	A.Year
	Semester
	Unit
	Subject
	Topic
	Author

	2017-18
	V
	I
	CN
	Application Layer
	M.A Chitale

				

APPLICATION LAYER

Internet applications include the classic text-based applications that became popular in the 1970s and 1980s: text email, remote access to computers, file transfers, and newsgroups. They include the killer application of the mid-1990s, the World Wide Web, encompassing Web surfing, search, and electronic commerce. They include instant messaging and P2P file sharing, the two killer applications introduced at the end of the millennium. Since 2000, we have seen an explosion of popular voice and video applications, including: voice-over-IP (VoIP) and video conferencing over IP such as Skype; user-generated video distribution such as YouTube; and movies on demand such as Netflix. During this same period we have also seen the immergence of highly engaging multi-player online games, including Second Life and World of Warcraft. And most recently, we have seen the emergence of a new generation of social networking applications, such as Facebook and Twitter, which have created engaging human networks on top of the Internet’s network of routers and communication links.

Principles of Network Applications
At the core of network application development is writing programs that run on different end systems and communicate with each other over the network. For example, in the Web application there are two distinct programs that communicate with each other: the browser program running in the user’s host (desktop, laptop, tablet, smartphone, and so on); and the Web server program running in the Web server host. As another example, in a P2P file-sharing system there is a program in each host that participates in the file-sharing community. In this case, the programs in the various hosts may be similar or identical.
Thus, when developing your new application, you need to write software that will run on multiple end systems. This software could be written, for example, in C, Java, or Python. Importantly, you do not need to write software that runs on networkcore devices, such as routers or link-layer switches.Even if you wanted to write application software for these network-core devices, you wouldn’t be able to do so.network-core devices do not function at the application layer but instead function at lower layers— specifically at the network layer and below. This basic design—namely, confining application software to the end systems has facilitated the rapid development and deployment of a vast array of network applications.

[image:]

Communication for a network application takes place
between end systems at the application layer

· Network Application Architectures

From the application developer’s perspective, the network architecture is fixed and provides a specific set of services to applications. The application architecture, on the other hand, is designed by the application developer and dictates how the application is structured over the various end systems. In choosing the application architecture, an application developer will likely draw on one of the two predominant architectural paradigms used in modern network applications: the client-server architecture or the peer-to-peer (P2P) architecture.

In a client-server architecture, there is an always-on host, called the server, which services requests from many other hosts, called clients. Aclassic example is the Web application for which an always-on Web server services requests from browsers running on client hosts. When a Web server receives a request for an object from a client host, it responds by sending the requested object to the client host.

· with the client-server architecture, clients do not directly communicate with each other.
· Another characteristic of the client-server architecture is that the server has a fixed, well-known address, called an IP address . Because the server has a fixed, well-known address, and because the server is always on, a client can always contact the server by sending a packet to the server’s IP address.
· EX. Web, FTP, Telnet, and e-mail.

Often in a client-server application, a single-server host is incapable of keeping up with all the requests from clients. For example, a popular social-networking site can quickly become overwhelmed if it has only one server handling all of its requests. For this reason, a data center, housing a large number of hosts, is often used to create a powerful virtual server. The most popular Internet services—such as search engines (e.g., Google and Bing).

A data center can have hundreds of thousands of servers, which must be powered and maintained. Additionally, the service providers must pay recurring interconnection and bandwidth costs for sending data from their data centers.

[image:]

In a P2P architecture, there is minimal (or no) reliance on dedicated servers in data centers. Instead the application exploits direct communication between pairs of intermittently connected hosts, called peers. The peers are not owned by the service provider, but are instead desktops and laptops controlled by users, with most of the
peers residing in homes, universities, and offices. Because the peers communicate without passing through a dedicated server, the architecture is called peer-to-peer. Many of today’s most popular and traffic-intensive applications are based on P2P architectures. These applications include file sharing (e.g., BitTorrent), peer-assisted
download acceleration (e.g., Xunlei), Internet Telephony (e.g., Skype), and IPTV (e.g., Kankan and PPstream).

· One of the most compelling features of P2P architectures is their self-scalability.For example, in a P2P file-sharing application, although each peer generates workload by requesting files, each peer also adds service capacity to the systemby distributing files to other peers.
· P2P architectures are also cost effective, since they normally don’t require significant server infrastructure and server bandwidth (in contrast with clients-server designs with datacenters).

However, future P2P applications face three major challenges:
· ISP Friendly. Most residential ISPs (including DSL and cable ISPs) have been dimensioned for “asymmetrical” bandwidth usage, that is, for much more downstream than upstream traffic. But P2P video streaming and file distribution applications shift upstream traffic from servers to residential ISPs, thereby putting significant stress on the ISPs
· Security. Because of their highly distributed and open nature, P2P applications can be a challenge to secure.
· Incentives. The success of future P2P applications also depends on convincing users to volunteer bandwidth, storage, and computation resources to the applications, which is the challenge of incentive design.

[image:]

Processes Communicating
· In the jargon of operating systems, it is not actually programs but processes that communicate. A process can be thought of as a program that is running within an end system. When processes are running on the same end system, they can communicate with each other with interprocess communication, using rules that are governed by the end system’s operating system.
· interested in how processes running on different hosts communicate with each other.
· Processes on two different end systems communicate with each other by exchanging messages across the computer network. A sending process creates and sends messages into the network; a receiving process receives these messages and possibly responds by sending messages back.

Client and Server Processes
A network application consists of pairs of processes that send messages to each other over a network. For example, in the Web application a client browser process exchanges messages with a Web server process. In a P2P file-sharing system,

a file is transferred from a process in one peer to a process in another peer. For each pair of communicating processes, we typically label one of the two processes as the client and the other process as the server.

With the Web, a browser is a client process and a Web server is a server process. With P2P file sharing, the peer that is downloading the file is labeled as the client, and the peer that is uploading the file is labeled as the server.

· In the context of a communication session between a pair of processes, the process that initiates the communication (that is, initially contacts the other process at the beginning of the session) is labeled as the client.
· The process that waits to be contacted to begin the session is the server.

In the Web, a browser process initializes contact with a Web server process; hence the browser process is the client and the Web server process is the server. In P2P file sharing, when Peer A asks Peer B to send a specific file, Peer A is the client and Peer B is the server in the context of this specific communication session.

The Interface Between the Process and the Computer Network.
Most applications consist of pairs of communicating processes, with the two processes in each pair sending messages to each other. Any message sent from one process to another must go through the underlying network. A process sends messages into, and receives messages from, the network through a software interface called a socket.

A socket is the interface between the application layer and the transport layer within a host. It is also referred to as the Application Programming Interface (API) between the application and the network, since the socket is the programming interface with which network applications are built. The application developer has control of everything on the application-layer side of the socket but has little control of the transport-layer side of the socket.
The only control that the application developer has on the transport-layer side is
(1) the choice of transport protocol .
(2) perhaps the ability to fix a few transport-layer parameters such as maximum buffer and maximum segment sizes

Once the application developer chooses a transport protocol the application is built using the transport-layer services provided by that protocol.

[image:]
Application processes, sockets, and underlying transport protocol

Addressing Processes
In order for a process running on one host to send packets to a process running on another host, the receiving process needs to have an address. To identify the receiving process, two pieces of information need to be specified:
(1) the address of the host.
(2) an identifier that specifies the receiving process in the destination host.

· In the Internet, the host is identified by its IP address.
· In addition to knowing the address of the host to which a message is destined, the sending process must also identify the receiving process (more specifically, the receiving socket) running in the host. This information is needed because in general a host could be running many network applications. A destination port number serves this purpose.
· For example, a Web server is identified by port number 80. A mail server process (using the SMTP protocol) is identified by port number 25.

Transport Services Available to Applications
Socket is the interface between the application process and the transport-layer protocol. The application at the sending side pushes messages through the socket. At the other side of the socket, the transport-layer protocol has the responsibility of getting the messages to the socket of the receiving process.

Many networks, including the Internet, provide more than one transport-layer protocol. When you develop an application, you must choose one of the available transport-layer protocols.

What are the services that a transport-layer protocol can offer to applications invoking it?
· Reliable Data Transfer- packets can get lost within a computer network.For many applications—such as
electronic mail, file transfer, remote host access, Web document transfers, and financial applications—data loss can have devastating consequences. Thus, to support these applications, something has to be done to guarantee that the data sent by one end of the application is delivered correctly and completely to the other end of the application. If a protocol provides such a guaranteed data delivery service, it is said to provide reliable data transfer. One important service that a transport-layer protocol can potentially provide to an application is process-to-process reliable data transfer. When a transport protocol provides this service, the sending process can just pass its data into the socket and know with complete confidence that the data will arrive without errors at the receiving process.
When a transport-layer protocol doesn’t provide reliable data transfer, some of the data sent by the sending process may never arrive at the receiving process. This may be acceptable for loss-tolerant applications, most notably multimedia applications such as conversational audio/video that can tolerate some amount of data loss.

· Throughput- throughput is the rate at which the sending process can deliver bits to the receiving process.
Because other sessions will be sharing the bandwidth along the network path, and because these other sessions will be coming and going, the available throughput can fluctuate with time.
Transport-layer protocol could provide, namely, guaranteed available throughput at some specified rate. With such a service, the application could request a guaranteed throughput of r bits/sec, and the transport protocol would then ensure that
the available throughput is always at least r bits/sec. Such a guaranteed throughput service would appeal to many applications.
Applications that have throughput requirements are said to be bandwidth-sensitive applications.
Many current multimedia applications are bandwidth sensitive, although some multimedia applications may use adaptive coding techniques to encode digitized voice or video at a rate that matches the currently available throughput. While bandwidth-sensitive applications have specific throughput requirements, elastic applications can make use of as much, or as little, throughput as happens to be available.

· Timing - A transport-layer protocol can also provide timing guarantees. As with throughput guarantees, timing guarantees can come in many shapes and forms. For non-real-time applications,lower delay is always preferable to higher delay, but no tight constraint is placed on the end-to-end delays.

· Security - Finally, a transport protocol can provide an application with one or more security services. For example, in the sending host, a transport protocol can encrypt all data transmitted by the sending process, and in the receiving host, the transport-layer protocol can decrypt the data before delivering the data to the receiving process. Such a service would provide confidentiality between the two processes.

A transport protocol can also provide other security services in addition to confidentiality, including data integrity and end-point authentication.

Transport Services Provided by the Internet

The Internet (and, more generally, TCP/IP networks) makes two transport protocols available to applications, UDP and TCP. When you (as an application developer) create a new network application for the Internet, one of the first decisions you have to make is whether to use UDP or TCP. Each of these protocols offers a different set of services to the invoking applications.

[image:]
Requirements of selected network applications

TCP Services

The TCP service model includes a connection-oriented service and a reliable data transfer service. When an application invokes TCP as its transport protocol, the application receives both of these services from TCP.

· Connection-oriented service. TCP has the client and server exchange transportlayer control information with each other before the application-level messages begin to flow. This so-called handshaking procedure alerts the client and server, allowing them to prepare for an onslaught of packets. After the handshaking phase, a TCP connection is said to exist between the sockets of the two processes. The connection is a full-duplex connection in that the two processes can send messages to each other over the connection at the same time. When the application finishes sending messages, it must tear down the connection.

· Reliable data transfer service. The communicating processes can rely on TCP to deliver all data sent without error and in the proper order. When one side of the application passes a stream of bytes into a socket, it can count on TCP to deliver the same stream of bytes to the receiving socket, with no missing or duplicate bytes.

· TCP also includes a congestion-control mechanism, a service for the general welfare of the Internet rather than for the direct benefit of the communicating processes. The TCP congestion-control mechanism throttles a sending process (client or server) when the network is congested between sender and receiver.

UDP Services
UDP is a no-frills, lightweight transport protocol, providing minimal services. UDP is connectionless, so there is no handshaking before the two processes start to communicate. UDP provides an unreliable data transfer service—that is, when a process sends a message into a UDP socket, UDP provides no guarantee that the message will ever reach the receiving process. Furthermore, messages that do arrive at the receiving process may arrive out of order. UDP does not include a congestion-control mechanism, so the sending side of UDP can pump data into the layer below (the network layer) at any rate it pleases.

Services Not Provided by Internet Transport Protocols
We have organized transport protocol services along four dimensions: reliable data transfer, throughput, timing, and security. Which of these services are provided by TCP and UDP? We have already noted that TCP provides reliable end-to-end data transfer. And we also know that TCP can be easily enhanced at the application layer with SSL to provide security services.
Does this mean that timesensitive applications such as Internet telephony cannot run in today’s Internet? The answer is clearly no.
In summary, today’s Internet can often provide satisfactory service to time-sensitive applications, but it cannot provide any timing or throughput guarantees.

[image:]
Popular Internet applications, their application-layer protocols, and their underlying transport protocols

· Application-Layer Protocols

Network processes communicate with each other by sending messages into sockets. But how are these messages structured? What are the meanings of the various fields in the messages? When do the processes send the messages?

An application-layer protocol defines how an application’s processes, running on different end systems, pass messages to each other. In particular, an application-layer protocol defines:
· The types of messages exchanged, for example, request messages and response messages.
· The syntax of the various message types, such as the fields in the message and how the fields are delineated.
· The semantics of the fields, that is, the meaning of the information in the fields.
· Rules for determining when and how a process sends messages and responds to messages.

An application-layer protocol is only one piece of a network application.The Web is a client-server application that allows users to obtain documents from Web servers on demand. The Web application consists of many components, including a standard for document formats (that is, HTML), Web browsers (for example, Firefox and Microsoft Internet Explorer), Web servers (for example, Apache and Microsoft servers), and an application-layer protocol. The Web’s application-layer protocol, HTTP, defines the format and sequence of messages exchanged between browser and Web server. Thus, HTTP is only one of the Web application.

The Web and HTTP
In the early 1990s, a major new application arrived on the scene—the World Wide Web [Berners-Lee 1994]. The Web was the first Internet application. the Web operates on demand. Users receive what they want, when they want it. It is enormously easy for any individual to make information available over the Web—everyone can become a publisher at extremely low cost. Hyperlinks and search engines help us navigate through an ocean of Web sites.

Overview of HTTP
The HyperText Transfer Protocol (HTTP), the Web’s application-layer protocol, is at the heart of the Web. It is defined in [RFC 1945] and [RFC 2616]. HTTP is implemented in two programs: a client program and a server program. The client program and server program, executing on different end systems, talk to each other by exchanging HTTP messages. HTTP defines the structure of these messages and how the client and server exchange the messages.
Web terminology.
A Web page (also called a document) consists of objects. Most Web pages consist of a base HTML file and
several referenced objects.
The base HTML file references the other objects in the page with the objects’ URLs. Each URL has two components: the hostname of the server that houses the object and the object’s path name.
For example, the URL
http://www.someSchool.edu/someDepartment/picture.gif

has www.someSchool.edu for a hostname.
/someDepartment/picture.gif for a path name.

Because Web browsers (such as Internet Explorer and Firefox) implement the client side of HTTP.
Web servers, which implement the server side of HTTP, house Web objects, each addressable by a URL. Popular Web servers include Apache and Microsoft Internet Information Server.

HTTP defines how Web clients request Web pages from Web servers and how servers transfer Web pages to clients. When a user requests a Web page (for example, clicks on a hyperlink), the browser sends HTTP request messages for the objects in the page to the server. The server receives the requests and responds with HTTP response messages that contain the objects.

HTTP uses TCP as its underlying transport protocol (rather than running on top of UDP). The HTTP client first initiates a TCP connection with the server. Once the connection is established, the browser and the server processes access TCP through their socket interfaces.
on the client side the socket interface is the door between the client process and the TCP connection; on the server side it is thedoor between the server process and the TCP connection. The client sends HTTP request messages into its socket interface and receives HTTP response messages from its socket interface. Similarly, the HTTP server receives request messages from its socket interface and sends response messages into its socket interface.

Note:server sends requested files to clients without storing any state information about the client.
Because an HTTP server maintains no information about the clients, HTTP is said to be a stateless protocol.

A Web server is always on, with a fixed IP address, and it services requests from potentially millions of different browsers.

[image:]
HTTP request-response behavior

Non-Persistent and Persistent Connections

In many Internet applications, the client and server communicate for an extended period of time, with the client making a series of requests and the server responding to each of the requests. Depending on the application and on how the application is being used, the series of requests may be made back-to-back, periodically at regular intervals, or intermittently.
When this client-server interaction is taking place over TCP, the application developer needs to make an important decision––should each request/response pair be sent over a separate TCP connection, or should all of the requests and their corresponding responses be sent over the same TCP connection? In the former approach, the application is said to use non-persistent connections; and in the latter approach, persistent connections.

HTTP with Non-Persistent Connections

Let’s walk through the steps of transferring a Web page from server to client for the case of non-persistent connections. Let’s suppose the page consists of a base HTML file and 10 JPEG images, and that all 11 of these objects reside on the same server. Further suppose the URL for the base HTML file is
http://www.someSchool.edu/someDepartment/home.index

Here is what happens:
1. The HTTP client process initiates a TCP connection to the server www.someSchool.edu on port number 80, which is the default port number for HTTP. Associated with the TCP connection, there will be a socket at the client and a socket at the server.
2. The HTTP client sends an HTTP request message to the server via its socket. The request message includes the path name /someDepartment/home.index. (We will discuss HTTP messages in some detail below.)
3. The HTTP server process receives the request message via its socket, retrieves the object /someDepartment/home.index from its storage (RAM or disk), encapsulates the object in an HTTP response message, and sends the response message to the client via its socket.
4. The HTTP server process tells TCP to close the TCP connection. (But TCP doesn’t actually terminate the connection until it knows for sure that the client has received the response message intact.)
5. The HTTP client receives the response message. The TCP connection terminates. The message indicates that the encapsulated object is an HTML file. The client extracts the file from the response message, examines the HTML file, and finds references to the 10 JPEG objects.
6. The first four steps are then repeated for each of the referenced JPEG objects.

The steps above illustrate the use of non-persistent connections, where each TCP connection is closed after the server sends the object—the connection does not persist for other objects. Note that each TCP connection transports exactly one request message and one response message. Thus, in this example, when a user requests the Web page, 11 TCP connections are generated.

Before continuing, let’s do a back-of-the-envelope calculation to estimate the amount of time that elapses from when a client requests the base HTML file until the entire file is received by the client. To this end, we define the round-trip time (RTT), which is the time it takes for a small packet to travel from client to server and then back to the client. The RTT includes packet-propagation delays, packetqueuing delays in intermediate routers and switches, and packet-processing delays. (These delays were discussed in Section 1.4.) Now consider what happens when a user clicks on a hyperlink. As shown in Figure 2.7, this causes the browser to initiate a TCP connection between the browser and the Web server; this involves a “three-way handshake”—the client sends a small TCP segment to the
server, the server acknowledges and responds with a small TCP segment, and, finally, the client acknowledges back to the server. The first two parts of the threeway handshake take one RTT. After completing the first two parts of the handshake, the client sends the HTTP request message combined with the third part of the three-way handshake (the acknowledgment) into the TCP connection. Once the request message arrives at the server, the server sends the HTML file into the TCP connection. This HTTP request/response eats up another RTT. Thus, roughly, the total response time is two RTTs plus the transmission time at the server of the HTML file.

[image:]
Back-of-the-envelope calculation for the time needed to request and receive an HTML file

HTTP with Persistent Connections

With persistent connections, the server leaves the TCP connection open after sending a response. Subsequent requests and responses between the same client and server can be sent over the same connection.
In particular, an entire Web page (in the example above, the base HTML file and the 10 images) can be sent over a single persistent TCP connection. Moreover, multiple Web pages residing on the same server can be sent from the server to the same client over a single persistent TCP connection.
These requests for objects can be made back-to-back, without waiting for replies to pending requests (pipelining). Typically, the HTTP server closes a connection when it isn’t used for a certain time (a configurable timeout interval). When the server receives the back-to-back requests, it sends the objects back-to-back. The default mode of HTTP uses persistent connections with pipelining.

HTTP Message Format
The HTTP specifications [RFC 1945; RFC 2616] include the definitions of the HTTP message formats. There are two types of HTTP messages, request messages and response messages.

HTTP Request Message
Below we provide a typical HTTP request message:
GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
Connection: close
User-agent: Mozilla/5.0
Accept-language: fr

[image:]
General format of an HTTP request message

The first line of an HTTP request message is called the request line; the subsequent lines are called the header lines.
The request line has three fields: the method field, the URL field, and the HTTP version field.
The method field can take on several different values, including GET, POST, HEAD, PUT, and DELETE.
The great majority of HTTP request messages use the GET method. The GET method is used when the browser requests an object, with the requested object identified in the URL field. The version is browser implements version HTTP/1.1.

The header line Host: www.someschool.edu specifies the host on which the object resides.

By including the Connection: close header line, the browser is telling the server that it doesn’t want to bother with persistent connections; it wants the server to close the connection after sending the requested object.
The User-agent: header line specifies the user agent.
Finally, the Acceptlanguage: header indicates that the user prefers to receive a French version of the object, if such an object exists on the server; otherwise, the server should send its default version.
The Accept-language: header is just one of many content negotiation headers available in HTTP.

An HTTP client often uses the POST method when the user fills out a form.
The HEAD method is similar to the GET method. When a server receives a request with the HEAD method, it responds with an HTTP message but it leaves out the requested object. Application developers often use the HEAD method for debugging.
The PUT method is often used in conjunction with Web publishing tools. It allows a user to upload an object to a specific path (directory) on a specific Web server. The PUT method is also used by applications that need to upload objects to Web servers.

The DELETE method allows a user, or an application, to delete an object on a Web server.

HTTP Response Message

HTTP/1.1 200 OK
Connection: close
Date: Tue, 09 Aug 2011 15:44:04 GMT
Server: Apache/2.2.3 (CentOS)
Last-Modified: Tue, 09 Aug 2011 15:11:03 GMT
Content-Length: 6821
Content-Type: text/html
(data data data data data ...)

[image:]
General format of an HTTP response message

It has three sections: an initial status line, six header lines, and then the entity body. The entity body is the
meat of the message—it contains the requested object itself.

The status line has three fields: the protocol version field, a status code, and a corresponding status message. In this example, the status line indicates that the server is using HTTP/1.1 and that everything is OK.

The server uses the Connection: close header line to tell the client that it is going to close the TCP connection after sending the message.
The Date:header line indicates the time and date when the HTTP response was created and sent by the server. Note that this is not the time when the object was created or last modified; it is the time when the server retrieves the object from its file system, inserts the object into the response message, and sends the response message.
The Server: header line indicates that the message was generated by an Apache Web server; it is analogous to the User-agent: header line in the HTTP request message.
The Last-Modified: header line indicates the time and date when the object was created or last modified.
The Content-Length: header line indicates the number of bytes in the object being sent.
The Content-Type: header line indicates that the object in the entity body is HTML text.

Some common status codes and associated phrases include:
· 200 OK: Request succeeded and the information is returned in the response.
· 301 Moved Permanently: Requested object has been permanently moved; the new URL is specified in Location: header of the response message. The client software will automatically retrieve the new URL.
· 400 Bad Request: This is a generic error code indicating that the request
· could not be understood by the server.
· 404 Not Found: The requested document does not exist on this server.
· 505 HTTP Version Not Supported: The requested HTTP protocol version is not supported by the server.

User-Server Interaction: Cookies

This simplifies server design and has permitted engineers to develop high-performance Web servers that can handle thousands of simultaneous TCP connections. However, it is often desirable for a Web site to identify users, either because the server wishes to restrict user access or because it wants to serve content as a function of the user identity. For these purposes, HTTP uses cookies. Cookies, defined in [RFC 6265], allow sites to keep
track of users. Most major commercial Web sites use cookies today.

Cookie technology has four components: (1) a cookie header line in the HTTP response message; (2) a cookie header line in the HTTP request message; (3) a cookie file kept on the user’s end system and managed by the user’s browser; and (4) a back-end database at the Web site.

Suppose Susan, who always accesses the Web using Internet Explorer from her home PC, contacts Amazon.com for the first time. When the request comes into the Amazon Web server, the server creates a unique identification number and creates an entry in its back-end database that is indexed by the identification number. The Amazon Web server then responds to Susan’s browser, including in the HTTP response a Set-cookie: header, which contains the identification number. For example, the header line might be: Set-cookie: 1678

When Susan’s browser receives the HTTP response message, it sees the Setcookie: header. The browser then appends a line to the special cookie file that it manages. This line includes the hostname of the server and the identification number in the Set-cookie: header.
As Susan continues to browse the Amazon site, each time she requests a Web page, her browser consults her cookie file, extracts her identification number for this site, and puts a cookie header line that includes the identification number in the HTTP request. Specifically, each of her HTTP requests to the Amazon server includes the header line: Cookie: 1678
[image:]
Keeping user state with cookies

From this discussion we see that cookies can be used to identify a user. The first time a user visits a site, the user can provide a user identification (possibly his or her name). During the subsequent sessions, the browser passes a cookie header to the server, thereby identifying the user to the server. Cookies can thus be used to create a user session layer on top of stateless HTTP.

Web Caching

A Web cache—also called a proxy server—is a network entity that satisfies HTTP requests on the behalf of an origin Web server. The Web cache has its own disk storage and keeps copies of recently requested objects in this storage.
Once a browser is configured, each browser request for an object is first directed to the Web cache.
[image:]

Clients requesting objects through a Web cache

1. The browser establishes a TCP connection to the Web cache and sends an HTTP request for the object to the Web cache.
2. The Web cache checks to see if it has a copy of the object stored locally. If it does, the Web cache returns the object within an HTTP response message to the client browser.
3. If the Web cache does not have the object, the Web cache opens a TCP connection to the origin server, that is, to www.someschool.edu. The Web cache then sends an HTTP request for the object into the cache-to-server TCP connection. After receiving this request, the origin server sends the object within an HTTP response to the Web cache.
4. When the Web cache receives the object, it stores a copy in its local storage and sends a copy, within an HTTP response message, to the client browser (over the existing TCP connection between the client browser and the Web cache).

A cache is both a server and a client at the same time. When it receives requests from and sends responses to a browser, it is a server. When it sends requests to and receives responses from an origin server, it is a client.

Web caching has seen deployment in the Internet for two reasons. First, a Web cache can substantially reduce the response time for a client request, particularly if the bottleneck bandwidth between the client and the origin server is much less than the bottleneck bandwidth between the client and the cache. If there is a high-speed connection between the client and the cache, as there often is, and if the cache has the requested object, then the cache will be able to deliver the object rapidly to the client.
Second, as we will soon illustrate with an example, Web caches can substantially reduce traffic on an institution’s access link to the Internet. By reducing traffic, the institution (for example, a company or a university) does not have to upgrade bandwidth as quickly, thereby reducing costs. Furthermore, Web caches can substantially reduce Web traffic in the Internet as a whole, thereby improving performance for all applications.

The Conditional GET
Although caching can reduce user-perceived response times, it introduces a new problem— the copy of an object residing in the cache may be stale. In other words, the object housed in the Web server may have been modified since the copy was cached at the client.
HTTP has a mechanism that allows a cache to verify that its objects are up to date. This mechanism is called the conditional GET. An HTTP request message is a so-called conditional GET message if (1) the request message uses the GET method and (2) the request message includes an If-Modified-Since: header line.
The cache forwards the object to the requesting browser but also caches the object locally. Importantly, the cache also stores the last-modified date along with the object. Third, one week later, another browser requests the same object via the cache, and the object is still in the cache. Since this object may have been modified at the Web server in the past week, the cache performs an up-to-date check by issuing a conditional GET. Specifically, the cache sends:

GET /fruit/kiwi.gif HTTP/1.1
Host: www.exotiquecuisine.com
If-modified-since: Wed, 7 Sep 2011 09:23:24

value of the If-modified-since: header line is exactly equal to the value of the Last-Modified: header line that was sent by the server.
This conditional GET is telling the server to send the object only if the object has been modified since the specified date. Suppose the object has not been modified since 7 Sep 2011 09:23:24. Then, fourth, the Web server sends a response message to the cache:

HTTP/1.1 304 Not Modified
Date: Sat, 15 Oct 2011 15:39:29
Server: Apache/1.3.0 (Unix)
(empty entity body)

We see that in response to the conditional GET, the Web server still sends a response message but does not include the requested object in the response message. Including the requested object would only waste bandwidth and increase user-perceived response time, particularly if the object is large. Note that this last response message has 304 Not Modified in the status line, which tells the cache that it can go ahead and forward its (the proxy cache’s) cached copy of the object to the requesting browser.

File Transfer: FTP

HTTP and FTP are both file transfer protocols and have many common characteristics; for example, they both run on top of TCP.
However, the two application-layer protocols have some important differences. The most striking difference is that FTP uses two parallel TCP connections to transfer a file, a control connection and a data connection.
The control connection is used for sending control information between the two hosts—information such as user identification, password, commands to change remote directory, and commands to “put” and “get” files. The data connection is used to actually send a file. Because FTP uses a separate control connection, FTP is
said to send its control information out-of-band.

[image:]
FTP moves files between local and remote file systems

[image:]
Control and data connections

· When a user starts an FTP session with a remote host, the client side of FTP (user) first initiates a control TCP connection with the server side (remote host) on server port number 21.
· The client side of FTP sends the user identification and password over this control connection. The client side of FTP also sends, over the control connection, commands to change the remote directory.
· When the server side receives a command for a file transfer over the control connection (either to, or from, the remote host), the server side initiates a TCP data connection to the client side.
· FTP sends exactly one file over the data connection and then closes the data connection. If, during the same session, the user wants to transfer another file, FTP opens another data connection.

· Thus, with FTP, the control connection remains open throughout the duration of the user session, but a new data connection is created for each file transferred within a session.

· Throughout a session, the FTP server must maintain state about the user. In particular, the server must associate the control connection with a specific user account, and the server must keep track of the user’s current directory as the user wanders about the remote directory tree.

FTP Commands and Replies
The commands, from client to server, and replies, from server to client, are sent across the control connection in 7-bit ASCII format.
	Each command consists of four uppercase ASCII characters, some with optional arguments.

· USER username: Used to send the user identification to the server.
· PASS password: Used to send the user password to the server.
· LIST: Used to ask the server to send back a list of all the files in the current remote directory. The list of files is sent over a (new and non-persistent) data connection rather than the control TCP connection.
· RETR filename: Used to retrieve (that is, get) a file from the current directory of the remote host. This command causes the remote host to initiate a data connection and to send the requested file over the data connection.
· STOR filename: Used to store (that is, put) a file into the current directory of the remote host.

There is typically a one-to-one correspondence between the command that the user issues and the FTP command sent across the control connection. Each command is followed by a reply, sent from server to client. The replies are three-digit numbers, with an optional message following the number.

· 331 Username OK, password required
· 125 Data connection already open; transfer starting
· 425 Can’t open data connection
· 452 Error writing file

Electronic Mail in the Internet
Figure presents a high-level view of the Internet mail system. We see from this diagram that it has three major components: user agents, mail servers, and theSimple Mail Transfer Protocol (SMTP).
Mail servers form the core of the e-mail infrastructure. Each recipient, such as Bob, has a mailbox located in one of the mail servers. Bob’s mailbox manages and maintains the messages that have been sent to him. A typical message starts its journey in the sender’s user agent, travels to the sender’s mail server, and travels to the recipient’s mail server, where it is deposited in the recipient’s mailbox.

When Bob wants to access the messages in his mailbox, the mail server containing his mailbox authenticates Bob (with usernames and passwords). Alice’s mail server must also deal with failures in Bob’s mail server. If Alice’s server cannot deliver mail to Bob’s server, Alice’s server holds the message in a message queue and attempts to transfer the message later. Reattempts are often done every 30 minutes or so; if there is no success after several days, the server removes the message and notifies the sender (Alice) with an e-mail message.

SMTP is the principal application-layer protocol for Internet electronic mail. It uses the reliable data transfer service of TCP to transfer mail from the sender’s mail server to the recipient’s mail server. As with most application-layer protocols, SMTP has two sides: a client side, which executes on the sender’s mail server, and a server side, which executes on the recipient’s mail server. Both the client and server sides of SMTP run on every mail server. When a mail server sends mail to other mail servers, it acts as an SMTP client. When a mail server receives mail from other mail servers, it acts as an SMTP server.
[image:]
A high-level view of the Internet e-mail system

SMTP

SMTP, defined in RFC 5321, is at the heart of Internet electronic mail. SMTP transfers messages from senders’ mail servers to the recipients’ mail servers. SMTP is much older than HTTP.

To illustrate the basic operation of SMTP, let’s walk through a common scenario. Suppose Alice wants to send Bob a simple ASCII message.

1. Alice invokes her user agent for e-mail, provides Bob’s e-mail address (for example, bob@someschool.edu), composes a message, and instructs the user agent to send the message.
2. Alice’s user agent sends the message to her mail server, where it is placed in a message queue.
3. The client side of SMTP, running on Alice’s mail server, sees the message in the message queue. It opens a TCP connection to an SMTP server, running on Bob’s mail server.
4. After some initial SMTP handshaking, the SMTP client sends Alice’s message into the TCP connection.
5. At Bob’s mail server, the server side of SMTP receives the message. Bob’s mail server then places the message in Bob’s mailbox.
6. Bob invokes his user agent to read the message at his convenience.

[image:]
Alice sends a message to Bob

· It is important to observe that SMTP does not normally use intermediate mail servers for sending mail, even when the two mail servers are located at opposite ends of the world.

The following transcript begins as soon as the TCP connection is established.
S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr ... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with “.” on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

the client issued five commands: HELO (an abbreviation for HELLO), MAIL FROM, RCPT TO, DATA, and QUIT.

The server issues replies to each command, with each reply having a reply code and some (optional) English-language explanation. We mention here that SMTP uses persistent connections: If the sending mail server has several messages to send to the same receiving mail server, it can send all of the messages over the same TCP connection.

Comparison with HTTP
When transferring the files, both persistent HTTP and SMTP use persistent connections. Thus, the two protocols have common characteristics. However, there are important differences.

First, HTTP is mainly a pull protocol—someone loads information on a Web server and users use HTTP to pull the information from the server at their convenience. In particular, the TCP connection is initiated by the machine that wants to receive the file. On the other hand, SMTP is primarily a push protocol—the sending mail server pushes the file to the receiving mail server. In particular, the TCP connection is initiated by the machine that wants to send the file.
A second difference, which we alluded to earlier, is that SMTP requires each message, including the body of each message, to be in 7-bit ASCII format. If the message contains characters that are not 7-bit ASCII or contains binary data then the message has to be encoded into 7-bit ASCII. HTTP data does not impose this restriction.

A third important difference concerns how a document consisting of text and images is handled. HTTP encapsulates each object in its own HTTP response message. Internet mail places all of the message’s objects into one message.
Mail Message Formats
RFC 5322 specifies the exact format for mail header lines as well as their semantic interpretations. As with HTTP, each header line contains readable text, consisting of a keyword followed by a colon followed by a value. Some of the keywords are required and others are optional. Every header must have a From: header line and a To: header line; a header may include a Subject: header line as well as other optional header lines.

It is important to note that these header lines are different from the SMTP commands.
A typical message header looks like this:
From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Searching for the meaning of life.
After the message header, a blank line follows; then the message body (in ASCII) follows.

Mail Access Protocols
Once SMTP delivers the message from Alice’s mail server to Bob’s mail server, the message is placed in Bob’s mailbox. Throughout this discussion we have tacitly assumed that Bob reads his mail by logging onto the server host and then executing a mail reader that runs on that host. Up until the early 1990s this was the standard way of doing things. But today, mail access uses a client-server architecture—the typical user reads e-mail with a client that executes on the user’s end system.
user agent can’t use SMTP to obtain the messages because obtaining the messages is a pull operation, whereas SMTP is a push protocol.
There are currently a number of popular mail access protocols, including Post Office Protocol—Version 3 (POP3), Internet Mail Access Protocol (IMAP), and HTTP.
[image:]
POP3
POP3 is an extremely simple mail access protocol. It is defined in [RFC 1939], which is short and quite readable. Because the protocol is so simple, its functionality is rather limited. POP3 begins when the user agent (the client) opens a TCP connection to the mail server (the server) on port 110. With the TCP connection established, POP3 progresses through three phases: authorization, transaction, and update.
During the first phase, authorization, the user agent sends a username and a password (in the clear) to authenticate the user. During the second phase, transaction, the user agent retrieves messages; also during this phase, the user agent can mark messages for deletion, remove deletion marks, and obtain mail statistics. The third phase, update, occurs after the client has issued the quit command, ending the POP3 session; at this time, the mail server deletes the messages that were marked for deletion.
In a POP3 transaction, the user agent issues commands, and the server responds to each command with a reply. There are two possible responses: +OK (sometimes followed by server-to-client data), used by the server to indicate that the previous command was fine; and -ERR, used by the server to indicate that something was wrong with the previous command.
telnet mailServer 110
+OK POP3 server ready
user bob
+OK
pass hungry

+OK user successfully logged on
If you misspell a command, the POP3 server will reply with an -ERR message.

A user agent using POP3 can often be configured (by the user) to “download and delete” or to “download and keep.” The sequence of commands issued by a POP3 user agent depends on which of these two modes the user agent is operating in. In the download-and-delete mode, the user agent will issue the list, retr, and dele commands.
C: list
S: 1 498
S: 2 912
S: .
C: retr 1
S: (blah blah ...
S:
S:blah)
S: .
C: dele 1
C: retr 2
S: (blah blah ...
S:
S:blah)
S: .
C: dele 2
C: quit
S: +OK POP3 server signing off
The user agent first asks the mail server to list the size of each of the stored messages. The user agent then retrieves and deletes each message from the server. Note that after the authorization phase, the user agent employed only four commands: list, retr, dele, and quit.
After processing the quit command, the POP3 server enters the update phase and removes messages 1 and 2 from the mailbox.

In the download-and keep mode, the user agent leaves the messages on the mail server after downloading them.
During a POP3 session between a user agent and the mail server, the POP3 server maintains some state information; in particular, it keeps track of which user messages have been marked deleted. However, the POP3 server does not carry state information across POP3 sessions.
IMAP
To solve the problems associated with POP3, the IMAP protocol, defined in [RFC 3501], was invented. Like POP3, IMAP is a mail access protocol. It has many more features than POP3, but it is also significantly more complex.
An IMAP server will associate each message with a folder; when a message first arrives at the server, it is associated with the recipient’s INBOX folder.
The recipient can then move the message into a new, user-created folder, read the message, delete the message, and so on.
The IMAP protocol provides commands to allow users to create folders and move messages from one folder to another. IMAP also provides commands that allow users to search remote folders for messages matching specific criteria.
An IMAP server maintains user state information across IMAP sessions.Another important feature of IMAP is that it has commands that permit a user agent to obtain components of messages.For example, a user agent can obtain just the message header of a message or just one part of a multipart MIME message.

Web-Based E-Mail
More and more users today are sending and accessing their e-mail through their Web browsers. Hotmail introduced Web-based access in the mid 1990s. Now Web-based e-mail is also provided by Google, Yahoo!, as well as just about every major university and corporation. With this service, the user agent is an ordinary Web browser, and the user communicates with its remote mailbox via HTTP.
When a recipient accesses mails from server by using HTTP Protocol. When a sender sends e-mail messagefrom her browser to her mail server over HTTP rather than over SMTP.

DNS—The Internet’s Directory Service

· One of the most important components of the application layer is the Domain Name System (DNS) server.
· DNS is a distributed hierarchical and global directory that translates machine or domain names to numerical IP addresses.
· DNS can be thought as a distributed database system used to map host names to IP addresses, and vice versa.
· DNS is a critical infrastructure, and all hosts contact DNS servers when they initiate connections. DNS can run over either UDP or TCP.
· However, running over UDP is usually preferred, since a fast response for a transaction provided by UDP is required.
Some of the information-processing functions a DNS server handles are
· Finding the address of a particular host
· Delegating a subtree of server names to another server
· Denoting the start of the subtree that contains cache and configuration parameters, and giving corresponding addresses
· Naming a host that processes incoming mail for the designated target
· Finding the host type and the operating system information
· Finding an alias for the real name of a host
· Mapping IP addresses to host names
· [bookmark: iddle1595][bookmark: iddle1598][bookmark: iddle2052][bookmark: iddle2053]DNS is an application-layer protocol, and every Internet service providerwhether for an organization, a university campus, or even a residencehas a DNS server. In the normal mode of operation, a host sends UDP queries to a DNS server. The DNS server either replies or directs the queries to other servers.
If the DNS server does not respond, the fault may be UDP's unreliability.

Domain Name Space
Q)With Neat diagram explain Domain Name Space?
· Any entity in the TCP/IP environment is identified by an IP address, which thereby identifies the connection of the corresponding host to the Internet.
· An IP address can also be assigned a domain name.
· Unique domain names assigned to hosts must be selected from a name space and are generally organized in a hierarchical fashion.
· Domain names are defined in a tree-based structure with the root at the top, as shown in Figure . A tree is structured with a maximum of 128 levels, starting at level 0 (root). Each level consists of nodes. A node on a tree is identified by a label, with a string of up to 63 characters, except for the root label, which has empty string.
[bookmark: ch09fig02]Figure Hierarchy of domain name space, labels, and domain names

[image:]
· The last label of a domain name expresses the type of organization; other parts of the domain name indicate the hierarchy of the departments within the organization. Thus, an organization can add any suffix or prefix to its name to define its host or resources.
· A domain name is a sequence of labels separated by dots and is read from the node up to the root.
· Domain names can also be partial. For example, company1.com is a partial domain name.

· Services Provided by DNS
DNS provides a few other important services in addition to translating hostnames to IP addresses:
· Host aliasing. A host with a complicated hostname can have one or more alias names. For example, a hostname such as relay1.west-coast.enterprise. com could have, say, two aliases such as enterprise.com and www.enterprise.com. In this case, the hostname relay1.westcoast. enterprise.com is said to be a canonical hostname. Alias hostnames, when present, are typically more mnemonic than canonical hostnaDNS can be invoked by an application to obtain the canonical hostname for a supplied alias hostname as well as the IP address of the host.
· Mail server aliasing. DNS can be invoked by a mail application to obtain the canonical hostname for a supplied alias hostname as well as the IP address of the host. In fact, the MX record permits a company’s mail server and Web server to have identical hostnames; for example, a company’s Web server and mail server can both be called enterprise.com.
· Load distribution. DNS is also used to perform load distribution among replicated servers, such as replicated Web servers. Busy sites, such as cnn.com, are replicated over multiple servers, with each server running on a different end system and each having a different IP address. For replicated Web servers, a set of IP addresses is thus associated with one canonical hostname. The DNS database contains this set of IP addresses. When clients make a DNS query for a name mapped to a set of addresses, the server responds with the entire set of IP addresses, but rotates the ordering of the addresses within each reply. Because a client typically sends its HTTP request message to the IP address that is listed first in the set, DNS rotation distributes the traffic among the replicated servers.DNS rotation is also used for e-mail so that multiple mail servers can have the same alias name.
· The DNS is specified in RFC 1034 and RFC 1035.
Overview of How DNS Works
· (Example)We now present a high-level overview of how DNS works. Our discussion will focus on the hostname-to-IP-address translation service. Suppose that some application (such as a Web browser or a mail reader) running in a user’s host needs to translate a hostname to an IP address. The application will invoke the client side of DNS, specifying the hostname that needs to be translated. (On many UNIX-based machines, gethostbyname() is the function call that an application calls in order to perform the translation.) DNS in the user’s host then takes over, sending a query message into the network. All DNS query and reply messages are sent within UDP datagrams to port 53. After a delay, ranging from milliseconds to seconds, DNS in the user’s host receives a DNS reply message that provides the desired mapping. This mapping is then passed to the invoking application. Thus, from the perspective of the invoking application in the user’s host, DNS is a black box providing a simple, straightforward translation service. But in fact, the black box that implements the service is complex, consisting of a large number of DNS servers distributed around the globe, as well as an application-layer protocol that specifies how the DNS servers and querying hosts communicate.
· In this centralized design, clients simply direct all queries to the single DNS server, and the DNS server responds directly to the querying clients. Although the simplicity of this design is attractive, it is inappropriate for today’s Internet, with its vast (and growing) number of hosts. The problems with a centralized design include:
· A single point of failure. If the DNS server crashes, so does the entire Internet.
· Traffic volume. A single DNS server would have to handle all DNS queries (for all the HTTP requests and e-mail messages generated from hundreds of millions of hosts).
· Distant centralized database. A single DNS server cannot be “close to” all the querying clients.This can lead to significant delays.
· Maintenance. The single DNS server would have to keep records for all Internet hosts. Not only would this centralized database be huge, but it would have to be updated frequently to account for every new host.
A Distributed, Hierarchical Database
In order to deal with the issue of scale, the DNS uses a large number of servers, organized in a hierarchical fashion and distributed around the world. No single DNS server has all of the mappings for all of the hosts in the Internet. Instead, the mappings are distributed across the DNS servers. To a first approximation, there are three classes of DNS servers—root DNS servers, top-level domain (TLD) DNS servers, and authoritative DNS servers—organized in a hierarchy.
[image:]
· Root DNS servers. In the Internet there are 13 root DNS servers (labeled A through M), most of which are located in North America. An October 2006 map of the root DNS servers is shown in Figure 2.20; a list of the current root DNS servers is available via [Root-servers 2012]. Although we have referred to each of the 13 root DNS servers as if it were a single server, each “server” is actually a network of replicated servers, for both security and reliability purposes. All together, there are 247 root servers as of fall 2011.
· Top-level domain (TLD) servers. These servers are responsible for top-level domains such as com, org, net, edu, and gov, and all of the country top-level domains such as uk, fr, ca, and jp. The company Verisign Global Registry services maintains the TLD servers for the com top-level domain, and the company Educause maintains the TLD servers for the edu top-level domain. See [IANA TLD 2012] for a list of all top-level domains.
· Authoritative DNS servers. Every organization with publicly accessible hosts (such as Web servers and mail servers) on the Internet must provide publicly accessible DNS records that map the names of those hosts to IP addresses. An organization’s authoritative DNS server houses these DNS records. An organization can choose to implement its own authoritative DNS server to hold these records; alternatively, the organization can pay to have these records stored in an authoritative DNS server of some service provider. Most universities and large companies implement and maintain their own primary and secondary (backup) authoritative DNS server.
· There is another important type of DNS server called the local DNS server. A local DNS server does not strictly belong to the hierarchy of servers but is nevertheless central to the DNS architecture. Each ISP—such as a university, an academic department, an employee’s company, or a residential ISP—has a local DNS server (also called a default name server). When a host connects to an ISP, the ISP provides the host with the IP addresses of one or more of its local DNS servers.
Name/Address Mapping
· [bookmark: iddle1032][bookmark: iddle1118][bookmark: iddle1602][bookmark: iddle2024][bookmark: iddle2191][bookmark: iddle2192][bookmark: iddle2385][bookmark: iddle2889][bookmark: iddle3152][bookmark: iddle3153]DNS operates based on the client/server application.
· Any client host can send an IP address to a domain name server to be mapped to a domain name.
· Each host that needs to map an address to a name or vice versa should access the closest DNS server with its request.
· The server finds and releases the requested information to the host. If the requested information is not found, the server either delegates the request to other servers or asks them to provide the information. After receiving the mapping information, the requesting host examines it for correctness and delivers it to the requesting process.
Mapping can be of either recursive or iterative.
In recursive mapping (Figure), the client host makes the request to its corresponding DNS server. The DNS server is responsible for finding the answer recursively. The requesting client host asks for the answer through its local DNS server, news.company1.com. Assume that this server contacts the root DNS server, and still the information has not been found. This time, the root DNS server sends the query to the .com server, but the transaction still remains unsuccessful. Finally, .com server sends the query to the local DNS server of the requested place, as dns.company2.com, and finds the answer. The answer to a query in this method is routed back to the origin, as shown in the figure. The local DNS server of the requested place is called the authoritative server and adds information to the mapping, called time to live (TTL).
[bookmark: ch09fig04]Figure Recursive mapping
[image:]

In the iterative approach, the mapping function is as shown in Figure . In this case, if it does not have the name to provide, the server returns to the client host.
[bookmark: ch09fig05]Figure . Iterative mapping
[image:]

The host must then repeat the query to the next DNS server that may be able to provide the name. This continues until the host succeeds in obtaining the name. In Figure , the news.company1.com host sends the query to its own local DNS server, dns.company1.comthus trying the root DNS server firstand then tries .com server, finally ending up with the local DNS server of the requested place: dns.company2.com.
DNS Caching
Our discussion thus far has ignored DNS caching, a critically important feature of the DNS system. In truth, DNS extensively exploits DNS caching in order to improve the delay performance and to reduce the number of DNS messages ricocheting around the Internet. The idea behind DNS caching is very simple. In a query chain, when a DNS server receives a DNS reply (containing, for example, a mapping from a hostname to an IP address), it can cache the mapping in its local memory. If a hostname/IP address pair is cached in a DNS server and another query arrives to the DNS server for the same hostname, the DNS server can provide the desired IP address, even if it is not authoritative for the hostname.
A local DNS server can also cache the IP addresses of TLD servers, thereby allowing the local DNS server to bypass the root DNS servers in a query chain (this often happens).
DNS Records and Messages
The DNS servers that together implement the DNS distributed database store resource records (RRs), including RRs that provide hostname-to-IP address mappings. Each DNS reply message carries one or more resource records.
A resource record is a four-tuple that contains the following fields:
(Name, Value, Type, TTL)
TTL is the time to live of the resource record; it determines when a resource should be removed from a cache.
The meaning of Name and Value depend on Type:
· If Type=A, then Name is a hostname and Value is the IP address for the hostname.Thus, a Type A record provides the standard hostname-to-IP address mapping. As an example, (relay1.bar.foo.com, 145.37.93.126, A) is a Type A record.
· If Type=NS, then Name is a domain (such as foo.com) and Value is the hostname of an authoritative DNS server that knows how to obtain the IP addresses for hosts in the domain. This record is used to route DNS queries further along in the query chain. As an example, (foo.com, dns.foo.com, NS) is a Type NS record.
· If Type=CNAME, then Value is a canonical hostname for the alias hostname Name. This record can provide querying hosts the canonical name for a hostname. As an example, (foo.com, relay1.bar.foo.com, CNAME) is a CNAME record.
· If Type=MX, then Value is the canonical name of a mail server that has an alias hostname Name. As an example, (foo.com, mail.bar.foo.com, MX) is an MX record. MX records allow the hostnames of mail servers to have simple aliases. Note that by using the MX record, a company can have the same aliased name for its mail server and for one of its other servers (such as its Web server). To obtain the canonical name for the mail server, a DNS client would query for an MX record; to obtain the canonical name for the other server, the DNS client would query for the CNAME record.

DNS Messages
Earlier in this section, we referred to DNS query and reply messages. These are the only two kinds of DNS messages.
· The first 12 bytes is the header section, which has a number of fields. The first field is a 16-bit number that identifies the query. This identifier is copied into the reply message to a query, allowing the client to match received replies with sent queries. There are a number of flags in the flag field. A 1-bit query/reply flag indicates whether the message is a query (0) or a reply (1). A1-bit authoritative flag is set in a reply message when a DNS server is an authoritative server for a queried name. A 1-bit recursion-desired flag is set when a client (host or DNS server) desires that the DNS server perform recursion when it doesn’t have the record. A 1-bit recursion available field is set in a reply if the DNS server supports recursion. In the header,there are also four number-of fields. These fields indicate the number of occurrences of the four types of data sections that follow the header.
· The question section contains information about the query that is being made. This section includes (1) a name field that contains the name that is being queried, and (2) a type field that indicates the type of question being asked about the name—for example, a host address associated with a name (Type A) or the mail server for a name (Type MX).
· In a reply from a DNS server, the answer section contains the resource records for the name that was originally queried. Recall that in each resource record there is the Type (for example, A, NS, CNAME, and MX), the Value, and the TTL. A reply can return multiple RRs in the answer, since a hostname can have multiple IP addresses (for example, for replicated Web servers, as discussed earlier in this section).
· The authority section contains records of other authoritative servers.
· The additional section contains other helpful records. For example, the answer field in a reply to an MX query contains a resource record providing the canonical hostname of a mail server. The additional section contains a Type A record providing the IP address for the canonical hostname of the mail server.

[image:]
DNS message format

A registrar is a commercial entity that verifies the uniqueness of the domain name, enters the domain name into the DNS database (as discussed below), and collects a small fee from you for its services.
When you register the domain name networkutopia.com with some registrar, you also need to provide the registrar with the names and IP addresses of your primary and secondary authoritative DNS servers. Suppose the names and IP addresses are dns1.networkutopia.com, dns2.networkutopia.com, 212.212.212.1, and 212.212.212.2. For each of these two authoritative DNS servers, the registrar would then make sure that a Type NS and a Type Arecord are entered into the TLD com servers. Specifically, for the primary authoritative server for networkutopia.com, the registrar would insert the following two resource records into the DNS system:
(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)
You’ll also have to make sure that the Type A resource record for your Web server www.networkutopia.com and the Type MX resource record for your mail server mail.networkutopia.com are entered into your authoritative DNS servers.

P2P File Distribution
· In client-server file distribution, the server must send a copy of the file to each of the peers—placing an enormous burden on the server and consuming a large amount of server bandwidth.
· In P2P file distribution, each peer can redistribute any portion of the file it has received to any other peers, thereby assisting the server in the distribution process. As of 2012, the most popular P2P file distribution protocol is BitTorrent.
· Originally developed by Bram Cohen,there are now many different independent BitTorrent clients conforming to the BitTorrent protocol, just as there are a number of Web browser clients that conform to the HTTP protocol.
Scalability of P2P Architectures
The server and the peers are connected to the Internet with access links as shown in fig. Denote the upload rate of the server’s access link by us, the upload rate of the ith peer’s access link by ui, and the download rate of the ith peer’s access link by di. Also denote the size of the file to be distributed (in bits) by F and the number of peers that want to obtain a copy of the file by N. The distribution time is the time it takes to get a copy of the file to all N peers. In our analysis of the distribution time below, for both client-server and P2P architectures, we make the simplifying assumption that the Internet core has abundant bandwidth, implying that all of the bottlenecks are in access networks
[image:]

Let’s first determine the distribution time for the client-server architecture, which we denote by Dcs. In the client-server architecture, none of the peers aids in distributing the file. We make the following observations:
• The server must transmit one copy of the file to each of the N peers. Thus the server must transmit NF bits. Since the server’s upload rate is us, the time to distribute the file must be at least NF/us.
• Let dmin denote the download rate of the peer with the lowest download rate, that is, dmin = min{d1,dp,...,dN}. The peer with the lowest download rate cannot obtain all F bits of the file in less than F/dmin seconds. Thus the minimum distribution time is at least F/dmin.
[image:]

This provides a lower bound on the minimum distribution time for the client-server architecture. for N large enough, the client-server distribution time is given by NF/us. Thus, the distribution time increases linearly with the number of
peers N.
Let’s now go through a similar analysis for the P2P architecture, where each peer can assist the server in distributing the file. In particular, when a peer receives some file data, it can use its own upload capacity to redistribute the data to other peers.
• At the beginning of the distribution, only the server has the file. To get this file into the community of peers, the server must send each bit of the file at least once into its access link. Thus, the minimum distribution time is at least F/us. (Unlike the client-server scheme, a bit sent once by the server may not have to be sent by the server again, as the peers may redistribute the bit among themselves.)
• As with the client-server architecture, the peer with the lowest download rate cannot obtain all F bits of the file in less than F/dmin seconds. Thus the minimum distribution time is at least F/dmin.
• Finally, observe that the total upload capacity of the system as a whole is equal to the upload rate of the server plus the upload rates of each of the individual peers, that is, utotal = us + u1 + … + uN. The system must deliver (upload) F bits to each of the N peers, thus delivering a total of NF bits. This cannot be done at a rate faster than utotal. Thus, the minimum distribution time is also at least NF/(us + u1 + … + uN).

[image:]

BitTorrent
· BitTorrent is a popular P2P protocol for file distribution [Chao 2011]. In BitTorrent lingo, the collection of all peers participating in the distribution of a particular file is called a torrent.
· Peers in a torrent download equal-size chunks of the file from one another, with a typical chunk size of 256 KBytes.
· When a peer first joins a torrent, it has no chunks. Over time it accumulates more and more chunks. While it downloads chunks it also uploads chunks to other peers.
· Once a peer has acquired the entire file, it may (selfishly) leave the torrent, or (altruistically) remain in the torrent and continue to upload chunks to other peers.
· Also, any peer may leave the torrent at any time with only a subset of chunks, and later rejoin the torrent.
· Each torrent has an infrastructure node called a tracker.
· When a peer joins a torrent, it registers itself with the tracker and periodically informs the tracker that it is still in the torrent.
· In this manner, the tracker keeps track of the peers that are participating in the torrent. A given torrent may have fewer than ten or more than a thousand peers participating at any instant of time.
· At any given time, each peer will have a subset of chunks from the file, with different peers having different subsets. Periodically, Alice will ask each of her neighboring peers (over the TCP connections) for the list of the chunks they have. If Alice has L different neighbors, she will obtain L lists of chunks. With this knowledge, Alice will issue requests (again over the TCP connections) for chunks she currently does not have.
· So at any given instant of time, Alice will have a subset of chunks and will know which chunks her neighbors have. With this information, Alice will have two important decisions to make. First, which chunks should she request first from her neighbors? And second, to which of her neighbors should she send requested chunks? In deciding which chunks to request, Alice uses a technique called rarest first. The idea is to determine, from among the chunks she does not have, the chunks that are the rarest among her neighbors (that is, the chunks that have the fewest repeated copies among her neighbors) and then request those rarest chunks first. In this manner, the rarest chunks get more quickly redistributed, aiming to (roughly) equalize the numbers of copies of each chunk in the torrent.

[image:]
File distribution with BitTorrent

To determine which requests she responds to, BitTorrent uses a clever trading algorithm. The basic idea is that Alice gives priority to the neighbors that are currently supplying her data at the highest rate. Specifically, for each of her neighbors, Alice continually measures the rate at which she receives bits and determines the four peers that are feeding her bits at the highest rate. She then reciprocates by sending chunks to these same four peers.
In BitTorrent lingo, these four peers are said to be unchoked. Importantly, every 30 seconds, she also picks one additional neighbor at random and sends it chunks. Let’s call the randomly chosen peer Bob. In BitTorrent lingo, Bob is said to be optimistically unchoked.

If the two peers are satisfied with the trading, they will put each other in their top four lists and continue trading with each other until one of the peers finds a better partner. The effect is that peers capable of uploading at compatible rates tend to find each other. The random neighbor selection also allows new peers to get chunks, so that they can have something to trade. All other neighboring peers besides these five peers (four “top” peers and one probing peer) are “choked,” that is, they do not receive any chunks from Alice.

Distributed Hash Tables (DHTs)

we will consider how to implement a simple database in a P2P network. Let’s begin by describing a centralized version of this simple database, which will simply contain (key, value) pairs. For example, the keys could be social security numbers and the values could be the corresponding human names; in this case, an example key-value pair is (156-45-7081, Johnny Wu). Or the keys could be content names (e.g., names of movies, albums, and software), and the value could be the IP address at which the content is stored;

We query the database with a key. If there are one or more key-value pairs in the database that match the query key, the database returns the corresponding values. So, for example, if the database stores social security numbers and their corresponding human names, we can query with a specific social security number, and the database returns the name of the human who has that social security number. Or, if the database stores content names and their corresponding IP addresses, we can query with a specific content name, and the database returns the IP addresses that store the specific content.

Building such a database is straightforward with a client-server architecture that stores all the (key, value) pairs in one central server. So in this section, we’ll instead consider how to build a distributed, P2P version of this database that will store the (key, value) pairs over millions of peers. In the P2P system, each peer will only hold a small subset of the totality of the (key, value) pairs. We’ll allow any peer to query the distributed database with a particular key. The distributed database will then locate the peers that have the corresponding (key, value) pairs and return the key-value pairs to the querying peer. Any peer will also be allowed to insert new key-value pairs into the
database. Such a distributed database is referred to as a distributed hash table (DHT).

Before describing how we can create a DHT, let’s first describe a specific example DHT service in the context of P2P file sharing. In this case, a key is the content name and the value is the IP address of a peer that has a copy of the content. So, if Bob and Charlie each have a copy of the latest Linux distribution, then the DHT database will include the following two key-value pairs: (Linux, IPBob) and (Linux, IPCharlie). More specifically, since the DHT database is distributed over the peers, some peer, say Dave, will be responsible for the key “Linux” and will have
the corresponding key-value pairs. Now suppose Alice wants to obtain a copy of Linux. Clearly, she first needs to know which peers have a copy of Linux before she can begin to download it. To this end, she queries the DHT with “Linux” as the key. The DHT then determines that the peer Dave is responsible for the key “Linux.” The DHT then contacts peer Dave, obtains from Dave the key-value pairs (Linux, IPBob) and (Linux, IPCharlie), and passes them on to Alice. Alice can then download the latest Linux distribution from either IPBob or IPCharlie.

Now let’s return to the general problem of designing a DHT for general keyvalue pairs. One naïve approach to building a DHT is to randomly scatter the (key, value) pairs across all the peers and have each peer maintain a list of the IP addresses of all participating peers. In this design, the querying peer sends its query to all other peers, and the peers containing the (key, value) pairs that match the key can respond with their matching pairs. Such an approach is completely unscalable, of course, as it would require each peer to not only know about all other peers (possibly millions of such peers!) but even worse, have each query sent to all peers.

We now describe an elegant approach to designing a DHT. To this end, let’s first assign an identifier to each peer, where each identifier is an integer in the range [0, 2n- 1] for some fixed n. Note that each such identifier can be expressed by an n-bit representation. Let’s also require each key to be an integer in the same range. The astute reader may have observed that the example keys described a little earlier (social security numbers and content names) are not integers. To create integers out of such keys, we will use a hash function that maps each key (e.g., social security number) to an integer in the range [0, 2n-1]. Ahash function is a many-to-one function for which two different inputs can have the same output (same integer), but the likelihood of the having the same output is extremely small.
The hash function is assumed to be available to all peers in the system. Henceforth, when we refer to the “key,” we are referring to the hash of the original key. So, for example, if the original key is “Led Zeppelin IV,” the key used in the DHT will be the integer that equals the hash of “Led Zeppelin IV.” As you may have guessed, this is why “Hash” is used in the term “Distributed Hash Function.
Let’s now consider the problem of storing the (key, value) pairs in the DHT. The central issue here is defining a rule for assigning keys to peers. Given that each peer has an integer identifier and that each key is also an integer in the same range, a natural approach is to assign each (key, value) pair to the peer whose identifier is the closest to the key.
Now suppose a peer, Alice, wants to insert a (key, value) pair into the DHT. Conceptually, this is straightforward: She first determines the peer whose identifier is closest to the key; she then sends a message to that peer, instructing it to store the (key, value) pair. But how does Alice determine the peer that is closest to the key? If Alice were to keep track of all the peers in the system (peer IDs and corresponding IP addresses), she could locally determine the closest peer. But such an approach requires each peer to keep track of all other peers in the DHT—which is completely impractical for a large-scale system with millions of peers.

Circular DHT
To address this problem of scale, let’s now consider organizing the peers into a circle. In this circular arrangement, each peer only keeps track of its immediate successor and immediate predecessor (modulo 2n). An example of such a circle is shown in Figure 2.27(a). In this example, n is again 4 and there are the same eight peers from the previous example. Each peer is only aware of its immediate successor and predecessor; for example, peer 5 knows the IP address and identifier for peers 8 and 4 but does not necessarily know anything about any other peers that may be in the DHT. This circular arrangement of the peers is a special case of an overlay network. In an overlay network, the peers form an abstract logical network which resides above the “underlay” computer network consisting of physical links, routers, and hosts. The links in an overlay network are not physical links, but are simply virtual liaisons between pairs of peers. In the overlay in Figure 2.27(a), there are eight peers and eight overlay links; in the overlay in Figure 2.27(b) there are eight peers and 16 overlay links. A single overlay link typically uses many physical links and physical routers in the underlay network.
[image:]
(a) A circular DHT. Peer 3 wants to determine who is responsible for key 11. (b) A circular DHT with shortcuts

The circular DHT provides a very elegant solution for reducing the amount of overlay information each peer must manage. In particular, each peer needs only to be aware of two peers, its immediate successor and its immediate predecessor.

But this solution introduces yet a new problem. Although each peer is only aware of two neighboring peers, to find the node responsible for a key (in the worst case), all N nodes in the DHT will have to forward a message around the circle; N/2 messages are sent on average.

Thus, in designing a DHT, there is tradeoff between the number of neighbors each peer has to track and the number of messages that the DHT needs to send to resolve a single query. On one hand, if each peer tracks all other peers (mesh overlay), then only one message is sent per query, but each peer has to keep track of N peers. On the other hand, with a circular DHT, each peer is only aware of two peers, but N/2 messages are sent on average for each query. Fortunately, we can refine our designs of DHTs so that the number of neighbors per peer as well as the number of messages per query is kept to an acceptable size. One such refinement is to use the circular overlay as a foundation, but add “shortcuts” so that each peer not only keeps track of its immediate successor and predecessor, but also of a relatively small number of shortcut peers scattered about the circle.

Peer Churn
In P2P systems, a peer can come or go without warning. Thus, when designing a DHT, we also must be concerned about maintaining the DHT overlay in the presence of such peer churn. To get a big-picture understanding of how this could be accomplished, let’s once again consider the circular DHT in Figure 2.27(a). To handle peer churn, we will now require each peer to track (that is, know the IP address of) its first and second successors.
Let’s consider how peer 4 updates its state:
1. Peer 4 replaces its first successor (peer 5) with its second successor (peer 8).
2. Peer 4 then asks its new first successor (peer 8) for the identifier and IP address of its immediate successor (peer 10). Peer 4 then makes peer 10 its second successor.

Having briefly addressed what has to be done when a peer leaves, let’s now consider what happens when a peer wants to join the DHT. Let’s say a peer with identifier 13 wants to join the DHT, and at the time of joining, it only knows about peer 1’s existence in the DHT. Peer 13 would first send peer 1 a message, saying “what will be 13’s predecessor and successor?” This message gets forwarded through the DHT until it reaches peer 12, who realizes that it will be 13’s predecessor and that its current successor, peer 15, will become 13’s successor. Next, peer 12
sends this predecessor and successor information to peer 13. Peer 13 can now join the DHT by making peer 15 its successor and by notifying peer 12 that it should change its immediate successor to 13.

Socket Programming: Creating Network Applications
· A typical network application consists of a pair of programs—a client program and a server program—residing in two different end systems.
· When these two programs are executed, a client process and a server process are created, and these processes communicate with each other by reading from, and writing to, sockets.
· When creating a network application, the developer’s main task is therefore to write the code for both the client and server programs.
· There are two types of network applications. One type is an implementation whose operation is specified in a protocol standard, such as an RFC or some other standards document; such an application is sometimes referred to as “open,” since the rules specifying its operation are known to all.
· For such an implementation, the client and server programs must conform to the rules dictated by the RFC.
· For example, the client program could be an implementation of the client side of the FTP protocol, described in Section 2.3 and explicitly defined in RFC 959; similarly, the server program could be an implementation of the FTP server protocol, also explicitly defined in RFC 959.

· The other type of network application is a proprietary network application. In this case the client and server programs employ an application-layer protocol that has not been openly published in an RFC or elsewhere.
· A single developer creates both the client and server programs, and the developer has complete control over what goes in the code. But because the code does not implement an open protocol, other independent developers will not be able to develop code that interoperates with the application.
· During the development phase, one of the first decisions the developer must make is whether the application is to run over TCP or over UDP.
· TCP is connection oriented and provides a reliable bytestream channel through which data flows between two end systems.
· UDP is connectionless and sends independent packets of data from one end system to the other, without any guarantees about delivery.
· When a client or server program implements a protocol defined by an RFC, it should use the well-known port number associated with the protocol.
· when developing a proprietary application, the developer must be careful to avoid using such well-known port numbers.

Socket Programming with UDP
Interaction between two communicating processes that use UDP sockets.
· Before the sending process can push a packet of data out the socket door, when using UDP, it must first attach a destination address to the packet.
· After the packet passes through the sender’s socket, the Internet will use this destination address to route the packet through the Internet to the socket in the receiving process. When the packet arrives at the receiving socket, the receiving process will retrieve the packet through the socket, and then inspect the packet’s contents and take appropriate action.
· The sending process attaches to the packet a destination address which consists of the destination host’s IP address and the destination socket’s port number.

Client Side
· Create client Socket
· Create datagram(request message)
· Send the datagram to server socket through client socket.
· Read the datagram from client socket sent by server socket.
· Close already opened Client Socket.
Server Side
· Create Server Socket.
· Bind it to the port number.
· Read the datagram from server socket sent by client socket.
· Create datagram (response message).
· Send tha data to the client socket through server Socket.

[image:]

API’s
Socket() – used to create Socket. The function takes two arguments. The first parameter is address family and the second parameter is socket type.
socket(socket.AF_INET, socket.SOCK_DGRAM)
		 AF_INET family -- indicates underlying Network is IPV4
		SOCK_DGRAM -- UDP Socket
sendto() – used to send the datagram through Socket.
sendto() attaches the destination address (serverName, serverPort) to the message and sends the resulting packet into the process’s socket.
		clientSocket.sendto(message,(serverName, serverPort))
recvfrom() – used to receive the datagram from socket. The method recvfrom also takes the buffer size 2048 as 		input.
		clientSocket.recvfrom(2048)
bind()—used to assign port number to server process.
		bind((‘127.0.0.1’, serverPort))
close()—used to close the socket. The process then terminates.
	ClientSocket.close()

Server.py

import socket
serverPort = 12000
serverSocket = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
serverSocket.bind(("127.0.0.1", serverPort))
print "The server is ready to receive"
while 1:
	message, clientAddress = serverSocket.recvfrom(2048)
	modifiedMessage = message.upper()
	serverSocket.sendto(modifiedMessage, clientAddress)

Client.py

import socket
serverName = "127.0.0.1"
serverPort = 12000
clientSocket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
message = raw_input('lowercase\n')
clientSocket.sendto(message,(serverName, serverPort))
modifiedMessage, serverAddress = clientSocket.recvfrom(2048)
print modifiedMessage
message = raw_input('lowercase\n')
clientSocket.sendto(message,(serverName, serverPort))
modifiedMessage, serverAddress = clientSocket.recvfrom(2048)
print modifiedMessage
clientSocket.close()

Socket Programming with TCP
· TCP is a connection-oriented protocol. This means that before the client and server can start to send data to each other, they first need to handshake and establish a TCP connection.
· One end of the TCP connection is attached to the client socket and the other end is attached to a server socket.
· When creating the TCP connection, we associate with it the client socket address (IP address and port number) and the server socket address (IP address and port number).
· With the TCP connection established, when one side wants to send data to the other side, it just drops the data into the TCP connection via its socket. This is different from UDP, for which the server must attach a destination address to the packet before dropping it into the socket.
· With the server process running, the client process can initiate a TCP connection to the server. This is done in the client program by creating a TCP socket.
· When the client creates its TCP socket, it specifies the address of the welcoming socket in the server, namely, the IP address of the server host and the port number of the socket.
· After creating its socket, the client initiates a three-way handshake and establishes a TCP connection with the server. The three-way handshake, which takes place within the transport layer, is completely invisible to the client and server programs.
· When the server receives the connection request from client it creates new socket that is dedicated to the particular client and sends the data and receives the data through newly created socket.
· From the application’s perspective, the client’s socket and the server’s connection socket are directly connected by a pipe.

[image:]
The TCPServer process has two sockets

Client Side
· Create client Socket
· Send connection request to server socket.
· Send the data to server socket through client socket.
· Read the data from client socket sent by server socket.
· Close already opened Client Socket.
Server Side
· Create Server Socket.
· Bind it to the port number.
· Goes to listen state.
· Accepts the connection request and creates new connection socket dedicated for client.
· Read the data(request) from server socket sent by client socket.
· Send tha data(response) to the client socket through server Socket.
· Close Connection socket.

[image:]

API’s
socket() – used to create Socket. The function takes two arguments. The first parameter is address family and the second parameter is socket type.
socket(socket.AF_INET, socket.SOCK_STREAM)
		 AF_INET family -- indicates underlying Network is IPV4
		SOCK_STREAM -- TCP Socket
connect() –to initiate TCP connection between client and server.
		clientSocket.connect((serverName,serverPort))
listen() – wait TCP connection request from client. The parameter specifies the maximum number of queued connections.
		serverSocket.listen(1)
accept() – accept the connection request from client and creates new coonection Socket dedicated for particular client.
		connectionSocket, addr = serverSocket.accept()
send() – used to send the data through Socket.
	clientSocket.send(message)
recv() – used to receive the data from socket. The method recvfrom also takes the buffer size 2048 as 		input.
		clientSocket.recv(2048)
bind()—used to assign port number to server process.
		bind((‘127.0.0.1’, serverPort))
close()—used to close the socket. The process then terminates.
		connectionSocket.close()

Client Program –--- Client.py

import socket
serverName = '127.0.0.1'
serverPort = 12000
clientSocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
sentence = raw_input('Input lowercase sentence:')
clientSocket.send(sentence)
modifiedSentence = clientSocket.recv(1024)
print 'From Server:', modifiedSentence
clientSocket.close()

server program –-server.py

import socket
serverPort = 12000
serverSocket = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
serverSocket.bind(('127.0.0.1',serverPort))
serverSocket.listen(1)
print 'The server is ready to receive'
while 1:
	connectionSocket, addr = serverSocket.accept()
	sentence = connectionSocket.recv(1024)
	capitalizedSentence = sentence.upper()
	connectionSocket.send(capitalizedSentence)
	connectionSocket.close()
Department of Computer Science and Engineering
		Hirasugar Institute of Technology, Nidasoshi
image3.emf

image4.emf

image5.emf

image6.emf

image7.emf

image8.emf

image9.emf

image10.emf

image11.emf

image12.emf

image13.emf

image14.emf

image15.emf

image16.emf

image17.emf

image18.png
\
Domain

Label

image19.emf

image20.png
Root DNS Server .com DNS Server

Local DNS Server
dns.company2.com

ISP

news.companyl.com

image21.png
Root DNS Server .com DNS Server

Local DNS Scrver
dns.company2.com

Local DNS Server 7
1 ns.company com,

Isp Isp
Host
news.companyl.com

image22.emf

image23.emf

image24.emf

image25.emf

image26.emf

image27.emf

image28.emf

image29.emf

image30.emf

image1.emf

image2.emf

