
SUBJECT: OPERATING SYSTEM (18CS43)

PROCESS MANAGEMENT

By: Prof. Prasanna Patil
Asst. Prof. , Dept. of Computer Science & Engg.,

Hirasugar Institute of Technology, Nidasoshi

CHAPTER 3: PROCESSES

 Process Concept

 Process Scheduling

 Operations on Processes

 Inter Process Communication

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

2

OBJECTIVES
 To introduce the notion of a process -- a

program in execution, which forms the basis of

all computation

 To describe the various features of processes,

including scheduling, creation and termination,

and communication

 To describe communication in client-server

systems

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

3

PROCESS CONCEPT

 An operating system executes a variety of programs:
 Batch system – jobs

 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost
interchangeably

 Process – a program in execution; process execution
must progress in sequential fashion

 A process includes:
 program counter

 stack

 data section

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

4

THE PROCESS

 Multiple parts
 The program code, also called text section

 Current activity including program counter, processor
registers

 Stack containing temporary data
 Function parameters, return addresses, local variables

 Data section containing global variables

 Heap containing memory dynamically allocated during run time

 Program is passive entity, process is active
 Program becomes process when executable file loaded into

memory

 Execution of program started via GUI mouse clicks, command
line entry of its name, etc

 One program can be several processes
 Consider multiple users executing the same program

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

5

PROCESS IN MEMORY

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

6

PROCESS STATE

 As a process executes, it changes state

 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to

occur

 ready: The process is waiting to be assigned to a

processor

 terminated: The process has finished execution

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

7

DIAGRAM OF PROCESS STATE
P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

8

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

9

PROCESS CONTROL BLOCK (PCB)

Information associated with each process

 Process state

 Program counter

 CPU registers

 CPU scheduling information

 Memory-management information

 Accounting information

 I/O status information

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

10

PROCESS/ TASK CONTROL BLOCK (PCB)
P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

11

CPU SWITCH FROM PROCESS TO PROCESS
P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

12

PROCESS SCHEDULING

 Maximize CPU use, quickly switch processes onto
CPU for time sharing

 Process scheduler selects among available
processes for next execution on CPU

 Maintains scheduling queues of processes

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main
memory, ready and waiting to execute

 Device queues – set of processes waiting for an I/O
device

 Processes migrate among the various queues

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

13

READY QUEUE AND VARIOUS

I/O DEVICE QUEUES
P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

14

REPRESENTATION OF PROCESS SCHEDULING
P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

15

SCHEDULERS

 Long-term scheduler (or job scheduler) – selects
which processes should be brought into the ready
queue

 Short-term scheduler (or CPU scheduler) – selects
which process should be executed next and allocates
CPU

 Sometimes the only scheduler in a system

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

16

SCHEDULERS (CONT.)
 Short-term scheduler is invoked very frequently

(milliseconds)  (must be fast)

 Long-term scheduler is invoked very infrequently
(seconds, minutes)  (may be slow)

 The long-term scheduler controls the degree of
multiprogramming

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than
computations, many short CPU bursts

 CPU-bound process – spends more time doing
computations; few very long CPU bursts

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

17

ADDITION OF MEDIUM TERM SCHEDULING
P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

18

CONTEXT SWITCH

 When CPU switches to another process, the system must save
the state of the old process and load the saved state for the
new process via a context switch.

 Context of a process represented in the PCB

 Context-switch time is overhead; the system does no useful
work while switching
 The more complex the OS and the PCB -> longer the context

switch

 Time dependent on hardware support
 Some hardware provides multiple sets of registers per CPU ->

multiple contexts loaded at once

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

19

PROCESS CREATION
 Parent process create children processes, which, in turn

create other processes, forming a tree of processes

 Generally, process identified and managed via a process

identifier (pid)

 Resource sharing

 Parent and children share all resources

 Children share subset of parent’s resources

 Parent and child share no resources

 Execution

 Parent and children execute concurrently

 Parent waits until children terminate

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

20

PROCESS CREATION (CONT.)

 Address space

 Child duplicate of parent

 Child process has a program loaded into it

 UNIX examples

 fork system call creates new process

 exec system call used after a fork to replace the

process’ memory space with a new program

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

21

PROCESS CREATION

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

22

C PROGRAM FORKING SEPARATE PROCESS

#include <sys/types.h>
#include <studio.h>
#include <unistd.h>
int main()
{
pid_t pid;

/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");
return 1;

}
else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);
}
else { /* parent process */

/* parent will wait for the child */
wait (NULL);
printf ("Child Complete");

}
return 0;

}

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

23

A TREE OF PROCESSES ON SOLARIS
P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

24

PROCESS TERMINATION
 Process executes last statement and asks the operating

system to delete it (exit)

 Output data from child to parent (via wait)

 Process’ resources are deallocated by operating system

 Parent may terminate execution of children processes
(abort)

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 If parent is exiting
 Some operating systems do not allow child to continue if its parent

terminates

 All children terminated - cascading termination

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

25

INTERPROCESS COMMUNICATION

 Processes within a system may be independent or
cooperating

 Cooperating process can affect or be affected by other
processes, including sharing data

 Reasons for cooperating processes:
 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need interprocess communication
(IPC)

 Two models of IPC
 Shared memory

 Message passing

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

26

COMMUNICATIONS MODELS

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

27

COOPERATING PROCESSES

 Independent process cannot affect or be affected by
the execution of another process

 Cooperating process can affect or be affected by the
execution of another process

 Advantages of process cooperation

 Information sharing

 Computation speed-up

 Modularity

 Convenience

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

28

PRODUCER-CONSUMER PROBLEM

 Paradigm for cooperating processes, producer

process produces information that is

consumed by a consumer process

 unbounded-buffer places no practical limit on the

size of the buffer

 bounded-buffer assumes that there is a fixed

buffer size

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

29

BOUNDED-BUFFER –

SHARED-MEMORY SOLUTION

 Shared data

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

 Solution is correct, but can only use

BUFFER_SIZE-1 elements

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

30

BOUNDED-BUFFER – PRODUCER

Item nextItemProduced;

while (true) {
/* Produce an item */

while (((in + 1) % BUFFERSIZE) == out)

; /* Buffer is full, do nothing*/

buffer[in] = nextItemProduced;

in = (in + 1) % BUFFER SIZE;

}

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

31

BOUNDED BUFFER – CONSUMER

Item nextItemConsumed;

while (true) {

while (in == out)

; // do nothing -- nothing to consume

// remove an item from the buffer

nextItemConsumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

return item;

}

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

32

INTERPROCESS COMMUNICATION –

MESSAGE PASSING

 Mechanism for processes to communicate and to
synchronize their actions

 Message system – processes communicate with each other
without resorting to shared variables

 IPC facility provides two operations:
 send(message) – message size fixed or variable

 receive(message)

 If P and Q wish to communicate, they need to:
 establish a communication link between them

 exchange messages via send/receive

 Implementation of communication link
 physical (e.g., shared memory, hardware bus)

 logical (e.g., logical properties)

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

33

IMPLEMENTATION QUESTIONS

 How are links established?

 Can a link be associated with more than two

processes?

 How many links can there be between every pair of

communicating processes?

 What is the capacity of a link?

 Is the size of a message that the link can

accommodate fixed or variable?

 Is a link unidirectional or bi-directional?

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

34

SEVERAL METHODS FOR LOGICALLY

IMPLEMENTING A LINK AND THE SEND() &

RECEIVE() OPERATIONS:

 Direct or Indirect Communication

 Synchronous or Asynchronous Communication

 Automatic or Explicit Buffering

35

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

DIRECT COMMUNICATION

 Processes must name each other explicitly:

 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from process Q

 Properties of communication link

 Links are established automatically

 A link is associated with exactly one pair of communicating

processes

 Between each pair there exists exactly one link

 The link may be unidirectional, but is usually bi-directional

receive(id, message) – receive a message to the id from any process

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

36

INDIRECT COMMUNICATION

 Messages are directed and received from mailboxes (also
referred to as ports)

 Each mailbox has a unique id

 Processes can communicate only if they share a mailbox

 Properties of communication link

 Link established only if processes share a common mailbox

 A link may be associated with many processes

 Each pair of processes may share several communication
links

 Link may be unidirectional or bi-directional

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

37

INDIRECT COMMUNICATION
 Operations

 create a new mailbox

 send and receive messages through mailbox

 destroy a mailbox

 Primitives are defined as:

send(A, message) – send a message to mailbox A

receive(A, message) – receive a message from
mailbox A

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

38

INDIRECT COMMUNICATION

 Mailbox sharing

 P1, P2, and P3 share mailbox A

 P1, sends; P2 and P3 receive

 Who gets the message?

 Solutions

 Allow a link to be associated with at most two processes

 Allow only one process at a time to execute a receive

operation

 Allow the system to select arbitrarily the receiver. Sender

is notified who the receiver was.

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

39

SYNCHRONIZATION
 Message passing may be either blocking or non-blocking

 Blocking is considered synchronous
 Blocking send: the sending process is blocked until the

message is received by receiving process or by the mailbox.

 Blocking receive has the receiver block until a message
is available

 Non-blocking is considered asynchronous
 Non-blocking send has the sender send the message and

continue

 Non-blocking receive has the receiver receive a valid
message or null

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

40

BUFFERING
 Queue of messages attached to the link;

implemented in one of three ways

1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages

Sender must wait if link full

3. Unbounded capacity – infinite length

Sender never waits

P
ra

s
a
n
n
a
 P

a
til, D

e
p
t o

f C
S
E
, H

IT

N
id

a
s
o
s
h
i

41

END OF CHAPTER 3

