S5J PN Trust's

Hirasugar Institute of Technology,Nidasoshi.

Inculcating Values, Fromoting Frosperity
Accredited at 'A’ Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME

SUBJECT: OPERATING SYSTEM (18CS43)
PROCESS MANAGEMENT

By: Prof. Prasanna Patil
Asst. Prof. , Dept. of Computer Science & Engg.,
Hirasugar Institute of Technology, Nidasoshi

CHAPTER 3: PROCESSES

Process Concept
Process Scheduling
Operations on Processes

Inter Process Communication

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euueseld

OBJECTIVES

To 1introduce the notion of a process -- a
program 1n execution, which forms the basis of
all computation

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euuese.d

To describe the various features of processes,
including scheduling, creation and termination,
and communication

To describe communication in client-server
systems

PROCESS CONCEPT

An operating system executes a variety of programs:
Batch system — jobs
Time-shared systems — user programs or tasks

Textbook uses the terms job and process almost
interchangeably

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euuese.d

Process — a program in execution; process execution
must progress in sequential fashion

A process 1ncludes:

program counter
stack
data section

THE PROCESS

Multiple parts
The program code, also called text section

Current activity including program counter, processor
registers

Stack containing temporary data
Function parameters, return addresses, local variables

Data section containing global variables
Heap containing memory dynamically allocated during run time

Program 1s passive entity, process 1s active

Program becomes process when executable file loaded into
memory

Execution of program started via GUI mouse clicks, command
line entry of its name, etc

One program can be several processes
Consider multiple users executing the same program

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euuese.d

Prasanna Patil, Dept of CSE, HIT
Nidasoshi a

5
©
=

PROCESS IN MEMORY

PROCESS STATE

As a process executes, 1t changes state
new: The process 1s being created
running: Instructions are being executed

waiting: The process 1s waiting for some event to
occur

ready: The process 1s waiting to be assigned to a
processor

terminated: The process has finished execution

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euuese.d

DIAGRAM OF PROCESS STATE

o admitted interrupt

scheduler dispatch

I/O or event completion

/O or event wait

IYSOSepIN

1IH ‘3SD Jo 1daq ‘|ned euueseld

» TERMINATED

Admitted Interrupt Exit

Scheduler dispatch

—

1/O or Event completion /O or Event wait

PROCESS CONTROL BLOCK (PCB)

Information associated with each process
Process state
Program counter
CPU registers
CPU scheduling information

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euuese.d

Memory-management information
Accounting information

I/0 status information

PROCESS/ TASK CONTROL BLOCK (PCB)

process state

process number

program counter

registers

memory limits

list of open files

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euueseld

CPU SwIiTCH FROM PROCESS TO PROCESS

process P, operating system process P,

interrupt or system call

executing / l

B save state into PCB,

- idle

reload state from PCB,] .
- idle interrupt or system call executing

! T~

save state into PCB,

- > idle

) reload state from PCB, p

executing \

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euueseld

PROCESS SCHEDULING

Maximize CPU use, quickly switch processes onto
CPU for time sharing

Process scheduler selects among available

processes for next execution on CPU

Maintains scheduling queues of processes
Job queue — set of all processes in the system

Ready queue — set of all processes residing 1n main
memory, ready and waiting to execute

Device queues — set of processes waiting for an I/0
device

Processes migrate among the various queues

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euuese.d

READY QUEUE AND VARIOUS
I/0 DEVICE QUEUES

queue header PCB., PCB,
ready head > > T =
queue tail registers registers
e head 7 /
tape : -
unit O tail - =
tmag head +——
ape . PCB PCB PCB
unit 1 tail = - - °
t g g T =
disk head
Unit O tall ~\

PCBs

terminal head —T—» =1
unit O tail a3

IYSOSepIN

1IH ‘3SD Jo 1daq ‘|ned euueseld

REPRESENTATION OF PROCESS SCHEDULING

| ready queue

/O /O queue -

/O request

o

time slice
expired

Interrupt

fork a
child

OCCUTIS

child
executes

wait for an
interrupt

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euueseld

SCHEDULERS

Long-term scheduler (or job scheduler) — selects
which processes should be brought into the ready
queue

Short-term scheduler (or CPU scheduler) — selects

which process should be executed next and allocates
CPU

Sometimes the only scheduler 1n a system

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euuese.d

SCHEDULERS (CONT.)

Short-term scheduler 1s invoked very frequently
(milliseconds) = (must be fast)

Long-term scheduler is invoked very infrequently
(seconds, minutes) = (may be slow)

The long-term scheduler controls the degree of
multiprogramming

Processes can be described as either:

I/0-bound process — spends more time doing I/0 than
computations, many short CPU bursts

CPU-bound process — spends more time doing
computations; few very long CPU bursts

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euuese.d

ADDITION OF MEDIUM TERM SCHEDULING

swap in

partially executed

swapped-out processes

swap out

_EI ready queue

IysosepIN
puuese.ld

\ J
®
-]

/O

I/O waiting
queues

1IH “3SD Jo 1daq ‘fAed

CONTEXT SWITCH

When CPU switches to another process, the system must save
the state of the old process and load the saved state for the
new process via a context switch.

Context of a process represented in the PCB

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euuese.d

Context-switch time 1s overhead; the system does no useful
work while switching

The more complex the OS and the PCB -> longer the context
switch

Time dependent on hardware support

Some hardware provides multiple sets of registers per CPU ->
multiple contexts loaded at once

PROCESS CREATION

Parent process create children processes, which, in turn
create other processes, forming a tree of processes

Generally, process 1dentified and managed via a process
identifier (pid)

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euuese.d

Resource sharing
Parent and children share all resources
Children share subset of parent’s resources
Parent and child share no resources

Execution
Parent and children execute concurrently
Parent waits until children terminate

PROCESS CREATION (CONT.)

Address space
Child duplicate of parent
Child process has a program loaded into 1t

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euuese.d

UNIX examples

fork system call creates new process

exec system call used after a fork to replace the
process’ memory space with a new program

PROCESS CREATION

parent

child ' exec()

wait

resumes

v

IYSOSepIN

1IH ‘3SD Jo 1daq ‘|ned euueseld

C PROGRAM FORKING SEPARATE PROCESS

#include <sys/types.h>
#include <studio.h>
#include <unistd.h>
int main()
{
pid_t pid;
/* fork another process */
pid = fork();
if (pid < 0) {/* error occurred */
fprintf(stderr, "Fork Failed");
return 1;
}
else if (pid == 0) { /* child process */
execlp("/bin/Is", "Is", NULL);
}
else { /* parent process */
/* parent will wait for the child */
wait (NULL);
printf ("Child Complete");
}

return O;

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euueseld

A TREE OF PROCESSES ON SOLARIS

Sched
pid =0

pageout
pid =2

inetd dtlogin
pid = 140 pid = 251

telnetdaemon Xsession
pid =7776 pid = 294
sdt_shel
pid = 340

Csh
pid = 1400

l cat
pid = 2536

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euueseld

Csh
pid = 7778

Netscape l emacs
pid = 7785 pid = 8105

PROCESS TERMINATION

Process executes last statement and asks the operating
system to delete 1t (exit)

Output data from child to parent (via wait)
Process’ resources are deallocated by operating system

Parent may terminate execution of children processes
(abort)

Child has exceeded allocated resources
Task assigned to child 1s no longer required

If parent is exiting

Some operating systems do not allow child to continue if its parent
terminates

All children terminated - cascading termination

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euuese.d

INTERPROCESS COMMUNICATION

Processes within a system may be independent or
cooperating

Cooperating process can affect or be affected by other
processes, Including sharing data
Reasons for cooperating processes:

Information sharing

Computation speedup

Modularity

Convenience

Cooperating processes need interprocess communication

(IPC)
Two models of IPC

Shared memory
Message passing

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euuese.d

COMMUNICATIONS MODELS

Lit)

process A M process A
shared
process B M process B
2 1
kernel M kernel

(a)

(b)

IYSOSepIN

1IH ‘3SD Jo 1daq ‘|ned euueseld

COOPERATING PROCESSES

Independent process cannot affect or be affected by
the execution of another process

Cooperating process can affect or be affected by the
execution of another process

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euuese.d

Advantages of process cooperation
Information sharing
Computation speed-up
Modularity
Convenience

PRODUCER-CONSUMER PROBLEM

Paradigm for cooperating processes, producer
process produces information that is
consumed by a consumer process

unbounded-buffer places no practical limit on the
size of the buffer

bounded-buffer assumes that there 1s a fixed
buffer size

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euueseld

BOUNDED-BUFFER —
SHARED-MEMORY SOLUTION

Shared data
#define BUFFER_SIZE 10
typedef struct {

} 1item;

1item buffer[BUFFER _SIZE];
int in = 0;

Int out = 0;

Solution 1s correct, but can only use
BUFFER SIZE-1 elements

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euueseld

BOUNDED-BUFFER — PRODUCER

ltem nextltemProduced;

while (true) {
/* Produce an item */

while (((in + 1) % BUFFERSIZE) == out)
/¥ Buffer is full, do nothing*/

buffer[in] = nextltemProduced;

in = (in + 1) % BUFFER SIZE;

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euueseld

BOUNDED BUFFER — CONSUMER

ltem nextltemConsumed:;
while (true) {
while (in == out)

: // do nothing -- nothing to consume

// remove an item from the buffer
nextltemConsumed = buffer[out];
out = (out + 1) % BUFFER SIZE;

return item;

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euueseld

INTERPROCESS COMMUNICATION —
MESSAGE PASSING

Mechanism for processes to communicate and to
synchronize their actions

Message system — processes communicate with each other
without resorting to shared variables

IPC facility provides two operations:
send(message) — message size fixed or variable
receive(message)

If P and @ wish to communicate, they need to:
establish a communication link between them
exchange messages via send/recelve

Implementation of communication link
physical (e.g., shared memory, hardware bus)
logical (e.g., logical properties)

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euuese.d

IMPLEMENTATION QUESTIONS

How are links established?

Can a link be associated with more than two
processes?

How many links can there be between every pair of
communicating processes?

What 1s the capacity of a link?

Is the size of a message that the link can
accommodate fixed or variable?

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euuese.d

Is a Iink unidirectional or bi-directional?

SEVERAL METHODS FOR LOGICALLY
IMPLEMENTING A LINK AND THE SEND() &
RECEIVE() OPERATIONS:

Direct or Indirect Communication
Synchronous or Asynchronous Communication

Automatic or Explicit Buffering

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euueseld

DIRECT COMMUNICATION

Processes must name each other explicitly:
send (P, message) — send a message to process P
receive(Q), message) — recelve a message from process Q

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euuese.d

Properties of communication link
Links are established automatically

A link 1s associated with exactly one pair of communicating
processes

Between each pair there exists exactly one link
The link may be unidirectional, but 1s usually bi-directional

receive(id, message) — receive a message to the id from any process

INDIRECT COMMUNICATION

=

Messages are directed and received from mailboxes (also
referred to as ports)

Each mailbox has a unique 1d
Processes can communicate only if they share a mailbox

Properties of communication link
Link established only if processes share a common mailbox
A link may be associated with many processes

Each pair of processes may share several communication
links

Link may be unidirectional or bi-directional

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euueseld

INDIRECT COMMUNICATION

Operations
create a new mailbox
send and receive messages through mailbox
destroy a mailbox

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euuese.d

Primitives are defined as:
send(A4, message) — send a message to mailbox A

receive(A, message) — recelve a message from
mailbox A

INDIRECT COMMUNICATION

Mailbox sharing
P,, P,, and P, share mailbox A
P,, sends; P, and P, receive
Who gets the message?

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euuese.d

Solutions
Allow a link to be associated with at most two processes

Allow only one process at a time to execute a receive
operation

Allow the system to select arbitrarily the receiver. Sender
1s notified who the receiver was.

SYNCHRONIZATION

Message passing may be either blocking or non-blocking

Blocking is considered synchronous

Blocking send: the sending process 1s blocked until the
message 1s received by receiving process or by the mailbox.

Blocking receive has the receiver block until a message
1s available

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euuese.d

Non-blocking is considered asynchronous

Non-blocking send has the sender send the message and
continue

Non-blocking receive has the receiver receive a valid
message or null

BUFFERING
Queue of messages attached to the link;

1mplemented 1n one of three ways

1. Zero capacity — 0 messages
Sender must wait for receiver (rendezvous)

IysosepIN

1IH ‘3SD Jo 1daq ‘|laed euuese.d

2. Bounded capacity — finite length of n messages
Sender must wait if link full

3. Unbounded capacity — infinite length
Sender never waits

END OF CHAPTER 3

