
A Language Hierarchy

Chapter 3

1

Generator vs. Recognizer

Reminder…

Given a problem, we can develop a

machine (automaton) that

• Generates solutions, or

• Recognizes a solution

2

Generator vs. Recognizer

Example

Given 2 integers A & B, determine the sum.

• Generator: Write a program to accept A &

B as input then compute the sum A+B

• Recognizer: Write a program to accept A &

B & C as input then determine if A+B = C

We usually write Generators! But when

would an Recognizer be an appropriate

solution?

3

A decision problem is simply a problem for which the

answer is yes or no (True or False).

A decision procedure answers a decision problem.

Example

• Given an integer n, does n have a pair of consecutive

integers as factors?

The language recognition problem: Given a

language L and a string w, is w in L?

Our focus

Decision Problems

4

Encoding
Not the same as “coding”, i.e. writing a computer program!!

“Everything is a string”
Do you believe that statement?

What about computer memory?

“Most problems in computing can be

converted to a string”

How? By a correct encoding.

Thus, we can develop a decision solution.

Problems that don’t look like decision problems can

be recast into new problems that are decision.

E.G. A+B=C
5

Notation for Encoding into Strings

Almost anything can be encoded as a string.

Let X & Y be some type of “object”.
What is an “object”?

<X> is the string encoding of X.

<X, Y> is the string encoding of pair X, Y.

If we can define a problem as a language (of

strings), we can develop a recognizer. It

becomes a decision problem.

6

Example of Encoding

Pattern matching on the web

Problem: Given a search string w and a web

document d, do they match? In other words,

should a search engine, on input w, consider

returning d?

The language to be decided:

{<w, d> : d is a candidate match for the query w}

Recognizer vs. Generator?

7

Example of Encoding

Does a program always halt?

Problem: Given a program p, written in some

programming language, is p guaranteed to halt on

all inputs?

• The language to be decided:

HPALL = {p : p halts on all inputs}

Classic problem: The Halting Problem. More later!

8

Example of Encoding

Testing for prime numbers

Problem: Given a nonnegative integer n, is it

prime?

• The language

PRIMES = {w : w is the binary encoding of

a prime number}.

9

• Problem: Given an undirected graph G, is it connected?

• Instance of the problem:

1 2 3

4 5

• Encoding of the problem: Let V be a set of binary numbers, one for

each vertex in G. Then we construct G as follows:

• Write |V| as a binary number,

• Write a list of edges, each represented by pair of num. corresponding to

vertices it connects (first # tells num. of vertices)

• Separate all such binary numbers by “/”.

101/1/10/10/11/1/100/10/101

• The language to be decided: CONNECTED = {w  {0, 1, /}* : w =

n1/n2/…ni, where each ni is a binary string and w encodes a

connected graph, as described above}.

Example of Encoding

10

Casting multiplication as decision:

• Problem: Given two nonnegative integers, compute the

product.

• Encoding : Transform computing into verification.

• The language:

L = {w of the form:
<integer1>x<integer2>=<integer3>, where:

<integern> is any well formed integer, and

integer3 = integer1  integer2}

12x9=108

12=12

12x8=108

Turning Problems Into Decision

Problems

11

Casting sorting as decision:

• Problem: Given a list of integers, sort it.

• Encoding of the problem: Transform the sorting

problem into one of examining a pair of lists.

• The language to be decided:

L = {w1 # w2: n1

(w1 is of the form <int1, int2, … intn>,

w2 is of the form <int1, int2, … intn>, and

w2 contains the same objects as w1 and

w2 is sorted)}

Examples:
1,5,3,9,6#1,3,5,6,9  L

1,5,3,9,6#1,2,3,4,5,6,7  L

Turning Problems Into Decision

Problems

12

Could we

define sorting

as a different

recognition

problem??

Equivalent means either problem can be

reduced to (converted to) the other.

Given a machine to solve one, a machine

to solve the other can be built using the

first machine & other functions that can be

built using a machine of equal or lesser

power.

The Traditional Problems & Their

Language Formulations are Equivalent

13

Consider the multiplication example:
L = {w : <integer1>x<integer2>=<integer3>, where:

<integern> is a well-formed integer &

integer3 = integer1  integer2}

Given a multiplication machine, we can build the

language recognition machine.

Given the language recognition machine, we can

build a multiplication machine.

This is not saying each machine is efficient!

An Example

14

One Hierarchy of Languages

15

D=decidable

SD = Semidecidable

Chomsky Hierarchy of Languages

Languages from “simplest” to “complex”

Each is a subset of the ones below

• Regular

• Context Free

• Context Sensitive

• Recursively Enumerable

Can be defined by the type of

Machine that will recognize it.
16Noam Chomsky

Regular Languages

A Regular Language is one that can be recognized by a

Finite State Machine.

An FSM to accept a*b*:

17

Context Free Language

A Context Free Language is one that can be

recognized by a Push Down Automata.

A PDA to accept AnBn = {anbn : n  0}

18

Decidable & Semidecidable

Languages

A Decidable Language is one that is

recognized by a Turing Machine which halts

on all input strings.

A Semidecidable Language is one that is

recognized by a Turing Machine which halts

on all input strings which are in the

language, but may loop infinitely on some

strings which are not in the language

19

Turing Machines

20

R/W head

Rule of Least Power: “Use the least powerful

language suitable for expressing information,

constraints or programs on the World Wide Web.”

Languages and Machines

21

