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MA/CSSE 474
Theory of Computation

NDFSM�DFSM

Pattern Matching: Multiple Keywords

L = {w ∈ {a, b}* : ∃x, y ∈ {a, b}* 

((w = x abbaa y) ∨ (w =  x baba y))}. 
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Checking from the End

L = {w ∈ {a, b}* : 

the fourth character from the end is a}

Another Pattern Matching Example

L = {w ∈ {0, 1}* : w is the binary encoding of a 

positive integer that is divisible by 16 or is 

odd}

Q1
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Another NDFSM

L1= {w ∈ {a, b}*: aa occurs in w}

L2= {x ∈ {a, b}*: bb occurs in x}

L3= {y ∈ L1 ∪ L2 }

M1 = 

M2=

M3= 

This is a good 
example for 
practice later

Analyzing Nondeterministic FSMs

Does this FSM accept:

baaba

Remember: we just have to find one accepting path. 
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Two approaches:

• Explore a search tree:

• Follow all paths in parallel

Simulating Nondeterministic FSMs

Dealing with εεεε Transitions

The epsilon closure of a state:

eps(q) = {p ∈ K : (q, w) |-*M (p, w)}.

eps(q) is the closure of {q} under the relation

{(p, r) :  there is a transition (p, ε, r) ∈ ∆}.

Algorithm for computing eps(q):
result = {q}.

While there exists some p ∈ result and 

some r ∉ result and 

some transition (p, ε, r) ∈ ∆ do:

Insert r into result.

Return result.
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Calculate eps(q) for each state q

Q2

result = {q}.

While there exists some p ∈ result and 

some r ∉ result and 

some transition (p, ε, r) ∈ ∆ do:

result = result ∪ { r }

Return result.

Simulating a NDFSM

ndfsmsimulate(M: NDFSM, w: string) = 

1. current-state = eps(s).

2. While any input symbols in w remain to be read do:

1. c = get-next-symbol(w).

2. next-state = ∅.

3. For each state q in current-state do:

For each state p such that (q, c, p) ∈ ∆ do:

next-state = next-state ∪ eps(p).

4. current-state = next-state.

3. If current-state contains any states in A, accept.  
Else reject.

Q3
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Nondeterministic and 
Deterministic FSMs

Clearly: {Languages accepted by some DFSM} ⊆

{Languages accepted by some NDFSM}

More interesting:

Theorem:

For each NDFSM, there is an equivalent DFSM.

"equivalent" means "accepts the same language"

Nondeterministic and 
Deterministic FSMs

Theorem: For each NDFSM, there is an 

equivalent DFSM.

Proof: By construction:

Given a NDFSM   M = (K,  Σ, ∆,  s, A), 

we construct     M' = (K', Σ, δ', s', A'), where

K' = P(K)

s' = eps(s)

A' = {Q ⊆ K : Q ∩ A ≠ ∅}

δ'(Q, a) = ∪{eps(p): p ∈ K and 

(q, a, p) ∈ ∆ for some q ∈ Q}
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An Algorithm for Constructing the 
Deterministic FSM

1. Compute the eps(q)’s.

2. Compute s' = eps(s). 

3. Compute δ‘.

4. Compute K' = a subset of P(K).

5. Compute A' = {Q ∈ K' : Q ∩ A ≠ ∅}.

The Algorithm ndfsmtodfsm

ndfsmtodfsm(M: NDFSM) =   
1. For each state q in KM do:

1.1 Compute eps(q).
2. s' = eps(s) 
3. Compute δ': 

3.1 active-states = {s'}.
3.2 δ' = ∅.
3.3 While there exists some element Q of active-states for 

which δ' has not yet been computed do:
For each character c in ΣM do:

new-state = ∅.
For each state q in Q do:

For each state p such that (q, c, p) ∈ ∆ do:
new-state = new-state ∪ eps(p).

Add the transition (q, c, new-state) to δ'.
If new-state ∉ active-states then insert it.

4. K' = active-states.
5. A' = {Q ∈ K' : Q ∩ A ≠ ∅ }. Q4

Draw part of the transition 

diagram for the DFSM 

constructed from the 

NDFSM that appeared a 

few slides earlier.

Next week we will 
prove that it works.
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Finite State Machines

Intro to State Minimization

Among all DSFMs that are equivalent 

to a given DFSM, find one whose 

number of states is minimal

State Minimization

Consider:

Is this a minimal machine?
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State Minimization
Step (1): Get rid of unreachable states.

State 3 is unreachable.

Step (2): Get rid of redundant states.

States 2 and 3 are redundant.

Getting Rid of Unreachable States

We can’t easily find the unreachable states directly.  

But we can find the reachable ones and determine the 

unreachable ones from there.

An algorithm for finding the reachable states:
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Getting Rid of Redundant States

Intuitively, two states are equivalent to each other (and 

thus one is redundant) if all string in Σ* have the same 

fate, regardless of which of the two states the machine 

is in.  But how can we tell this? 

The simple case:

Two states have identical sets of transitions out.

Getting Rid of Redundant States

The harder case:

The outcomes in states 2 and 3 are the same, even 

though the states aren’t.
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Finding an Algorithm  for Minimization

Capture the notion of equivalence classes of 

strings with respect to a language.

Prove that we can always find a (unique up to 

state naming) a deterministic FSM with a number 

of states equal to the number of equivalence 

classes of strings.

Describe an algorithm for finding that 

deterministic FSM.

Defining Equivalence for Strings

We want to capture the notion that two strings are equivalent or 
indistinguishable with respect to a language L if, no matter what 
string w tacked on to them on the right, either both concatenated 
strings will be in L or neither will.  Why is this the right notion?  
Because it corresponds naturally to what the states of a 
recognizing FSM have to remember.  

Example:

(1) a b a b a b

(2) b a a b a b

Suppose L = {w ∈ {a, b}* : |w| is even}.  Are (1) and (2) equivalent?

Suppose L = {w ∈ {a, b}* : every a is immediately followed by b}.  

Are (1) and (2) equivalent?

Q5a
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Defining Equivalence for Strings

If two strings are indistinguishable with respect to L, we 

write:

x ≈L y

Formally, x ≈L y      iff ∀z ∈ Σ* (xz ∈ L iff yz ∈ L).

Q5a

≈≈≈≈L is an Equivalence Relation

• Reflexive:  ∀x ∈ Σ* (x ≈L x), because:

∀x, z ∈ Σ* (xz ∈ L ↔ xz ∈ L).

• Symmetric: ∀x, y ∈ Σ* (x ≈L y → y ≈L x), because:

∀x, y, z ∈ Σ* ((xz ∈ L ↔ yz ∈ L) ↔

(yz ∈ L ↔ xz ∈ L)).

• Transitive: ∀x, y, z ∈ Σ* (((x ≈L y) ∧ (y ≈L w)) → (x ≈L w)), 

because:

∀x, y, z ∈ Σ* 

(((xz ∈ L ↔ yz ∈ L) ∧ (yz ∈ L ↔ wz ∈ L)) →

(xz ∈ L ↔ wz ∈ L)).

≈L is an equivalence relation because it is:
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≈≈≈≈L is an Equivalence Relation

• No equivalence class of ≈L is empty.

• Each string in Σ* is in exactly one equivalence class of ≈L.

An equivalence relation on a set partitions the set.

Thus:

An Example

Σ = {a, b}

L = {w ∈ Σ*: every a is immediately followed by b}

The equivalence classes of ≈L:  Try:

ε aa bbb

a bb baa

b aba

aab
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An Example

Σ = {a, b}

L = {w ∈ Σ*: every a is immediately followed by b}

The equivalence classes of ≈L:  

[1] [ε, b, abb, …] [all strings in L].

[2] [a, abbba, …] [all strings that end in a and

have no prior a that is not 
followed by a b].

[3] [aa, abaa, …] [all strings that contain at least 

one instance of aa].

Another Example of ≈≈≈≈L

Σ = {a, b}

L = {w ∈ Σ* : |w| is even}

ε bb aabb

a aba bbaa

b aab aabaa

aa bbb

baa

The equivalence classes of ≈L:
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Yet Another Example of ≈≈≈≈L

Σ = {a, b}

L = aab*a

ε bb aabaa

a aba aabbba

b aab aabbaa

aa baa

aabb

The equivalence classes of ≈L:

When More Than One Class Contains 

Strings in L

Σ = {a, b}

L = {w ∈ Σ* : no two adjacent characters are the same}

ε aa aabb

a bb aabaa

b aba aabbba

aab aabbaa

baa

The equivalence classes of ≈L:
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When More Than One Class Contains 

Strings in L

Σ = {a, b}

L = {w ∈ Σ* : no two adjacent characters are the same}

The equivalence classes of ≈L:

[1] [ε]

[2] [a, aba, ababa, …]

[3] [b, ab, bab, abab, …]

[4] [aa, abaa, ababb…]

Does ≈≈≈≈L Always Have a Finite 
Number of Equivalence Classes?

Σ = {a, b}

L = {anbn, n ≥ 0}

ε aa aaaa

a aba aaaaa

b aaa

The equivalence classes of ≈L:



6/12/2012

17

The Best We Can Do

Theorem: Let L be a regular language and let M be a 

DFSM that accepts L. The number of states in M is 

greater than or equal to the number of equivalence 

classes of ≈L.

Proof: Suppose that the number of states in M were 

less than the number of equivalence classes of ≈L.  

Then, by the pigeonhole principle, there must be at 

least one state q that contains strings from at least two 

equivalence classes of ≈L. But then M’s future behavior 

on those strings will be identical, which is not consistent 

with the fact that they are in different equivalence 

classes of ≈L.  

The Best Is Unique

Theorem: Let L be a regular language over some alphabet Σ.  
Then there is a DFSM M that accepts L and that has precisely 
n states where n is the number of equivalence classes of ≈L.  
Any other FSM that accepts L must either have more states 
than M or it must be equivalent to M except for state names. 

Proof:  (by construction)
M = (K, Σ, δ, s, A), where: 
● K contains n states, one for each equivalence class of  ≈L.
● s = [ε], the equivalence class of ε under ≈L.
● A = {[x] : x ∈ L}.
● δ([x], a) = [xa].  In other words, if M is in the state that

contains some string x, then, after reading the next
symbol, a, it will be in the state that contains xa.
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Proof, Continued

• K is finite.  Since L is regular, it is accepted by some 
DFSM M′.  M′ has some finite number of states m.  By 
Theorem 5.4, n ≤ m.  So K is finite.

• δ is a function.  In other words, it is defined for all (state, 
input) pairs and it produces, for each of them, a unique 
value.  The construction defines a value of δ for all 
(state, input) pairs.  The fact that the construction 
guarantees a unique such value follows from the 
definition of ≈L.

We must show that:

Proof, Continued

• L = L(M).  To prove this, we must first show 
that ∀s, t (([ε], st) |-M* ([s], t)).  We do this by induction 
on |s|. 

If |s| = 0 then we have ([ε], ε) |-M* ([ε], t), which is true 
since M simply makes zero moves. 
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Proof, Continued

Assume that the claim is true if |s| = k.  Then we consider what 
happens when |s| = k+1.  |s| ≥ 1, so we can let s = yc where y ∈

Σ* and c ∈ Σ.  We have:

/* M reads the first k characters:
([ε], yct) |-M* ([y], ct) (induction hypothesis, 

since |y| = k).

/* M reads one more character:
([y], ct)   |-M* ([yc], t) (definition of δM).

/* Combining those two, after M has read k+1 characters:
([ε], yct) |-M* ([yc], t) (transitivity of |-M*).
([ε], st) |-M* ([s], t) (definition of s as yc).

Proof, Continued

So we have :

[*] ∀s, t (([ε], st) |-M* ([s], t)).

Let t be ε.  Let s be any string in Σ*.  By [*]:

([ε], s) |-M* ([s], ε).  

So M will accept s iff [s] ∈ A, which, by the way in which A

was constructed, it will be if the strings in [s] are in L.  So 

M accepts precisely those strings that are in M.
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Proof, Continued

• There exists no smaller machine M# that also accepts L.  
This follows directly from Theorem 5.4, which says that 
the number of equivalence classes of ≈L imposes a 
lower bound on the number of states in any DFSM that 
accepts L. 

• There is no different machine M# that also has n states 
and that accepts L.  

Constructing the Minimal DFA from ≈≈≈≈L

Σ = {a, b}

L = {w ∈ Σ* : no two adjacent characters are the same}

The equivalence classes of ≈L:

1: [ε] ε

2: [a, ba, aba, baba, ababa, ...]  (b∪ε)(ab)*a

3: [b, ab, bab, abab, ...] (a∪ε)(ba)*b

4: [bb, aa, bba, bbb, ...] the rest

● Equivalence classes become states

● Start state is [ε]

● Accepting states are all equivalence classes in L

● δ([x], a) = [xa]
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Constructing the Minimal DFA from ≈≈≈≈L

Σ = {a, b}

L = {w ∈ Σ* : no two adjacent characters are the same}

The Myhill-Nerode Theorem

Theorem: A language is regular iff the number of equivalence 
classes of ≈L is finite.  

Proof: Show the two directions of the implication:

L regular →→→→ the number of equivalence classes of ≈≈≈≈L is 

finite: If L is regular, then there exists some FSM M that 
accepts L.  M has some finite number of states m.  The 
cardinality of ≈L ≤ m.  So the cardinality of ≈L is finite.

The number of equivalence classes of ≈≈≈≈L is finite →→→→ L 

regular: If the cardinality of ≈L is finite, then the construction 
that was described in the proof of the previous theorem will 
build an FSM that accepts L.  So L must be regular.  
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So Where Do We Stand?

1. We know that for any regular language L there exists a minimal 
accepting machine ML.

2. We know that |K| of ML equals the number of equivalence 
classes of ≈L.

3. We know how to construct ML from ≈L.

4. We know that ML is unique up to the naming of its states.

But is this good enough?

Consider:

• Begin with M and collapse redundant states, getting rid 
of one at a time until the resulting machine is minimal.

• Begin by overclustering the states of L into just two 
groups, accepting and nonaccepting.  Then iteratively 
split those groups apart until all the distinctions that L
requires have been made.

Minimizing an Existing DFSM 
(Without Knowing ≈≈≈≈L)

Two approaches:
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The Overclustering Approach

We need a definition for “equivalent”, i.e., mergeable 

states.

Define q ≡ p iff for all strings w ∈ Σ*, either w drives M to 

an accepting state from both q and p or it drives M to 

a rejecting state from both q and p.

An Example

Σ = {a, b}   L = {w ∈ Σ* : |w| is even}

q2 ≡ q3
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Constructing ≡≡≡≡ as the Limit of a Sequence of 
Approximating Equivalence Relations ≡≡≡≡n

(Where n is the length of the input strings that have 

been considered so far)

Consider input strings, starting with ε, and increasing in 

length by 1 at each iteration.  Start by way 

overgrouping states.  Then split them apart as it 

becomes apparent (with longer and longer strings) 

that their behavior is not identical.

Constructing  ≡≡≡≡n

• p ≡0 q iff they behave equivalently when they read ε.  In 
other words, if they are both accepting or both rejecting 
states.

• p ≡1 q iff they behave equivalently when they read any 
string of length 1, i.e., if any single character sends both 
of them to an accepting state or both of them to a 
rejecting state.  Note that this is equivalent to saying that 
any single character sends them to states that are ≡0 to 
each other. 

• p ≡2 q iff they behave equivalently when they read any 
string of length 2, which they will do if, when they read 
the first character they land in states that are ≡1 to each 
other.  By the definition of ≡1, they will then yield the 
same outcome when they read the single remaining 
character.

• And so forth.
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Constructing ≡≡≡≡, Continued

More precisely, ∀p,q ∈ K and any n ≥ 1, q ≡n p

iff:

1. q ≡n-1 p, and

2. ∀a ∈ Σ (δ(p, a) ≡n-1 δ(q, a))

MinDFSM
MinDFSM(M: DFSM) =

1.  classes := {A, K-A};
2.  Repeat until no changes are made

2.1.  newclasses := ∅;
2.2.  For each equivalence class e in classes, if e contains 

more than one state do
For each state q in e do

For each character c in Σ do
Determine which element of classes q

goes to if c is read
If there are any two states p and q that need to be 

split, split them.  Create as many new 
equivalence classes as are necessary.  Insert 

those classes into newclasses.
If there are no states whose behavior differs, no 

splitting is necessary.  Insert e into 
newclasses.

2.3.  classes := newclasses;

3.  Return M* = (classes, Σ, δ, [sM], {[q: the elements of q are in AM]}), 
where δM* is constructed as follows:

if δM(q, c) = p, then δM*([q], c) = [p]
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An Example

Σ = {a, b} 

≡0 = 

≡1 =

≡2 = 

The Result
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Summary

● Given any regular language L, there exists a 

minimal DFSM M that accepts L.

● M is unique up to the naming of its states.

● Given any DFSM M, there exists an algorithm    

minDFSM that constructs a minimal DFSM 

that also accepts L(M).

Canonical Forms

A canonical form for some set of objects C assigns 

exactly one representation to each class of “equivalent” 

objects in C.  

Further, each such representation is distinct, so two 

objects in C share the same representation iff they are 

“equivalent” in the sense for which we define the form.  
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A Canonical Form for FSMs
buildFSMcanonicalform(M: FSM) = 

1. M′ = ndfsmtodfsm(M).

2. M* = minDFSM(M′).

3.  Create a unique assignment of names to the 

states of M*.

4.  Return M*.

Given two FSMs M1 and M2:

buildFSMcanonicalform(M1) 

= 

buildFSMcanonicalform(M2)

iff L(M1) = L(M2). 

Correctness Proof of ndfsmtodfsm

To prove:

From any NDFSM M = (K, Σ, ∆, s, A), ndfsmtodfsm

constructs a DFSM M'= (K', Σ, δ', s', A'), which is 

equivalent to M.

K' ⊆ P(K)  (a.k.a. 2K)

s' = eps(s)

A' = {Q ⊆ K : Q ∩ A ≠ ∅}

δ'(Q, a) = ∪ {eps(p): p ∈ K and 

(q, a, p)∈∆ for some q∈Q}
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Correctness Proof of ndfsmtodfsm

From any NDFSM M, ndfsmtodfsm constructs a DFSM 

M', which is:

(1) Deterministic: By the definition in step 3 of δ', we 

are guaranteed that δ' is defined for all reachable 

elements of K' and all possible input characters.  

Further, step 3 inserts a single value into δ' for each 

state-input pair, so M' is deterministic.

(2) Equivalent to M:  We constructed δ' so that M'

mimics an “all paths” simulation of M.  We must now 

prove that that simulation returns the same result that 

M would.  

A Useful Lemma

Lemma:  Let w be any string in Σ*, let p and q be any states 
in K, and let P be any state in K'.  Then:

(q, w) |-M* (p, ε) iff ((eps(q), w) |-M' * (P, ε) and p ∈ P)  .  

INFORMAL RESTATEMENT OF LEMMA:  In other words, 
if the original NDFSM M starts in state q and, after reading 
the string w, can land in state p ( along at least one of its 
paths), then the new DFSM M' must behave as follows: 

When started in the state that corresponds to the set of 
states the original machine M could get to from q without 
consuming any input, M' reads the string w and lands in a 
state P (which is a set of M's states) that contains p. 

Furthermore, because of the only- if part of the lemma, M' 
(starting from q and reading w) must end up in a "set state" 
that contains only states that M could get to from q after 
reading w and following any available epsilon-transitions.



6/12/2012

30

A Useful Lemma
Lemma:  Let w be any string in Σ*, let p and q be any 

states in K, and let P be any state in K'.  Then:

(q, w) |-M* (p, ε) iff ((eps(q), w) |-M' * (P, ε) and p ∈ P)  

.  

It turns out that we will only need this lemma for the case 

where q = s, but the more general form is easier to prove 

by induction.  This is common in induction proofs.

Proof: We must show that δ' has been defined so that the 

individual steps of M', when taken together, do the right 

thing for an input string w of any length.  Since the 

definitions describe one step at a time, we will prove the 

lemma by induction on |w|.

Recall: NDFSM M = (K, Σ, ∆, s, A),   DFSM M'= (K', Σ, δ', s', A'), 

Base Case:  |w| = 0, so w = ε

• if part: Prove:

(eps(q), w) |-M' * (P, ε) ∧ p ∈ P →→→→ (q, w) |-M*(p, ε) 

Since w = ε and M' (being deterministic) contains no ε-
transitions, M' makes no moves.  So M' must end in the 
same state it started in, namely eps(q).  So P = eps(q).  

Now, since P contains p, then p ∈ eps(q).  But, given the 
definition of eps, this means that, in the original NDFSM 
M, p is reachable from q just by following ε-transitions.  
So (q, w) |-M*(p, ε) .
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Base Case

• only if part: We need to show:

[ (q, w) |-M* (p, ε) ] →→→→ [ (eps(q), w) |-M'* (P, ε) and p ∈ P ]

If |w| = 0 and the original machine M goes from q to p with 
only w as input, it must go from q to p following just ε-
transitions.  So p ∈ eps(q).  

M' starts in eps(q).  Since M' contains no ε-transitions, it 
will make no moves at all if its input is ε.  So it will halt in 
exactly the same state it started in, namely eps(q).  So P = 
eps(q) and thus contains p.  

So M' halts in a state that includes p.

Induction Step

Let w have length k + 1.  Then w = zx where z∈Σ* has 

length k, and x∈Σ.  

Induction assumption.  The lemma is true for Z.

So we show that, assuming that M and M' behave 

identically for the first k characters, they behave 

identically for the last character also and thus for the 

entire string of length k + 1. 

The Definition of δ′δ′δ′δ′

δ'(Q, c) = ∪{eps(p) : ∃q∈Q ((q, c, p) ∈ ∆)} 
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What We Need to Prove

• The computation of the NDFSM M:

(q, w) |-M* (p, ε)

and 

• The computation of the DFSM M':

(eps(q), w) |-M'* (P, ε) and p ∈ P

The relationship between:

What We Need to Prove

• The computation of the NDFSM M:

(q, zx) |-M* (p, ε) 

and 

• The computation of the DFSM M':

(eps(q), zx) |-M'* (P, ε) and p ∈ P

Rewriting w as zx:
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What We Need to Prove

• The computation of the NDFSM M:

(q, zx) |-M* (si, x) |-M (p, ε)  

and 

• The computation of the DFSM M':

(eps(q), zx) |-M'* (Q, x) |-M' (P, ε) and p ∈ P

In other words, after processing z, M will be in some set of 

states S, whose elements we write as si. M' will be in 

some "set" state that we call Q. Again, well split the 

proof into two parts:

Breaking w into two pieces:

If Part

We must prove: 

[ (eps(q), zx) |-M'* (Q, x) |-M' (P, ε) and p ∈ P ] →

[ (q, zx) |-M* (si, x) |-M (p, ε) ].

If, after reading z, M' is in state Q, we know, from the 

induction hypothesis, that the original machine M, after 

reading z, must be in some set of states S and that Q is 

precisely that set.  

If we have that M', starting in Q and reading x lands in 

P, then, from the definition of δ', P contains precisely the 

states that M could land in after starting in any state in S

and reading x.  Thus if p ∈ P, p must be a state that M

could land in if started in si on reading x.
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Only If Part

We must prove: 

[ (q, zx) |-M*  (si, x) |-M (p, ε) ] →

[  (eps(q), zx) |-M'* (Q, x) |-M' (P, ε) and p ∈ P ]. 

By the induction hypothesis, if M, after processing z, can 

reach some set of states S, then Q (the state M' is in after 

processing z) must contain precisely all the states in S.  

So, from Q, reading x, M' must be in some set state P that 

contains precisely the states that M can reach starting in 

any of the states in S, reading x, and then following all ε

transitions.  So, after consuming zx, M', when started in 

eps(q), must end up in a state P that contains all and only 

the states p that M, when started in q, could end up in.

Back to the Theorem

• The original machine M, when started in its start 
state, can consume w and end up in an accepting 
state.  

• (eps(s), w) |-M'* (Q, ε) for some Q containing some a
∈ A.  In the statement of the lemma, let q equal s
and p = a for some a ∈ A.  Then M', when started in 
its start state, eps(s), will consume w and end in a 
state that contains a.  But if M' does that, then it has 
ended up in one of its accepting states (by the 
definition of A' in step 5 of the algorithm).  So M'
accepts w (by the definition of what it means for a 
machine to accept a string).  

If w ∈ L(M) then: 
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Back to the Theorem

• The original machine M, when started in its start 

state, will not be able to end up in an accepting state 

after reading w.    

• If (eps(s), w) |-M'* (Q, ε), then Q contains no state 

a ∈ A.  This follows directly from the lemma. 

The two cases, taken together, show that M' accepts 

exactly the same strings that M accepts.  

If w ∉ L(M) (i.e. the original NDFSM does not accept w):


