Why Study the Theory of Computation?

Implementations come and go.

IBM 7090 Programming in the 1950's

ENTRY	SXA	4, RETURN
	LDQ	X
	FMP	A
	FAD	B
	XCA	
	FMP	X
	FAD	C
	STO	RESULT
RETURN	TRA	0
A	BSS	1
B	BSS	1
C	BSS	1
XEMP	BSS	1
STORE	BSS	1
	BSS	1
	END	

Programming in the 1970's IBM 360 JCL (Job Control Language)

```
//MYJOB JOB (COMPRESS),
'VOLKER BANDKE',CLASS=P,COND=(0,NE)
//BACKUP EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=MY.IMPORTNT.PDS
//SYSUT2 DD DISP=(,CATLG),
    DSN=MY.IMPORTNT.PDS.BACKUP,
    UNIT=3350,VOL=SER=DISK01,
    DCB=MY.IMPORTNT.PDS,
    SPACE=(CYL, (10,10,20))
    //COMPRESS EXEC PGM=IEBCOPY
    //SYSPRINT DD SYSOUT=*
    //MYPDS DD DISP=OLD,DSN=*.BACKUP.SYSUT1
    //SYSIN DD *
    COPY INDD=MYPDS,OUTDD=MYPDS
    //DELETE2 EXEC PGM=IEFBR14
    //BACKPDS DD DISP=(OLD,DELETE,DELETE),
    DSN=MY.IMPORTNT.PDS.BACKUP
```


Guruhood

($/ / \mathrm{V}$) > (+/V)-「/V

IBM's APL Language - Returns 1 if the largest value in a 3 element vector is greater than the sum of the other 2 and Returns 0 otherwise APL was very powerful for processing arrays \& vectors

Why study this?

Science of Computing

- Mathematical Properties (problems \& algorithms) having nothing to do with current technology or languages
- E.G. Alan Turing - died 1954
- Provides Abstract Structures
- Defines Provable Limits
- Like "Big Oh"

Goals

Principles of Problems:
Does a solution exist?

- If not, is there a restricted variation?

Can solution be implemented in fixed memory?

- Is Solution efficient?
- Growth of time \& memory with problem size?

Are there equivalent groups of problems?

Applications of the automata Theory

- Used in design of Lexical analyzer of compilers which breaks source program into tokens like identifies, Keywords etc..
- Software for designing and checking the behavior of the Digital circuits.
- FSMs (finite state machines) for vending machines, Traffic signals, communication protocols, \& building security devices.
- String Matching: searching words, phrase and other pattern in large bodies of text(like web pages)
- Interactive games as nondeterministic FSMs.
- Used in Natural languages processing: for speech to text and text to speech conversions.
- Artificial Intelligence: Medical Dignosis,Factory Scheduling etc..

Languages and Strings

This is one of MOST important chapters. It includes the TERMINOLOGY required to be successful in this course.
KNOW this chapter \& ALL DEFINITIONS!!

Chapter 2

A Framework for Analyzing Problems

We need a single framework in which we can analyze a very diverse set of problems.

The framework is

Language Recognition

*A language is a (possibly infinite) set of finite length strings over a finite alphabet.

NOTE: Pay particular attention to use of finite \& infinite in all definitions!

Alphabet - Σ

- An alphabet is a non-empty, finite set of characters/symbols
- Use Σ to denote an alphabet
- Examples
$\Sigma=\{a, b\}$
$\Sigma=\{0,1,2\}$
$\Sigma=\{a, b, c, \ldots z, A, B, \ldots Z\}$
$\Sigma=\left\{\#, \$,^{*}, @, \&\right\}$

Strings

- A string is a finite sequence, possibly empty, of characters drawn from some alphabet Σ.
- ε is the empty string
- Σ^{*} is the set of all possible strings over an alphabet Σ.

Example Alphabets \& Strings

Alphabet name	Alphabet symbols	Example strings
The lower case English alphabet	$\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots, \mathrm{z}\}$	ε, aabbcg, aaaaa
The binary alphabet	$\{0,1\}$	$\varepsilon, 0,001100,11$
A star alphabet		
A music alphabet	$\{\square \square \square \square \square \square \bigcirc\}$	

Functions on Strings

Length:

- $|s|$ is the length of string s
- $|s|$ is the number of characters in string s.

$$
\begin{aligned}
& |\varepsilon|=0 \\
& |1001101|=7
\end{aligned}
$$

$\#_{c}(s)$ is defined as the number of times that c occurs in s.

$$
\#_{a}(a b b a a a)=4 .
$$

More Functions on Strings

Concatenation: the concatenation of 2 strings s and t is the string formed by appending t to s ; written as s||t or more commonly, st

Example:

$$
\begin{aligned}
& \text { If } x=\text { good and } y=\text { bye, then } x y=\text { goodbye } \\
& \text { and } y x=\text { byegood }
\end{aligned}
$$

- Note that $|x y|=|x|+|y|-$ Is it always??
- ε is the identity for concatenation of strings. So,

$$
\forall x(x \varepsilon=\varepsilon X=x)
$$

- Concatenation is associative. So,

$$
\forall s, t, w((s t) w=s(t w))
$$

More Functions on Strings

Replication: For each string w and each natural number k, the string w^{k} is:

$$
\begin{aligned}
& w^{0}=\varepsilon \\
& w^{k+1}=w^{k} w
\end{aligned}
$$

Examples:

$$
\begin{aligned}
& a^{3}=\text { aaa } \\
& (b y e)^{2}=b y e b y e \\
& a^{0} b^{3}=b b b \\
& b^{2} y^{2} e^{2}=? ?
\end{aligned}
$$

Natural Numbers $\{0,1,2, \ldots\}$

More Functions on Strings

Reverse: For each string w, w^{R} is defined as:

$$
\begin{aligned}
& \text { if }|w|=0 \text { then } w^{\mathrm{R}}=w=\varepsilon \\
& \text { if }|w|=1 \text { then } w^{\mathrm{R}}=w \\
& \text { if } \begin{aligned}
|w| & >1 \text { then: } \\
& \exists a \in \Sigma\left(\exists u \in \Sigma^{\star}(w=u a)\right) \\
& \text { So define } w^{\mathrm{R}}=a u^{\mathrm{R}}
\end{aligned}
\end{aligned}
$$

OR

$$
\begin{aligned}
& \text { if }|w|>1 \text { then: } \\
& \exists a \in \Sigma \& \exists u \in \Sigma^{*} \ni w=u a \\
& \text { So define } w^{\mathrm{R}}=a u^{\mathrm{R}}
\end{aligned}
$$

Proof is by simple induction

Relations on Strings - Substrings

Substring: string s is a substring of string t if s occurs contiguously in t

- Every string is a substring of itself $\circ \varepsilon$ is a substring of every string
- Proper Substring: s is a proper substring of t iff $\mathrm{s} \neq \mathrm{t}$
Suppose $t=$ aabbcc.
\circ Substrings: ε, a, aa, ab, bbcc, b, c, aabbcc
- Proper substrings?
\circ Others?

The Prefix Relations

s is a prefix of t iff $\exists x \in \Sigma^{*}(t=s x)$.
s is a proper prefix of t iff s is a prefix of t and $s \neq t$.
Examples:
The prefixes of abba are: $\quad \varepsilon, a, a b, a b b, a b b a$.
The proper prefixes of abba are:
$\varepsilon, a, a b, a b b$.

- Every string is a prefix of itself.
- ε is a prefix of every string.

The Suffix Relations

s is a suffix of t iff $\exists x \in \Sigma^{*}(t=x s)$.
s is a proper suffix of t iff s is a suffix of t and $s \neq t$.
Examples:
The suffixes of abba are: $\quad \varepsilon, a, b a, b b a, ~ a b b a$. The proper suffixes of abba are: $\quad \varepsilon, \mathrm{a}, \mathrm{ba}, \mathrm{bba}$.

- Every string is a suffix of itself.
- ε is a suffix of every string.

Defining a Language

A language is a (finite or infinite) set of strings over a (finite) alphabet Σ.

Examples: Let $\Sigma=\{a, b\}$
Some languages over Σ :
$\varnothing=\{ \} \quad / /$ the empty language, no strings
$\{\varepsilon\} \quad / /$ language contains only the empty string
$\{a, b\}$
$\{\varepsilon, a$, aa, aaa, aaaa, aaaaa $\}$

Defining a Language

Two ways to define a language via a Machine = Automaton

AKA - Computer Program

- Recognizer
- Generator

Which do we want? Why?

Σ^{*}

- Σ^{*} is defined as the set of all possible strings that can be formed from the alphabet Σ^{*}
$-\Sigma^{*}$ is a language
- Σ^{*} contains an infinite number of strings $-\Sigma^{*}$ is countably infinite

Σ^{*} Example

$$
\begin{aligned}
& \text { Let } \Sigma=\{\mathrm{a}, \mathrm{~b}\} \\
& \Sigma^{\star}=\{\varepsilon, \mathrm{a}, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \mathrm{aaa}, \mathrm{aab}, \ldots\}
\end{aligned}
$$

Later, we will spend some more time studying Σ^{*}.

Defining Languages

Remember we are defining a set Set Notation:

$$
\begin{aligned}
& L=\left\{w \in \Sigma^{*} \mid \text { description of } w\right\} \\
& L=\left\{w \in\{a, b, c\}^{*} \mid \text { description of } w\right\}
\end{aligned}
$$

- "description of w" can take many forms but must be precise
- Notation can vary, but must precisely define

Example Language Definitions

$L=\left\{X \in\{a, b\}^{*} \mid\right.$ all a's precede all b's $\}$

- aab, a aabb, and aab.b.b are in L.
- aba, ba, and abc are not in L.
- What about ε, a, aa, and bb?
$L=\left\{x: \exists y \in\{a, b\}^{*} \mid x=y a\right\}$
- Give an English description.

Example Language Definitions

$$
\text { Let } \Sigma=\{a, b\}
$$

- $L=\left\{w \in \Sigma^{*}:|w|<5\right\}$
- $L=\left\{w \in \Sigma^{*} \mid w\right.$ begins with $\left.b\right\}$
- $L=\left\{w \in \Sigma^{*} \mid \#_{b}(w)=2\right\}$
- $L=\left\{W \in \Sigma^{*} \mid\right.$ each a is followed by exactly 2 b 's $\}$
- $L=\left\{w \in \Sigma^{*} \mid w\right.$ does not begin with $\left.a\right\}$

The Perils of Using English

$L=\{x \# y: x, y \in\{0,1,2,3,4,5,6,7,8$,
$9\}^{*}$ and, when $x \& y$ are viewed as decimal representations of natural numbers, $\operatorname{square}(x)=y\}$.

Examples:
3\#9, 12\#144
3\#8, 12, 12\#12\#12
\#

A Halting Problem Language

$L=\{w \mid w$ is a C++ program that halts on all inputs\}

- Well specified.
- Can we decide what strings it contains?
-Do we want a generator or recognizer?

More Examples

What strings are in the following languages?
$L=\left\{w \in\{a, b\}^{*}\right.$: no prefix of w contains $\left.b\right\}$
$L=\left\{w \in\{a, b\}^{*}:\right.$ no prefix of w starts with $\left.a\right\}$
$L=\left\{w \in\{a, b\}^{*}\right.$: every prefix of w starts with $\left.a\right\}$
$L=\left\{a^{n}: n \geq 0\right\}$
$L=\left\{b a^{2 n}: n \geq 0\right\}$
$L=\left\{b^{n} a^{n}: n \geq 0\right\}$

Enumeration

Enumeration: to list all strings in a language (set)

- Arbitrary order
- More useful: lexicographic order
- Shortest first
- Within a length, dictionary order
- Define linear order of arbitrary symbols

Lexicographic Enumeration

$\left\{w \in\{a, b\}^{*}:|w|\right.$ is even $\}$
$\{\varepsilon, a a, a b, b b, a a a a, ~ a a b, \ldots\}$

What string is next?
How many strings of length 4?
How many strings of length 6 ?

Cardinality of a Language

- Cardinality of a Language: the number of strings in the language
- |L|
- Smallest language over any Σ is \varnothing, with cardinality 0.
- The largest is Σ^{*}.
- Is this true?
- How big is it?
- Can a language be uncountable?

Functions on Languages

Set (Language) functions
Have the traditional meaning

- Union
- Intersection
- Complement
- Difference

Language functions

- Concatenation
- Kleene star

Concatenation of Languages

If L_{1} and L_{2} are languages over Σ :

$$
L_{1} L_{2}=\left\{w: \exists s \in L_{1} \& \exists t \in L_{2} \ni w=s t\right\}
$$

Examples:
$L_{1}=\{c a t, \operatorname{dog}\}$
$L_{2}=\{$ apple, pear $\}$
$L_{1} L_{2}=\{$ catapple, catpear, dogapple, dogpear\}
$L_{2} L_{1}=\{$ applecat, appledog, pearcat, peardog\}

Concatenation of Languages

$\{\varepsilon\}$ is the identity for concatenation:

$$
L\{\varepsilon\}=\{\varepsilon\} L=L
$$

\varnothing is a zero for concatenation:

$$
L \varnothing=\varnothing L=\varnothing
$$

Concatenating Languages Defined Using Variables

The scope of any variable used in an expression that invokes replication will be taken to be the entire expression.
$L_{1}=\left\{a^{n}: n \geq 0\right\}$
$L_{2}=\left\{\mathrm{b}^{n}: n \geq 0\right\}$
$L_{1} L_{2}=\left\{\mathrm{a}^{m} \mathrm{~b}^{m}: n, m \geq 0\right\}$
$L_{1} L_{2} \neq\left\{a^{n_{b}} b^{n}: n \geq 0\right\}$

Kleene Star

L* - language consisting of 0 or more concatenations of strings from L
$L^{*}=\{\varepsilon\} \cup\left\{w \in \Sigma^{*}: w=w_{1} w_{2} \ldots w_{\mathrm{k},} k \geq 1 \&\right.$

$$
\left.w_{1}, w_{2}, \ldots w_{\mathrm{k}} \in L\right\}
$$

Examples:
$L=\{d o g, c a t, f i s h\}$
$L^{*}=\{\varepsilon$, dog, cat, fish, dogdog, dogcat, dogfish,fishcatfish,fishdogdogfishcat, ...\}
$L_{1}=a^{*}$

$$
L_{2}=b^{*}
$$

What is a^{*} ? b^{*} ?
$L_{1} L_{2}=$
$L_{2} L_{1}=$
$L_{1} L_{1}=$

The + Operator

$L^{+}=$language consisting of 1 or more concatenations of strings from L

$$
\begin{aligned}
L^{+}= & L L^{*} \\
L^{+}= & L^{*}-\{\varepsilon\} \text { iff } \varepsilon \notin L \\
& \text { Explain this definition!! } \\
& \text { When is } \varepsilon \in L^{+} ?
\end{aligned}
$$

Closure

A set S is closed under the operation @ if for every element x \& y in S, x@y is also an element of S
A set S is closed under the operation @ if for every element $x \in S \& y \in S, x @ y \in S$ Examples

Semantics: Assigning Meaning to Strings

When is the meaning of a string important?
A semantic interpretation function assigns meanings to the strings of a language.

Can be very complex.
Example from English:
I brogelled the yourtish.
He's all thumbs.

