
SUBJECT: OPERATING SYSTEM (18CS43)

PROCESS MANAGEMENT

By: Prof. Prasanna Patil
Asst. Prof. , Dept. of Computer Science & Engg.,

Hirasugar Institute of Technology, Nidasoshi

CHAPTER 3: PROCESSES

 Process Concept

 Process Scheduling

 Operations on Processes

 Inter Process Communication

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

2

OBJECTIVES
 To introduce the notion of a process -- a

program in execution, which forms the basis of

all computation

 To describe the various features of processes,

including scheduling, creation and termination,

and communication

 To describe communication in client-server

systems

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

3

PROCESS CONCEPT

 An operating system executes a variety of programs:
 Batch system – jobs

 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost
interchangeably

 Process – a program in execution; process execution
must progress in sequential fashion

 A process includes:
 program counter

 stack

 data section

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

4

THE PROCESS

 Multiple parts
 The program code, also called text section

 Current activity including program counter, processor
registers

 Stack containing temporary data
 Function parameters, return addresses, local variables

 Data section containing global variables

 Heap containing memory dynamically allocated during run time

 Program is passive entity, process is active
 Program becomes process when executable file loaded into

memory

 Execution of program started via GUI mouse clicks, command
line entry of its name, etc

 One program can be several processes
 Consider multiple users executing the same program

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

5

PROCESS IN MEMORY

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

6

PROCESS STATE

 As a process executes, it changes state

 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to

occur

 ready: The process is waiting to be assigned to a

processor

 terminated: The process has finished execution

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

7

DIAGRAM OF PROCESS STATE
P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

8

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

9

PROCESS CONTROL BLOCK (PCB)

Information associated with each process

 Process state

 Program counter

 CPU registers

 CPU scheduling information

 Memory-management information

 Accounting information

 I/O status information

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

10

PROCESS/ TASK CONTROL BLOCK (PCB)
P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

11

CPU SWITCH FROM PROCESS TO PROCESS
P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

12

PROCESS SCHEDULING

 Maximize CPU use, quickly switch processes onto
CPU for time sharing

 Process scheduler selects among available
processes for next execution on CPU

 Maintains scheduling queues of processes

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main
memory, ready and waiting to execute

 Device queues – set of processes waiting for an I/O
device

 Processes migrate among the various queues

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

13

READY QUEUE AND VARIOUS

I/O DEVICE QUEUES
P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

14

REPRESENTATION OF PROCESS SCHEDULING
P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

15

SCHEDULERS

 Long-term scheduler (or job scheduler) – selects
which processes should be brought into the ready
queue

 Short-term scheduler (or CPU scheduler) – selects
which process should be executed next and allocates
CPU

 Sometimes the only scheduler in a system

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

16

SCHEDULERS (CONT.)
 Short-term scheduler is invoked very frequently

(milliseconds) (must be fast)

 Long-term scheduler is invoked very infrequently
(seconds, minutes) (may be slow)

 The long-term scheduler controls the degree of
multiprogramming

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than
computations, many short CPU bursts

 CPU-bound process – spends more time doing
computations; few very long CPU bursts

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

17

ADDITION OF MEDIUM TERM SCHEDULING
P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

18

CONTEXT SWITCH

 When CPU switches to another process, the system must save
the state of the old process and load the saved state for the
new process via a context switch.

 Context of a process represented in the PCB

 Context-switch time is overhead; the system does no useful
work while switching
 The more complex the OS and the PCB -> longer the context

switch

 Time dependent on hardware support
 Some hardware provides multiple sets of registers per CPU ->

multiple contexts loaded at once

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

19

PROCESS CREATION
 Parent process create children processes, which, in turn

create other processes, forming a tree of processes

 Generally, process identified and managed via a process

identifier (pid)

 Resource sharing

 Parent and children share all resources

 Children share subset of parent’s resources

 Parent and child share no resources

 Execution

 Parent and children execute concurrently

 Parent waits until children terminate

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

20

PROCESS CREATION (CONT.)

 Address space

 Child duplicate of parent

 Child process has a program loaded into it

 UNIX examples

 fork system call creates new process

 exec system call used after a fork to replace the

process’ memory space with a new program

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

21

PROCESS CREATION

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

22

C PROGRAM FORKING SEPARATE PROCESS

#include <sys/types.h>
#include <studio.h>
#include <unistd.h>
int main()
{
pid_t pid;

/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");
return 1;

}
else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */

/* parent will wait for the child */
wait (NULL);
printf ("Child Complete");

}
return 0;

}

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

23

A TREE OF PROCESSES ON SOLARIS
P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

24

PROCESS TERMINATION
 Process executes last statement and asks the operating

system to delete it (exit)

 Output data from child to parent (via wait)

 Process’ resources are deallocated by operating system

 Parent may terminate execution of children processes
(abort)

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 If parent is exiting
 Some operating systems do not allow child to continue if its parent

terminates

 All children terminated - cascading termination

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

25

INTERPROCESS COMMUNICATION

 Processes within a system may be independent or
cooperating

 Cooperating process can affect or be affected by other
processes, including sharing data

 Reasons for cooperating processes:
 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need interprocess communication
(IPC)

 Two models of IPC
 Shared memory

 Message passing

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

26

COMMUNICATIONS MODELS

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

27

COOPERATING PROCESSES

 Independent process cannot affect or be affected by
the execution of another process

 Cooperating process can affect or be affected by the
execution of another process

 Advantages of process cooperation

 Information sharing

 Computation speed-up

 Modularity

 Convenience

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

28

PRODUCER-CONSUMER PROBLEM

 Paradigm for cooperating processes, producer

process produces information that is

consumed by a consumer process

 unbounded-buffer places no practical limit on the

size of the buffer

 bounded-buffer assumes that there is a fixed

buffer size

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

29

BOUNDED-BUFFER –

SHARED-MEMORY SOLUTION

 Shared data

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

 Solution is correct, but can only use

BUFFER_SIZE-1 elements

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

30

BOUNDED-BUFFER – PRODUCER

Item nextItemProduced;

while (true) {
/* Produce an item */

while (((in + 1) % BUFFERSIZE) == out)

; /* Buffer is full, do nothing*/

buffer[in] = nextItemProduced;

in = (in + 1) % BUFFER SIZE;

}

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

31

BOUNDED BUFFER – CONSUMER

Item nextItemConsumed;

while (true) {

while (in == out)

; // do nothing -- nothing to consume

// remove an item from the buffer

nextItemConsumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

return item;

}

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

32

INTERPROCESS COMMUNICATION –

MESSAGE PASSING

 Mechanism for processes to communicate and to
synchronize their actions

 Message system – processes communicate with each other
without resorting to shared variables

 IPC facility provides two operations:
 send(message) – message size fixed or variable

 receive(message)

 If P and Q wish to communicate, they need to:
 establish a communication link between them

 exchange messages via send/receive

 Implementation of communication link
 physical (e.g., shared memory, hardware bus)

 logical (e.g., logical properties)

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

33

IMPLEMENTATION QUESTIONS

 How are links established?

 Can a link be associated with more than two

processes?

 How many links can there be between every pair of

communicating processes?

 What is the capacity of a link?

 Is the size of a message that the link can

accommodate fixed or variable?

 Is a link unidirectional or bi-directional?

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

34

SEVERAL METHODS FOR LOGICALLY

IMPLEMENTING A LINK AND THE SEND() &

RECEIVE() OPERATIONS:

 Direct or Indirect Communication

 Synchronous or Asynchronous Communication

 Automatic or Explicit Buffering

35

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

DIRECT COMMUNICATION

 Processes must name each other explicitly:

 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from process Q

 Properties of communication link

 Links are established automatically

 A link is associated with exactly one pair of communicating

processes

 Between each pair there exists exactly one link

 The link may be unidirectional, but is usually bi-directional

receive(id, message) – receive a message to the id from any process

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

36

INDIRECT COMMUNICATION

 Messages are directed and received from mailboxes (also
referred to as ports)

 Each mailbox has a unique id

 Processes can communicate only if they share a mailbox

 Properties of communication link

 Link established only if processes share a common mailbox

 A link may be associated with many processes

 Each pair of processes may share several communication
links

 Link may be unidirectional or bi-directional

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

37

INDIRECT COMMUNICATION
 Operations

 create a new mailbox

 send and receive messages through mailbox

 destroy a mailbox

 Primitives are defined as:

send(A, message) – send a message to mailbox A

receive(A, message) – receive a message from
mailbox A

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

38

INDIRECT COMMUNICATION

 Mailbox sharing

 P1, P2, and P3 share mailbox A

 P1, sends; P2 and P3 receive

 Who gets the message?

 Solutions

 Allow a link to be associated with at most two processes

 Allow only one process at a time to execute a receive

operation

 Allow the system to select arbitrarily the receiver. Sender

is notified who the receiver was.

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

39

SYNCHRONIZATION
 Message passing may be either blocking or non-blocking

 Blocking is considered synchronous
 Blocking send: the sending process is blocked until the

message is received by receiving process or by the mailbox.

 Blocking receive has the receiver block until a message
is available

 Non-blocking is considered asynchronous
 Non-blocking send has the sender send the message and

continue

 Non-blocking receive has the receiver receive a valid
message or null

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

40

BUFFERING
 Queue of messages attached to the link;

implemented in one of three ways

1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages

Sender must wait if link full

3. Unbounded capacity – infinite length

Sender never waits

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

41

END OF CHAPTER 3

