
Why Study the Theory of 

Computation?

Implementations come and go.

Chapter 1and 2
1



IBM 7090 Programming in the 1950’s 

ENTRY SXA 4,RETURN

LDQ X

FMP A

FAD B

XCA

FMP X

FAD C

STO RESULT

RETURN TRA 0

A BSS 1

B BSS 1

C BSS 1

X BSS 1

TEMP BSS 1

STORE BSS 1

END

Ax2 + Bx +C

2



Programming in the 1970’s 

IBM 360 JCL (Job Control Language)
//MYJOB JOB (COMPRESS),

'VOLKER BANDKE',CLASS=P,COND=(0,NE)

//BACKUP EXEC PGM=IEBCOPY

//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DISP=SHR,DSN=MY.IMPORTNT.PDS

//SYSUT2 DD DISP=(,CATLG),

DSN=MY.IMPORTNT.PDS.BACKUP,

// UNIT=3350,VOL=SER=DISK01,

// DCB=MY.IMPORTNT.PDS,

SPACE=(CYL,(10,10,20))

//COMPRESS EXEC PGM=IEBCOPY

//SYSPRINT DD SYSOUT=*

//MYPDS DD DISP=OLD,DSN=*.BACKUP.SYSUT1

//SYSIN DD *

COPY INDD=MYPDS,OUTDD=MYPDS

//DELETE2 EXEC PGM=IEFBR14

//BACKPDS DD DISP=(OLD,DELETE,DELETE),

DSN=MY.IMPORTNT.PDS.BACKUP
3



Guruhood

IBM’s APL Language – Returns 1 if the 

largest value in a 3 element vector is 

greater than the sum of the other 2 and 

Returns 0 otherwise

APL was very powerful for processing 

arrays & vectors

4



Why study this?

Science of Computing

• Mathematical Properties (problems & 

algorithms) having nothing to do with 

current technology or languages

• E.G. Alan Turing – died 1954

• Provides Abstract Structures

• Defines Provable Limits

– Like “Big Oh”

5



Goals 

Principles of Problems:

• Does a solution exist?  

– If not, is there a restricted variation?

• Can solution be implemented in fixed 

memory?

• Is Solution efficient?

– Growth of time & memory with problem size?

• Are there equivalent groups of problems?

6



Applications of the automata 

Theory

• Used in design of Lexical analyzer of compilers which breaks 
source program into tokens like identifies, Keywords etc.. 

• Software for designing  and checking the behavior of the Digital 
circuits.

• FSMs (finite state machines) for vending machines, Traffic 
signals, communication protocols, & building security devices.

• String Matching: searching words, phrase and other pattern in 
large bodies of text(like web pages)

• Interactive games as nondeterministic FSMs.

• Used in Natural languages processing: for speech to text and text 
to speech conversions.

• Artificial Intelligence: Medical Dignosis,Factory Scheduling etc..

7



Languages and Strings

This is one of MOST important chapters.

It includes the TERMINOLOGY required to be 

successful in this course.

KNOW this chapter & ALL DEFINITIONS!! 

Chapter 2

8



A Framework for Analyzing 

Problems

We need a single framework in which we can 

analyze a very diverse set of problems.

The framework is 

Language Recognition

*A language is a (possibly infinite) set of finite

length strings over a finite alphabet.

NOTE: Pay particular attention to use of finite & infinite in all definitions!
9



Alphabet - 

• An alphabet is a non-empty, finite set of 

characters/symbols

• Use  to denote an alphabet

• Examples

 = { a, b }

 = { 0, 1, 2 }

 = { a, b, c,…z, A, B, … Z }

 = { #, $, *, @, & }

10



Strings

• A string is a finite sequence, possibly 

empty, of characters drawn from some 

alphabet . 

•  is the empty string

• * is the set of all possible strings over an 
alphabet . 

11



Example Alphabets & Strings

Alphabet name Alphabet symbols Example strings

The lower case 

English alphabet

{a, b, c, …, z} , aabbcg, aaaaa

The binary 

alphabet

{0, 1} , 0, 001100,11

A star alphabet { ,  ,  , , , } , , 

A music 

alphabet {w, h, q, e, x, r, } , q w , w w r
12



Functions on Strings

Length:  

• |s| is the length of string s

• |s| is the number of characters in string s.

|| = 0

|1001101| = 7

#c(s) is defined as the number of times that c occurs in s.

#a(abbaaa) = 4.

13



More Functions on Strings

Concatenation: the concatenation of  2 strings s

and t is the string formed by appending t to s; written 

as s||t or more commonly, st

Example: 
If x = good and y = bye, then xy = goodbye

and yx = byegood

• Note that |xy| = |x| + |y| -- Is it always??

•  is the identity for concatenation of strings.  So,

x (x  =  x = x)

• Concatenation is associative.  So, 

s, t, w ((st)w = s(tw))

14



More Functions on Strings

Replication:  For each string w and each natural 

number k, the string w k is:

w 0 = 

w k+1 = w k w

Examples:
a3 = aaa

(bye)2 = byebye

a0b3 = bbb

b2y2e2 = ??

Natural Numbers {0,1,2,…}

15



More Functions on Strings

Reverse: For each string w, w R is defined as:

if |w| = 0 then w R = w = 

if |w| = 1 then w R = w

if |w| > 1 then:

a   (u  * (w = ua)) 

So define w R = a u R

OR

if |w| > 1 then:

a   & u  *  ϶ w = ua

So define w R = a u R

Proof is by simple induction 16



Relations on Strings - Substrings

o Substring: string s is a substring of string t if s 

occurs contiguously in t

o Every string is a substring of itself

o is a substring of every string

o Proper Substring: s is a proper substring of t 

iff s ≠ t

o Suppose t = aabbcc.  

o Substrings: , a, aa, ab, bbcc, b, c, aabbcc

o Proper substrings?

oOthers? 17



The Prefix Relations

s is a prefix of t iff x  * (t = sx).

s is a proper prefix of t iff s is a prefix of t and s  t.

Examples:

The prefixes of abba are: , a, ab, abb, abba.

The proper prefixes of abba are: , a, ab, abb.

• Every string is a prefix of itself.

•  is a prefix of every string. 

18



The Suffix Relations

s is a suffix of t iff x  * (t = xs).

s is a proper suffix of t iff s is a suffix of t and s  t.

Examples:

The suffixes of abba are: , a, ba, bba, abba.

The proper suffixes of abba are: , a, ba, bba.

• Every string is a suffix of itself.  

•  is a suffix of every string.

19



Defining a Language

A language is a (finite or infinite) set of strings over a (finite) 

alphabet .

Examples: Let  = {a, b}

Some languages over : 

 = { } // the empty language, no strings

{} // language contains only the empty string

{a, b} 

{, a, aa, aaa, aaaa, aaaaa}

20



Defining a Language

Two ways to define a language via a 

Machine = Automaton 

AKA – Computer Program

• Recognizer

• Generator

Which do we want?  Why?

21



* 

• * is defined as the set of all possible 

strings that can be formed from the 

alphabet *

–* is a language

• * contains an infinite number of strings

–* is countably infinite

22



* Example

Let  = {a, b}

* = {, a, b,aa,ab,ba,bb,aaa,aab,… }

Later, we will spend some more time 

studying *.

23



Defining Languages

Remember we are defining a set

Set Notation:

L = { w  * | description of w}

L = { w  {a,b,c}* | description of w}

• “description of w” can take many forms but 

must be precise

• Notation can vary, but must precisely define

24



Example Language Definitions

L = {x  {a, b}* | all a’s precede all b’s}

• aab,aaabb, and aabbb are in L.  

• aba, ba, and abc are not in L. 

• What about , a, aa, and bb?

L = {x : y  {a, b}* | x = ya}

• Give an English description.

25



Example Language Definitions

Let  = {a, b}

• L = { w  * :  |w| < 5}

• L = { w  * | w begins with b}

• L = { w  * | #b(w) = 2}

• L = { w  * | each a is followed by 

exactly 2 b’s}

• L = { w  * | w does not begin with a}

26



The Perils of Using English

L = {x#y: x, y  {0, 1, 2, 3, 4, 5, 6, 7, 8, 

9}* and, when x & y are viewed as 

decimal representations of natural 

numbers, square(x) = y}.

Examples:
3#9, 12#144

3#8, 12, 12#12#12

#

27



A Halting Problem Language

L = {w | w is a C++ program that halts on 

all inputs}

• Well specified.

• Can we decide what strings it contains?

•Do we want a generator or recognizer?

28



More Examples

What strings are in the following languages?

L = {w  {a, b}*: no prefix of w contains b}

L = {w  {a, b}*: no prefix of w starts with a}

L = {w  {a, b}*: every prefix of w starts with a}

L = {an : n  0}

L = {ba2n : n  0}

L = {bnan : n  0}
29



Enumeration

Enumeration: to list all strings in a language (set)

• Arbitrary order

• More useful: lexicographic order

• Shortest first

• Within a length, dictionary order

• Define linear order of arbitrary symbols

30



Lexicographic Enumeration

{w  {a, b}* : |w| is even}

{, aa, ab, bb, aaaa, aaab, …}

What string is next?

How many strings of length 4?

How many strings of length 6?

31



Cardinality of a Language

• Cardinality of a Language: the number of strings 

in the language

• | L | 

• Smallest language over any  is , with 

cardinality 0.

• The largest is *.  

• Is this true?

• How big is it?

• Can a language be uncountable?

32



Functions on Languages

Set (Language) functions

Have the traditional meaning

• Union

• Intersection

• Complement

• Difference

Language functions

• Concatenation

• Kleene star

33



Concatenation of Languages

If L1 and L2 are languages over :

L1L2 = {w : s  L1 & t  L2 ϶ w = st }

Examples:
L1 = {cat, dog}           

L2 = {apple, pear}

L1 L2 ={catapple, catpear, dogapple, dogpear}

L2 L1 ={applecat,appledog,pearcat,peardog}

34



Concatenation of Languages

{} is the identity for concatenation:

L{} = {}L = L

 is a zero for concatenation:

L  =  L = 

35



Concatenating Languages Defined 

Using Variables

The scope of any variable used in an expression that 

invokes replication will be taken to be the entire 

expression.

L1 = {an:  n  0}       

L2 = {bn : n  0}

L1 L2 = {anbm : n, m  0}

L1L2  {anbn : n  0}

36



Kleene Star

L* - language consisting of 0 or more concatenations of 

strings from L

L* = {}  {w  * : w = w1 w2 … wk, k  1 &  

w1, w2,  … wk  L}

Examples:
L = {dog, cat, fish}

L* = {, dog, cat, fish, dogdog, dogcat,

dogfish,fishcatfish,fishdogdogfishcat, …}

~~~~~~~~~~~~
L1 = a*        L2 = b*

What is a*?  b*? 

L1 L2 = 

L2 L1 = 

L1 L1 = 
37

*



The       Operator

L+ = language consisting of 1 or more 

concatenations of strings from L

L+ = L L*

L+ = L* - {}   iff    L

Explain this definition!!

When is   L+? 
38

+



Closure 

• A set S is closed under the operation @ if 

for every element x & y in S, x@y is also 

an element of S

• A set S is closed under the operation @ if 

for every element x  S & y  S, x@y  S

• Examples

39



Semantics: Assigning Meaning to Strings

When is the meaning of a string important?

A semantic interpretation function assigns 

meanings to the strings of a language.

Can be very complex.

Example from English:

I brogelled the yourtish.

He’s all thumbs.
40


