, both Advisor and Rank will have a
value; otherwise, one of these two attributes will be null.

 The result relation STUDENT_OR_INSTRUCTOR will have the
following attributes:

STUDENT_OR_INSTRUCTOR (Name, SSN, Department,
Advisor, Rank)

84

Examples of Queries in Relational Algebra

 Q1: Retrieve the name and address of all employees who work for the

‘Research’ department.

RESEARCH_DEPT   DNAME=’Research’ (DEPARTMENT)

RESEARCH_EMPS  (RESEARCH_DEPT DNUMBER= DNOEMPLOYEEEMPLOYEE)

RESULT   FNAME, LNAME, ADDRESS (RESEARCH_EMPS)

 Q6: Retrieve the names of employees who have no dependents.

ALL_EMPS  SSN(EMPLOYEE)

EMPS_WITH_DEPS(SSN)   ESSN(DEPENDENT)

EMPS_WITHOUT_DEPS  (ALL_EMPS - EMPS_WITH_DEPS)

RESULT   LNAME, FNAME (EMPS_WITHOUT_DEPS * EMPLOYEE)

85

Relational Database Design Using ER –

to – Relational Mapping

1. Mapping of Regular Entity Types

2. Mapping of Weak Entity Types

3. Mapping of Binary 1:1 Relationship Types

4. Mapping of Binary 1:N Relationship Types

5. Mapping of Binary M:N Relationship Types

6. Mapping of Multivalued Attributes

7. Mapping of N – ary Relationship Types

86

Mapping of Regular Entity Types

 For each regular(strong) entity type E in the ER schema, create a relation R
that includes all simple attributes of E.

 Include only the simple component attributes of a composite attribute.

 Choose one of the key attributes of E as the primary key of R.

 If the chosen key of E is a composite, then the set of simple attributes that
form it will together form the primary key of R.

 If multiple keys were identified for E during the conceptual design, the
information describing the attributes that form each additional key is kept
in order to specify secondary keys of relation R.

87

Mapping of Weak Entity Types

 For each weak entity type W in the ER schema with owner entity
type E, create a relation R and include all simple attributes of W as
attributes of R.

 In addition, include as foreign key attributes of R, the primary key
attribute(s) of the relation(s) that correspond to the owner entity
type(s).

 The primary key of R is the combination of the primary key(s) of the
owner(s) and the partial key of the weak entity type W, if any.

 If there is a weak entity type E2 whose owner is also a weak entity
type E1, then E1 should be mapped before E2 to determine its
primary key first.

88

Mapping of Binary 1:1 Relationship Types

 For each binary 1:1 relationship type R in ER

schema, identify the relations S and T that

correspond to the entity types participating in R.

 There are three possible approaches:

 The foreign key approach

 The merged relationship approach

 The cross reference or relationship relation approach

89

Mapping of Binary 1:N Relationship Types

 For each regular binary 1:N relationship type R,

identify the relation S that represents the participating

entity type at the N – side of the relationship type.

 Include as foreign key in S the primary key of relation T

that represents the other entity type participating in R.

 Include any simple attributes of the 1:N relationship

type as attributes of S.

90

Mapping of Binary M:N Relationship Types

 For each binary M:N relationship type R, create a new
relation S to represent R.

 Include as foreign key attributes in S the primary keys
of the relations that represent the participating entity
types.

 Their combination will form the primary key of S.

 Also include any simple attributes of the M:N
relationship type as attributes of S.

91

Mapping of Multivalued Attributes

 For each Multivalued attribute A, create a new
relation R.

 This relation R will include an attribute
corresponding to A, plus the primary key attribute K
– as foreign key in R – of the relation that
represents the entity type or the relationship type
that has A as an attribute.

 The primary key of R is the combination of A and K.

92

Mapping of N – ary Relationship Types

 For each N – ary relationship type R, where n>2, create a
new relation S to represent R.

 Include as foreign key attributes in S the primary keys of the
relations that represent the participating entity types.

 Also include any simple attributes of the n – ary relationship
type as attributes of S.

 The primary key of S is usually a combination of all the
foreign keys that reference the relations representing the
participating entity types.

93

Data Definition, Constraints, and

Schema Changes

 Used to CREATE, DROP, and ALTER the descriptions

of the tables (relations) of a database

94

CREATE TABLE

 Specifies a new base relation by giving it a name, and
specifying each of its attributes and their data types
(INTEGER, FLOAT, DECIMAL(i,j), CHAR(n), VARCHAR(n))

 A constraint NOT NULL may be specified on an attribute

CREATE TABLE DEPARTMENT (
DNAME VARCHAR(10) NOT

NULL,
DNUMBER INTEGER NOT

NULL,
MGRSSN CHAR(9),
MGRSTARTDATE CHAR(9));

95

CREATE TABLE

 In SQL2, can use the CREATE TABLE command for specifying the primary key attributes,
secondary keys, and referential integrity constraints (foreign keys).

 Key attributes can be specified via the PRIMARY KEY and UNIQUE phrases

CREATE TABLE DEPT (

DNAME VARCHAR(10) NOT
NULL,

DNUMBER INTEGER NOT
NULL,

MGRSSN CHAR(9),

MGRSTARTDATECHAR(9),

PRIMARY KEY (DNUMBER),

UNIQUE (DNAME),

FOREIGN KEY (MGRSSN) REFERENCES EMP(ENUM)
);

96

DATA TYPES

 Numeric – INTEGER, INT, SMALLINT,

 FLOAT, REAL, DOUBLE PRECISION

 DECIMAL(i,j), NUMERIC(i,j)

 Character – CHAR(n), VARCHAR(n)

 Bit string – BIT(n), BIT VARYING(n)

 Boolean – TRUE, FALSE

 Other – DATE, TIME, TIMESTAMP

97

DROP TABLE

 Used to remove a relation (base table) and its

definition

 The relation can no longer be used in queries,

updates, or any other commands since its description

no longer exists

 Example:

DROP TABLE DEPENDENT;

DROP TABLE DEPENDENT CASCADE;

DROP TABLE DEPT RESTRICT;

98

ALTER TABLE

 Used to add an attribute to one of the base
relations
 The new attribute will have NULLs in all the tuples of the

relation right after the command is executed; hence, the
NOT NULL constraint is not allowed for such an attribute

 Example:
ALTER TABLE EMPLOYEE ADD JOB
VARCHAR(12);

 The database users must still enter a value for the
new attribute JOB for each EMPLOYEE tuple.
 This can be done using the UPDATE command.

99

 ALTER TABLE EMPLOYEE DROP COLUMN

JOB CASCADE;

 ALTER TABLE EMPLOYEE ALTER COLUMN

EMP_ID SET DEFAULT ‘1111’;

 ALTER TABLE EMPLOYEE ALTER COLUMN

EMP_ID DROP DEFAULT;

 ALTER TABLE EMPLOYEE DROP

CONSTRAINT EMP_PK1 CASCADE;

100

Features Added in SQL2 and SQL-99

 Create schema

 Referential integrity options

101

CREATE SCHEMA

 Specifies a new database schema by giving it a

name

102

REFERENTIAL INTEGRITY OPTIONS

 We can specify RESTRICT, CASCADE, SET NULL or SET DEFAULT on
referential integrity constraints (foreign keys)

CREATE TABLE DEPT (

DNAME VARCHAR(10) NOT NULL,

DNUMBER INTEGER NOT

NULL,

MGRSSN CHAR(9),

MGRSTARTDATE CHAR(9),

PRIMARY KEY (DNUMBER),

UNIQUE (DNAME),

FOREIGN KEY (MGRSSN) REFERENCES EMP

ON DELETE SET DEFAULT ON UPDATE

CASCADE);

103

REFERENTIAL INTEGRITY OPTIONS

(continued)

CREATE TABLE EMP(

ENAME VARCHAR(30) NOT NULL,

ESSN CHAR(9),

BDATE DATE,

DNO INTEGER DEFAULT 1,

SUPERSSN CHAR(9),

PRIMARY KEY (ESSN),

FOREIGN KEY (DNO) REFERENCES DEPT

ON DELETE SET DEFAULT ON UPDATE

CASCADE,

FOREIGN KEY (SUPERSSN) REFERENCES EMP

ON DELETE SET NULL ON UPDATE CASCADE);

104

Constraints

 CHECK

 DNUM INT NOT NULL CHECK(DNUM>0 AND

DNUM<5)

 DOMAIN

 CREATE DOMAIN DN AS INTERGER CHECK (DN >0

AND DN<10)

105

Additional Data Types in SQL2 and

SQL-99

Has DATE, TIME, and TIMESTAMP data types

 DATE:

 Made up of year-month-day in the format yyyy-mm-dd

 TIME:

 Made up of hour:minute:second in the format hh:mm:ss

 TIME(i):

 Made up of hour:minute:second plus i additional digits specifying

fractions of a second

 format is hh:mm:ss:ii...i

106

Additional Data Types in SQL2 and

SQL-99 (contd.)

 TIMESTAMP:

 Has both DATE and TIME components

 INTERVAL:

 Specifies a relative value rather than an absolute value

 Can be DAY/TIME intervals or YEAR/MONTH intervals

 Can be positive or negative when added to or

subtracted from an absolute value, the result is an

absolute value

107

Retrieval Queries in SQL

 SQL has one basic statement for retrieving information from a
database; the SELECT statement

 This is not the same as the SELECT operation of the relational
algebra

 Important distinction between SQL and the formal relational
model:

 SQL allows a table (relation) to have two or more tuples that are
identical in all their attribute values

 Hence, an SQL relation (table) is a multi-set (sometimes called a
bag) of tuples; it is not a set of tuples

 SQL relations can be constrained to be sets by specifying
PRIMARY KEY or UNIQUE attributes, or by using the DISTINCT
option in a query

108

Retrieval Queries in SQL (contd.)

 A bag or multi-set is like a set, but an element may

appear more than once.

 Example: {A, B, C, A} is a bag. {A, B, C} is also a bag

that also is a set.

 Bags also resemble lists, but the order is irrelevant in a

bag.

 Example:

 {A, B, A} = {B, A, A} as bags

 However, [A, B, A] is not equal to [B, A, A] as lists

109

Retrieval Queries in SQL (contd.)

 Basic form of the SQL SELECT statement is called a mapping or
a SELECT-FROM-WHERE block

SELECT <attribute list>

FROM <table list>

WHERE <condition>

 <attribute list> is a list of attribute names whose values are to be
retrieved by the query

 <table list> is a list of the relation names required to process the
query

 <condition> is a conditional (Boolean) expression that identifies
the tuples to be retrieved by the query

110

Relational Database Schema--Figure 5.5

111

Populated Database--Fig.5.6

112

Simple SQL Queries

 Basic SQL queries correspond to using the following

operations of the relational algebra:

 SELECT

 PROJECT

 JOIN

 All subsequent examples use the COMPANY

database

113

Simple SQL Queries (contd.)

 Example of a simple query on one relation

 Query 0: Retrieve the birthdate and address of the employee
whose name is 'John B. Smith'.

Q0: SELECT BDATE, ADDRESS
FROM EMPLOYEE
WHERE FNAME='John' AND MINIT='B‘

AND LNAME='Smith‘

 Similar to a SELECT-PROJECT pair of relational algebra
operations:

 The SELECT-clause specifies the projection attributes and the WHERE-
clause specifies the selection condition

 However, the result of the query may contain duplicate tuples

114

Simple SQL Queries (contd.)

 Query 1: Retrieve the name and address of all employees who
work for the 'Research' department.

Q1: SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE, DEPARTMENT
WHERE DNAME='Research' AND DNUMBER=DNO

 Similar to a SELECT-PROJECT-JOIN sequence of relational
algebra operations

 (DNAME='Research') is a selection condition (corresponds to a
SELECT operation in relational algebra)

 (DNUMBER=DNO) is a join condition (corresponds to a JOIN
operation in relational algebra)

115

Simple SQL Queries (contd.)

 Query 2: For every project located in 'Stafford', list the project number, the
controlling department number, and the department manager's last name,
address, and birthdate.

Q2: SELECT PNUMBER, DNUM, LNAME, BDATE, ADDRESS
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE DNUM=DNUMBER AND MGRSSN=SSN

AND PLOCATION='Stafford'

 In Q2, there are two join conditions

 The join condition DNUM=DNUMBER relates a project to its controlling
department

 The join condition MGRSSN=SSN relates the controlling department to
the employee who manages that department

116

Aliases, * and DISTINCT, Empty

WHERE-clause

 In SQL, we can use the same name for two (or more)
attributes as long as the attributes are in different
relations

 A query that refers to two or more attributes with
the same name must qualify the attribute name with
the relation name by prefixing the relation name to
the attribute name

 Example:

 EMPLOYEE.LNAME, DEPARTMENT.DNAME

117

ALIASES

 Some queries need to refer to the same relation twice

 In this case, aliases are given to the relation name

 Query 8: For each employee, retrieve the employee's name, and the name
of his or her immediate supervisor.

Q8: SELECT E.FNAME, E.LNAME, S.FNAME, S.LNAME
FROM EMPLOYEE E S
WHERE E.SUPERSSN=S.SSN

 In Q8, the alternate relation names E and S are called aliases or tuple
variables for the EMPLOYEE relation

 We can think of E and S as two different copies of EMPLOYEE; E
represents employees in role of supervisees and S represents employees
in role of supervisors

118

ALIASES (contd.)

 Aliasing can also be used in any SQL query for

convenience

 Can also use the AS keyword to specify aliases

Q8: SELECT E.FNAME, E.LNAME,

S.FNAME, S.LNAME

FROM EMPLOYEE AS E,

EMPLOYEE AS S

WHERE E.SUPERSSN=S.SSN

119

UNSPECIFIED

WHERE-clause

 A missing WHERE-clause indicates no condition; hence, all

tuples of the relations in the FROM-clause are selected

 This is equivalent to the condition WHERE TRUE

 Query 9: Retrieve the SSN values for all employees.

 Q9: SELECT SSN

FROM EMPLOYEE

 If more than one relation is specified in the FROM-clause and

there is no join condition, then the CARTESIAN PRODUCT of

tuples is selected

120

UNSPECIFIED

WHERE-clause (contd.)

 Example:

Q10: SELECT SSN, DNAME

FROM EMPLOYEE, DEPARTMENT

 It is extremely important not to overlook specifying any

selection and join conditions in the WHERE-clause;

otherwise, incorrect and very large relations may result

121

USE OF *

 To retrieve all the attribute values of the selected tuples, a * is

used, which stands for all the attributes

Examples:

Q1C: SELECT *

FROM EMPLOYEE

WHERE DNO=5

Q1D: SELECT *

FROM EMPLOYEE, DEPARTMENT

WHERE DNAME='Research' AND

DNO=DNUMBER

122

USE OF DISTINCT

 SQL does not treat a relation as a set; duplicate tuples can

appear

 To eliminate duplicate tuples in a query result, the keyword

DISTINCT is used

 For example, the result of Q11 may have duplicate SALARY

values whereas Q11A does not have any duplicate values

Q11: SELECT SALARY

FROM EMPLOYEE

Q11A: SELECT DISTINCT SALARY

FROM EMPLOYEE

123

SET OPERATIONS

 SQL has directly incorporated some set operations

 There is a union operation (UNION), and in some versions of

SQL there are set difference (MINUS) and intersection

(INTERSECT) operations

 The resulting relations of these set operations are sets of

tuples; duplicate tuples are eliminated from the result

 The set operations apply only to union compatible relations; the

two relations must have the same attributes and the attributes

must appear in the same order

124

SET OPERATIONS (contd.)

 Query 4: Make a list of all project numbers for projects that involve an
employee whose last name is 'Smith' as a worker or as a manager of the
department that controls the project.

Q4: (SELECT PNAME
FROM PROJECT, DEPARTMENT,

EMPLOYEE
WHERE DNUM=DNUMBER AND
MGRSSN=SSN AND LNAME='Smith')
UNION

(SELECT PNAME
FROM PROJECT, WORKS_ON, EMPLOYEE
WHERE PNUMBER=PNO AND

ESSN=SSN AND NAME='Smith')

125

NESTING OF QUERIES

 A complete SELECT query, called a nested query, can be
specified within the WHERE-clause of another query, called the
outer query

 Many of the previous queries can be specified in an alternative
form using nesting

 Query 1: Retrieve the name and address of all employees who
work for the 'Research' department.

Q1: SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE
WHERE DNO IN (SELECT DNUMBER
FROM DEPARTMENT
WHERE DNAME='Research')

126

NESTING OF QUERIES (contd.)

 The nested query selects the number of the 'Research'
department

 The outer query select an EMPLOYEE tuple if its DNO value is
in the result of either nested query

 The comparison operator IN compares a value v with a set (or
multi-set) of values V, and evaluates to TRUE if v is one of the
elements in V

 In general, we can have several levels of nested queries

 A reference to an unqualified attribute refers to the relation
declared in the innermost nested query

 In this example, the nested query is not correlated with the
outer query

127

CORRELATED NESTED QUERIES

 If a condition in the WHERE-clause of a nested query references an attribute
of a relation declared in the outer query, the two queries are said to be
correlated

 The result of a correlated nested query is different for each tuple (or
combination of tuples) of the relation(s) the outer query

 Query 12: Retrieve the name of each employee who has a dependent with
the same first name as the employee.

Q12: SELECT E.FNAME, E.LNAME
FROM EMPLOYEE AS E
WHERE E.SSN IN

(SELECT ESSN
FROM DEPENDENT
WHERE ESSN=E.SSN AND
E.FNAME=DEPENDENT_NAME)

128

CORRELATED NESTED QUERIES (contd.)

 In Q12, the nested query has a different result in the outer

query

 A query written with nested SELECT... FROM... WHERE... blocks

and using the = or IN comparison operators can always be

expressed as a single block query. For example, Q12 may be

written as in Q12A

Q12A: SELECT E.FNAME, E.LNAME

FROM EMPLOYEE E, DEPENDENT D

WHERE E.SSN=D.ESSN AND

E.FNAME=D.DEPENDENT_NAME

129

CORRELATED NESTED QUERIES (contd.)

 The original SQL as specified for SYSTEM R also had a

CONTAINS comparison operator, which is used in conjunction

with nested correlated queries

 This operator was dropped from the language, possibly because

of the difficulty in implementing it efficiently

 Most implementations of SQL do not have this operator

 The CONTAINS operator compares two sets of values, and returns

TRUE if one set contains all values in the other set

 Reminiscent of the division operation of algebra

130

CORRELATED NESTED QUERIES (contd.)

 Query 3: Retrieve the name of each employee who works on

all the projects controlled by department number 5.

Q3: SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE ((SELECT PNO

FROM WORKS_ON

WHERE SSN=ESSN)

CONTAINS

(SELECT PNUMBER

FROM PROJECT

WHERE DNUM=5))

131

CORRELATED NESTED QUERIES (contd.)

 In Q3, the second nested query, which is not

correlated with the outer query, retrieves the project

numbers of all projects controlled by department 5

 The first nested query, which is correlated, retrieves

the project numbers on which the employee works,

which is different for each employee tuple because

of the correlation

132

THE EXISTS FUNCTION

 EXISTS is used to check whether the result of a

correlated nested query is empty (contains no

tuples) or not

We can formulate Query 12 in an alternative form that

uses EXISTS as Q12B

133

THE EXISTS FUNCTION (contd.)

 Query 12: Retrieve the name of each employee

who has a dependent with the same first name as

the employee.

Q12B: SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE EXISTS (SELECT *

FROM DEPENDENT

WHERE SSN=ESSN

AND

FNAME=DEPENDENT_NAME)

134

THE EXISTS FUNCTION (contd.)

 Query 6: Retrieve the names of employees who have no
dependents.

Q6: SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE NOT EXISTS (SELECT *

FROM DEPENDENT
WHERE SSN=ESSN)

 In Q6, the correlated nested query retrieves all DEPENDENT
tuples related to an EMPLOYEE tuple. If none exist, the
EMPLOYEE tuple is selected

 EXISTS is necessary for the expressive power of SQL

135

EXPLICIT SETS

 It is also possible to use an explicit (enumerated)

set of values in the WHERE-clause rather than a

nested query

 Query 13: Retrieve the social security numbers of

all employees who work on project number 1, 2, or

3.

Q13: SELECT DISTINCT ESSN

FROM WORKS_ON

WHERE PNO IN (1, 2, 3)

136

NULLS IN SQL QUERIES

 SQL allows queries that check if a value is NULL (missing or
undefined or not applicable)

 SQL uses IS or IS NOT to compare NULLs because it considers
each NULL value distinct from other NULL values, so equality
comparison is not appropriate.

 Query 14: Retrieve the names of all employees who do not
have supervisors.

Q14: SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE SUPERSSN IS NULL

 Note: If a join condition is specified, tuples with NULL values for
the join attributes are not included in the result

137

Joined Relations Feature

in SQL2

 Can specify a "joined relation" in the FROM-clause

 Looks like any other relation but is the result of a join

 Allows the user to specify different types of joins

(regular "theta" JOIN, NATURAL JOIN, LEFT OUTER

JOIN, RIGHT OUTER JOIN, CROSS JOIN, etc)

138

Joined Relations Feature

in SQL2 (contd.)

 Examples:

Q8: SELECT E.FNAME, E.LNAME, S.FNAME, S.LNAME

FROM EMPLOYEE E S

WHERE E.SUPERSSN=S.SSN

 can be written as:

Q8: SELECT E.FNAME, E.LNAME, S.FNAME, S.LNAME

FROM (EMPLOYEE E LEFT OUTER JOIN

EMPLOYEES ON E.SUPERSSN=S.SSN)

139

Joined Relations Feature

in SQL2 (contd.)

 Examples:

Q1: SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE, DEPARTMENT
WHERE DNAME='Research' AND DNUMBER=DNO

 could be written as:

Q1: SELECT FNAME, LNAME, ADDRESS
FROM (EMPLOYEE JOIN DEPARTMENT

ON DNUMBER=DNO)
WHERE DNAME='Research‘

 or as:

Q1: SELECT FNAME, LNAME, ADDRESS
FROM (EMPLOYEE NATURAL JOIN DEPARTMENT

AS DEPT(DNAME, DNO, MSSN, MSDATE)
WHERE DNAME='Research‘

140

Joined Relations Feature

in SQL2 (contd.)

 Another Example: Q2 could be written as follows;

this illustrates multiple joins in the joined tables

Q2:SELECT PNUMBER, DNUM, LNAME,

BDATE, ADDRESS

FROM (PROJECT JOIN

DEPARTMENT ON

DNUM=DNUMBER) JOIN

EMPLOYEE ON

MGRSSN=SSN))

WHERE PLOCATION='Stafford‘

141

AGGREGATE FUNCTIONS

 Include COUNT, SUM, MAX, MIN, and AVG

 Query 15: Find the maximum salary, the minimum
salary, and the average salary among all
employees.

Q15: SELECT MAX(SALARY),
MIN(SALARY), AVG(SALARY)

FROM EMPLOYEE

 Some SQL implementations may not allow more than
one function in the SELECT-clause

142

AGGREGATE FUNCTIONS (contd.)

 Query 16: Find the maximum salary, the minimum

salary, and the average salary among employees

who work for the 'Research' department.

Q16: SELECT MAX(SALARY),

MIN(SALARY), AVG(SALARY)

FROM EMPLOYEE, DEPARTMENT

WHERE DNO=DNUMBER AND

DNAME='Research'

143

AGGREGATE FUNCTIONS (contd.)

 Queries 17 and 18: Retrieve the total number of employees in

the company (Q17), and the number of employees in the

'Research' department (Q18).

Q17: SELECT COUNT (*)

FROM EMPLOYEE

Q18: SELECT COUNT (*)

FROM EMPLOYEE, DEPARTMENT

WHERE DNO=DNUMBER AND

DNAME='Research‘

144

GROUPING

 In many cases, we want to apply the aggregate
functions to subgroups of tuples in a relation

 Each subgroup of tuples consists of the set of tuples
that have the same value for the grouping
attribute(s)

 The function is applied to each subgroup
independently

 SQL has a GROUP BY-clause for specifying the
grouping attributes, which must also appear in the
SELECT-clause

145

GROUPING (contd.)

 Query 20: For each department, retrieve the department
number, the number of employees in the department, and their
average salary.

Q20: SELECT DNO, COUNT (*), AVG (SALARY)
FROM EMPLOYEE
GROUP BY DNO

 In Q20, the EMPLOYEE tuples are divided into groups-

 Each group having the same value for the grouping attribute DNO

 The COUNT and AVG functions are applied to each such group
of tuples separately

 The SELECT-clause includes only the grouping attribute and the
functions to be applied on each group of tuples

 A join condition can be used in conjunction with grouping

146

GROUPING (contd.)

 Query 21: For each project, retrieve the project number,

project name, and the number of employees who work on that

project.

Q21: SELECT PNUMBER, PNAME, COUNT (*)

FROM PROJECT, WORKS_ON

WHERE PNUMBER=PNO

GROUP BY PNUMBER, PNAME

 In this case, the grouping and functions are applied after the

joining of the two relations

147

THE HAVING-CLAUSE

 Sometimes we want to retrieve the values of these

functions for only those groups that satisfy certain

conditions

 The HAVING-clause is used for specifying a

selection condition on groups (rather than on

individual tuples)

148

THE HAVING-CLAUSE (contd.)

 Query 22: For each project on which more than two

employees work, retrieve the project number, project

name, and the number of employees who work on

that project.

Q22: SELECT PNUMBER, PNAME,

COUNT(*)

FROM PROJECT, WORKS_ON

WHERE PNUMBER=PNO

GROUP BY PNUMBER, PNAME

HAVING COUNT (*) > 2

149

SUBSTRING COMPARISON

 The LIKE comparison operator is used to compare

partial strings

 Two reserved characters are used: '%' (or '*' in

some implementations) replaces an arbitrary

number of characters, and '_' replaces a single

arbitrary character

150

SUBSTRING COMPARISON (contd.)

 Query 25: Retrieve all employees whose address is

in Houston, Texas. Here, the value of the ADDRESS

attribute must contain the substring 'Houston,TX‗ in it.

Q25: SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE ADDRESS LIKE

'%Houston,TX%'

151

SUBSTRING COMPARISON (contd.)

 Query 26: Retrieve all employees who were born during the
1950s.

 Here, '5' must be the 8th character of the string (according to our
format for date), so the BDATE value is '_______5_', with each
underscore as a place holder for a single arbitrary character.

Q26: SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE BDATE LIKE '_______5_‘

 The LIKE operator allows us to get around the fact that each
value is considered atomic and indivisible

 Hence, in SQL, character string attribute values are not atomic

152

ARITHMETIC OPERATIONS

 The standard arithmetic operators '+', '-'. '*', and '/' (for

addition, subtraction, multiplication, and division, respectively)

can be applied to numeric values in an SQL query result

 Query 27: Show the effect of giving all employees who work

on the 'ProductX' project a 10% raise.

Q27: SELECT FNAME, LNAME, 1.1*SALARY

FROM EMPLOYEE, WORKS_ON,

PROJECT

WHERE SSN=ESSN AND PNO=PNUMBER

AND PNAME='ProductX‘

153

ORDER BY

 The ORDER BY clause is used to sort the tuples in a query

result based on the values of some attribute(s)

 Query 28: Retrieve a list of employees and the projects each

works in, ordered by the employee's department, and within

each department ordered alphabetically by employee last

name.

Q28: SELECT DNAME, LNAME, FNAME, PNAME

FROM DEPARTMENT, EMPLOYEE,

WORKS_ON, PROJECT

WHERE DNUMBER=DNO AND SSN=ESSN

AND PNO=PNUMBER

ORDER BY DNAME, LNAME

154

ORDER BY (contd.)

 The default order is in ascending order of values

 We can specify the keyword DESC if we want a

descending order; the keyword ASC can be used to

explicitly specify ascending order, even though it is

the default

155

Summary of SQL Queries

 A query in SQL can consist of up to six clauses, but
only the first two, SELECT and FROM, are
mandatory. The clauses are specified in the
following order:

SELECT <attribute list>
FROM <table list>
[WHERE <condition>]
[GROUP BY <grouping attribute(s)>]
[HAVING <group condition>]
[ORDER BY <attribute list>]

156

Summary of SQL Queries (contd.)

 The SELECT-clause lists the attributes or functions to be retrieved

 The FROM-clause specifies all relations (or aliases) needed in the query but
not those needed in nested queries

 The WHERE-clause specifies the conditions for selection and join of tuples
from the relations specified in the FROM-clause

 GROUP BY specifies grouping attributes

 HAVING specifies a condition for selection of groups

 ORDER BY specifies an order for displaying the result of a query

 A query is evaluated by first applying the WHERE-clause, then GROUP
BY and HAVING, and finally the SELECT-clause

157

Specifying Updates in SQL

 There are three SQL commands to modify the

database: INSERT, DELETE, and UPDATE

158

INSERT

 In its simplest form, it is used to add one or more

tuples to a relation

 Attribute values should be listed in the same order

as the attributes were specified in the CREATE

TABLE command

159

INSERT (contd.)

 Example:

U1: INSERT INTO EMPLOYEE
VALUES ('Richard','K','Marini', '653298653', '30-DEC-52',
'98 Oak Forest,Katy,TX', 'M', 37000,'987654321', 4)

 An alternate form of INSERT specifies explicitly the attribute
names that correspond to the values in the new tuple

 Attributes with NULL values can be left out

 Example: Insert a tuple for a new EMPLOYEE for whom we only
know the FNAME, LNAME, and SSN attributes.

U1A: INSERT INTO EMPLOYEE (FNAME, LNAME,
SSN)

VALUES ('Richard', 'Marini', '653298653')

160

INSERT (contd.)

 Important Note: Only the constraints specified in the

DDL commands are automatically enforced by the

DBMS when updates are applied to the database

 Another variation of INSERT allows insertion of multiple

tuples resulting from a query into a relation

161

INSERT (contd.)

 Example: Suppose we want to create a temporary table that has the name,
number of employees, and total salaries for each department.

 A table DEPTS_INFO is created by U3A, and is loaded with the
summary information retrieved from the database by the query in U3B.

U3A: CREATE TABLE DEPTS_INFO
(DEPT_NAME VARCHAR(10),
NO_OF_EMPS INTEGER,
TOTAL_SAL INTEGER);

U3B: INSERT INTO DEPTS_INFO (DEPT_NAME,
NO_OF_EMPS, TOTAL_SAL)

SELECT DNAME, COUNT (*), SUM (SALARY)
FROM DEPARTMENT, EMPLOYEE
WHERE DNUMBER=DNO
GROUP BY DNAME ;

162

INSERT (contd.)

 Note: The DEPTS_INFO table may not be up-to-

date if we change the tuples in either the

DEPARTMENT or the EMPLOYEE relations after

issuing U3B. We have to create a view (see later) to

keep such a table up to date.

163

DELETE

 Removes tuples from a relation

 Includes a WHERE-clause to select the tuples to be deleted

 Referential integrity should be enforced

 Tuples are deleted from only one table at a time (unless

CASCADE is specified on a referential integrity constraint)

 A missing WHERE-clause specifies that all tuples in the relation

are to be deleted; the table then becomes an empty table

 The number of tuples deleted depends on the number of tuples in

the relation that satisfy the WHERE-clause

164

DELETE (contd.)

 Examples:

U4A: DELETE FROM EMPLOYEE
WHERE LNAME='Brown‘

U4B: DELETE FROM EMPLOYEE
WHERE SSN='123456789‘

U4C: DELETE FROM EMPLOYEE
WHERE DNO IN

(SELECT DNUMBER
FROM DEPARTMENT
WHERE

DNAME='Research')

U4D: DELETE FROM EMPLOYEE

165

UPDATE

 Used to modify attribute values of one or more

selected tuples

 A WHERE-clause selects the tuples to be modified

 An additional SET-clause specifies the attributes to

be modified and their new values

 Each command modifies tuples in the same relation

 Referential integrity should be enforced

166

UPDATE (contd.)

 Example: Change the location and controlling

department number of project number 10 to

'Bellaire' and 5, respectively.

U5: UPDATE PROJECT

SET PLOCATION = 'Bellaire',

DNUM = 5

WHERE PNUMBER=10

167

UPDATE (contd.)

 Example: Give all employees in the 'Research' department a
10% raise in salary.
U6: UPDATE EMPLOYEE

SET SALARY = SALARY *1.1
WHERE DNO IN (SELECT DNUMBER

FROM DEPARTMENT
WHERE DNAME='Research')

 In this request, the modified SALARY value depends on the
original SALARY value in each tuple
 The reference to the SALARY attribute on the right of = refers to

the old SALARY value before modification

 The reference to the SALARY attribute on the left of = refers to
the new SALARY value after modification

168

Questions
169

1. Define relation. Explain the various characteristics of

relations.

2. Explain various types of relational model constraints.

3. Explain the DIVISION operation with example.

4. Explain the E-R to relational mapping algorithm with

examples for each step.

5. Write a note on data types available in SQL.

6. How to we can add constraint to a relation? Explain.

