Why Study the Theory of Computation?

Implementations come and go.

IBM 7090 Programming in the 1950's

ENTRY	SXA	4, RETURN
	LDQ	X
	FMP	A
	FAD	В
	XCA	
	FMP	Х
	FAD	С
	STO	RESULT
RETURN	TRA	0
А	BSS	1
В	BSS	1
С	BSS	1
Х	BSS	1
TEMP	BSS	1
STORE	BSS	1
	END	

 $Ax^2 + Bx + C$

Programming in the 1970's IBM 360 JCL (Job Control Language)

//MYJOB JC	B (COMPRESS),		
'VC	LKER BANDKE', CLASS=P, COND=(0, NE)		
//BACKUP EXE	C PGM=IEBCOPY		
//SYSPRINT DD	SYSOUT=*		
//SYSUT1 DE	DISP=SHR, DSN=MY.IMPORTNT.PDS		
//SYSUT2 DE	DISP=(,CATLG),		
DS	N=MY.IMPORTNT.PDS.BACKUP,		
// UN	IT=3350,VOL=SER=DISK01,		
// DC	B=MY.IMPORTNT.PDS,		
SF	ACE=(CYL, (10,10,20))		
//COMPRESS EXEC PGM=IEBCOPY			
//SYSPRINT DD	SYSOUT=*		
//MYPDS DD	DISP=OLD, DSN=*.BACKUP.SYSUT1		
//SYSIN DE	*		
COPY INDD=MYPDS,OUTDD=MYPDS			
//DELETE2 EXE	C PGM=IEFBR14		
//BACKPDS DD	DISP=(OLD, DELETE, DELETE),		
DSN=MY.IMPORTNT.PDS.BACKUP			

Guruhood

$(\lceil / \lor) > (+ / \lor) - \lceil / \lor$

IBM's APL Language – Returns 1 if the largest value in a 3 element vector is greater than the sum of the other 2 and Returns 0 otherwise APL was very powerful for processing arrays & vectors

Why study this?

Science of Computing

- Mathematical Properties (problems & algorithms) having nothing to do with current technology or languages
- E.G. Alan Turing died 1954
- Provides Abstract Structures
- Defines Provable Limits
 - Like "Big Oh"

Goals

Principles of Problems:

- Does a solution exist?
 - If not, is there a restricted variation?
 - Can solution be implemented in fixed memory?
- Is Solution efficient?
 - Growth of time & memory with problem size?
- Are there equivalent groups of problems?

Applications of the automata Theory

- Used in design of Lexical analyzer of compilers which breaks source program into tokens like identifies, Keywords etc..
- Software for designing and checking the behavior of the Digital circuits.
- FSMs (finite state machines) for vending machines, Traffic signals, communication protocols, & building security devices.
- String Matching: searching words, phrase and other pattern in large bodies of text(like web pages)
- Interactive games as nondeterministic FSMs.
- Used in Natural languages processing: for speech to text and text to speech conversions.
- Artificial Intelligence: Medical Dignosis, Factory Scheduling etc..

This is one of MOST important chapters. It includes the TERMINOLOGY required to be successful in this course. KNOW this chapter & ALL DEFINITIONS!!

Chapter 2

A Framework for Analyzing Problems

We need a single framework in which we can analyze a very diverse set of problems.

The framework is

Language Recognition

*A *language* is a (possibly *infinite*) <u>set</u> of *finite* length strings over a *finite* alphabet.

NOTE: Pay particular attention to use of *finite* & *infinite* in all definitions!

Alphabet - Σ

- An alphabet is a non-empty, finite set of characters/symbols
- Use Σ to denote an alphabet
- Examples

$$\Sigma = \{ 0, 1, 2 \}$$

- $\Sigma = \{ a, b, c, ..., z, A, B, ..., Z \}$
- $\Sigma = \{ #, \$, *, @, \& \}$

Strings

- A string is a finite sequence, possibly empty, of characters drawn from some alphabet Σ.
- ε is the empty string
- Σ* is the set of all possible strings over an alphabet Σ.

Example Alphabets & Strings

Alphabet name	Alphabet symbols	Example strings
The lower case English alphabet	{a, b, c,, z}	ε, aabbcg, aaaaa
The binary alphabet	{0, 1}	ε,0,001100,11
A star alphabet	{★, ♥, ☆, ☆, ☆, ☆}	ε, ΟΟ, Ο★★☆★☆
A music alphabet	{₀, ∫, ∫, ♪, ♪, ♪, ♪, ●}	٤, ٥,00

Functions on Strings

Length:

- |s| is the length of string s
- |s| is the number of characters in string s.

|**ε**| = 0 |1001101| = 7

 $\#_{c}(s)$ is defined as the number of times that c occurs in s.

 $#_a(abbaaa) = 4.$

More Functions on Strings

Concatenation: the **concatenation** of 2 strings *s* and *t* is the string formed by appending t to s; written as s||t or more commonly, *st*

Example:

If x = good and y = bye, then xy = goodbye
and yx = byegood

- Note that |xy| = |x| + |y| -- Is it always??
- ε is the identity for concatenation of strings. So, $\forall x (x \varepsilon = \varepsilon \ x = x)$
- Concatenation is associative. So,

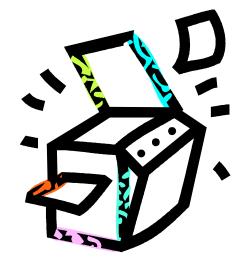
 $\forall s, t, w ((st)w = s(tw))$

More Functions on Strings

Replication: For each string w and each natural number k, the string w^k is:

 $W^{0} = \varepsilon$ $W^{k+1} = W^{k} W$

Examples: $a^3 = aaa$ $(bye)^2 = byebye$ $a^0b^3 = bbb$ $b^2y^2e^2 = ??$



Natural Numbers {0,1,2,...}

More Functions on Strings

Reverse: For each string *w*, *w*^R is defined as:

```
if |w| = 0 then w^{R} = w = \varepsilon
```

```
if |w| = 1 then w^{R} = w
```

```
if |w| > 1 then:

\exists a \in \Sigma \ (\exists u \in \Sigma^* \ (w = ua))

So define w^R = a u^R
```

OR

```
if |w| > 1 then:

\exists a \in \Sigma \& \exists u \in \Sigma^* \ni w = ua

So define w^R = a u^R
```

Proof is by simple induction

Relations on Strings - Substrings

Substring: string s is a *substring* of string t if s occurs contiguously in t

- ${\rm o}$ Every string is a substring of itself
- $\circ\,\epsilon$ is a substring of every string
- Proper Substring: s is a proper substring of t iff s ≠ t
- \circ Suppose t = aabbcc.
 - \circ Substrings: ϵ , a, aa, ab, bbcc, b, c, aabbcc
 - o Proper substrings?
 - o Others?

The Prefix Relations

s is a *prefix* of *t* iff $\exists x \in \Sigma^*$ (*t* = sx).

s is a *proper prefix* of t iff s is a prefix of t and $s \neq t$. Examples:

The prefixes of abba are: ϵ , a, ab, abb, abba.The proper prefixes of abba are: ϵ , a, ab, abb.

- Every string is a prefix of itself.
- ε is a prefix of every string.

The Suffix Relations

- s is a suffix of t iff $\exists x \in \Sigma^*$ (t = xs).
- *s* is a *proper suffix* of *t* iff *s* is a suffix of *t* and $s \neq t$. Examples:
- The suffixes of abba are: ϵ , a, ba, bba, abba.The proper suffixes of abba are: ϵ , a, ba, bba.
- Every string is a suffix of itself.
- ε is a suffix of every string.

Defining a Language

A *language* is a (finite or infinite) set of strings over a (finite) alphabet Σ .

Examples: Let $\Sigma = \{a, b\}$

Some languages over Σ : $\emptyset = \{ \}$ // the empty language, no strings $\{\varepsilon\}$ // language contains only the empty string $\{a, b\}$ $\{\varepsilon, a, aa, aaa, aaaa, aaaaa\}$

Defining a Language

Two ways to define a language via a Machine = Automaton AKA – Computer Program

- Recognizer
- Generator

Which do we want? Why?

- Σ* is defined as the set of all possible strings that can be formed from the alphabet Σ*
 - $-\Sigma^*$ is a language
- Σ^* contains an *infinite* number of strings - Σ^* is *countably infinite*

Σ^* Example

Let $\Sigma = \{a, b\}$ $\Sigma^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, ... \}$

Later, we will spend some more time studying Σ^* .



Defining Languages

Remember we are defining a set Set Notation:

 $L = \{ w \in \Sigma^* \mid description \text{ of } w \}$ $L = \{ w \in \{a,b,c\}^* \mid description \text{ of } w \}$

- "description of w" can take many forms but must be precise
- Notation can vary, but must precisely define

Example Language Definitions

$L = \{x \in \{a, b\}^* \mid all a's precede all b's\}$

- aab, aaabb, and aabbb are in L.
- aba, ba, and abc are not in L.
- What about ϵ , a, aa, and bb?
- $L = \{x : \exists y \in \{a, b\}^* \mid x = ya\}$
- Give an English description.

Example Language Definitions

Let $\Sigma = \{a, b\}$

- $L = \{ W \in \Sigma^* : |W| < 5 \}$
- $L = \{ w \in \Sigma^* \mid w \text{ begins with } b \}$
- $L = \{ W \in \Sigma^* | \#_b(W) = 2 \}$
- L = { w ∈ Σ* | each a is followed by exactly 2 b's}
- L = { w $\in \Sigma^*$ | w does not begin with a}

The Perils of Using English

L = {x#y: $x, y \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}^*$ and, when x & y are viewed as decimal representations of natural numbers, square(x) = y}.

Examples: 3#9,12#144 3#8,12,12#12#12 #

A Halting Problem Language

 $L = \{w \mid w \text{ is a C++ program that halts on all inputs}\}$

- Well specified.
- Can we decide what strings it contains?
- •Do we want a generator or recognizer?

More Examples

What strings are in the following languages?

- $L = \{w \in \{a, b\}^*: no \text{ prefix of } w \text{ contains } b\}$
- $L = \{w \in \{a, b\}^*: no \text{ prefix of } w \text{ starts with } a\}$
- $L = \{w \in \{a, b\}^*: every prefix of w starts with a\}$
- $L=\{\mathrm{a}^n:\,n\geq 0\}$
- $L = \{ ba^{2n} : n \ge 0 \}$
- $L = \{b^n a^n : n \ge 0\}$

Enumeration

Enumeration: to list all strings in a language (set)

- Arbitrary order
- More useful: *lexicographic order*
 - Shortest first
 - Within a length, dictionary order
 - Define linear order of arbitrary symbols

Lexicographic Enumeration

 $\{w \in \{a, b\}^* : |w| \text{ is even}\}$ $\{\varepsilon, aa, ab, bb, aaaa, aaab, ...\}$

> What string is next? How many strings of length 4? How many strings of length 6?

Cardinality of a Language

- Cardinality of a Language: the number of strings in the language
- | L |
- Smallest language over any Σ is Ø, with cardinality 0.
- The largest is Σ^* .
 - Is this true?
 - How big is it?
- Can a language be uncountable?

Functions on Languages

Set (Language) functions Have the traditional meaning

- Union
- Intersection
- Complement
- Difference

Language functions

- Concatenation
- Kleene star

Concatenation of Languages

If L_1 and L_2 are languages over Σ :

 $L_1L_2 = \{w : \exists s \in L_1 \& \exists t \in L_2 \ni w = st \}$

Examples: $L_1 = \{ \text{cat, dog} \}$ $L_2 = \{ \text{apple, pear} \}$ $L_1 L_2 = \{ \text{catapple, catpear, dogapple, dogpear} \}$ $L_2 L_1 = \{ \text{applecat, appledog, pearcat, peardog} \}$

Concatenation of Languages

 $\{\epsilon\}$ is the identity for concatenation:

$$L\{\varepsilon\} = \{\varepsilon\}L = L$$

 \varnothing is a zero for concatenation:

 $L \varnothing = \varnothing L = \varnothing$

Concatenating Languages Defined Using Variables

The scope of any variable used in an expression that invokes replication will be taken to be the entire expression.

$$L_1 = \{a^n: n \ge 0\} \\ L_2 = \{b^n: n \ge 0\}$$

 $L_{1} L_{2} = \{a^{n}b^{m} : n, m \ge 0\}$ $L_{1}L_{2} \neq \{a^{n}b^{n} : n \ge 0\}$

Kleene Star 🖌

L* - language consisting of 0 or more concatenations of strings from L

$$L^* = \{\varepsilon\} \cup \{W \in \Sigma^* : W = W_1 \ W_2 \ \dots \ W_{k, k} \ge 1 \& W_1, \ W_2, \ \dots \ W_k \in L\}$$

Examples:

$$L = \{ dog, cat, fish \}$$

 $L^* = \{\epsilon, \text{dog, cat, fish, dogdog, dogcat, } dogfish, fishcatfish, fishdogdogfishcat, ...\}$

$$L_1 = a^*$$
 $L_2 = b^*$
*What is a**? *b**?
 $L_1 L_2 =$
 $L_2 L_1 =$
 $L_1 L_1 =$

The + Operator

L⁺ = language consisting of 1 or more concatenations of strings from L

 $L^+ = L L^*$

$L^{+} = L^{*} - \{\varepsilon\} \text{ iff } \varepsilon \notin L$ Explain this definition!! When is $\varepsilon \in L^{+}$?

Closure

- A set S is closed under the operation @ if for every element x & y in S, x@y is also an element of S
- A set S is closed under the operation @ if for every element $x \in S \& y \in S, x@y \in S$ Examples

Semantics: Assigning Meaning to Strings

When is the meaning of a string important?

A semantic interpretation function assigns meanings to the strings of a language.

Can be very complex.

Example from English:

I brogelled the yourtish. He's all thumbs.