
Subject: Operating System (18CS43)

Operating System Structures

By: Prof. Prasanna Patil
Asst. Prof. , Dept. of Computer Science & Engg.,

Hirasugar Institute of Technology, Nidasoshi

Contents

• Operating System Services

• User Operating System Interface

• System Calls

• Types of System Calls

• System Programs

• Operating System Design and Implementation

• Operating System Structure

• Virtual Machines

• Operating System Generation

• System Boot

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

2

Objectives

• To describe the services an operating system
provides to users, processes, and other
systems

• To discuss the various ways of structuring an
operating system

• To explain how operating systems are
installed and customized and how they boot

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

3

Operating System Services
• Operating systems provide an environment for execution of programs and

services to programs and users

• One set of operating-system services provides functions that are helpful to
the user:

– User interface - Almost all operating systems have a user interface
(UI).

• Varies between Command-Line (CLI), Graphics User Interface
(GUI), Batch

– Program execution - The system must be able to load a program into
memory and to run that program, end execution, either normally or
abnormally (indicating error)

– I/O operations - A running program may require I/O, which may
involve a file or an I/O device

– File-system manipulation - The file system is of particular interest.
Programs need to read and write files and directories, create and
delete them, search them, list file Information, permission
management.

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

4

Operating System Services (Cont.)
• Communications – Processes may exchange

information, on the same computer or between
computers over a network
– Communications may be via shared memory or through

message passing (packets moved by the OS)

• Error detection – OS needs to be constantly aware of
possible errors
– May occur in the CPU and memory hardware, in I/O

devices, in user program

– For each type of error, OS should take the appropriate
action to ensure correct and consistent computing

– Debugging facilities can greatly enhance the user’s and
programmer’s abilities to efficiently use the system

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

5

Operating System Services (Cont.)
• Another set of OS functions exists for ensuring the efficient operation of

the system itself via resource sharing

– Resource allocation - When multiple users or multiple jobs running
concurrently, resources must be allocated to each of them

• Many types of resources - Some (such as CPU cycles, main
memory, and file storage) may have special allocation code,
others (such as I/O devices) may have general request and release
code

– Accounting - To keep track of which users use how much and what
kinds of computer resources

– Protection and security - The owners of information stored in a
multiuser or networked computer system may want to control use of
that information, concurrent processes
• Protection involves ensuring that all access to system resources is controlled

• Security of the system from outsiders requires user authentication, extends to
defending external I/O devices from invalid access attempts

• If a system should not interfere with each other

• is to be protected and secure, precautions must be instituted throughout it. A
chain is only as strong as its weakest link.

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

6

A View of Operating System Services

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

7

User Operating System Interface - CLI

• Command Line Interface (CLI) or command
interpreter allows direct command entry

• Sometimes implemented in kernel, sometimes by
systems program

• Sometimes multiple flavors implemented – shells

• Primarily fetches a command from user and executes
it
– Sometimes commands built-in, sometimes just names of

programs

– If the latter, adding new features doesn’t require shell
modification

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

8

User Operating System Interface - GUI

• User-friendly desktop metaphor interface
– Usually mouse, keyboard, and monitor

– Icons represent files, programs, actions, etc

– Various mouse buttons over objects in the interface cause
various actions (provide information, options, execute
function, open directory (known as a folder)

– Invented at Xerox PARC

• Many systems now include both CLI and GUI interfaces
– Microsoft Windows is GUI with CLI “command” shell

– Apple Mac OS X as “Aqua” GUI interface with UNIX kernel
underneath and shells available

– Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

9

Bourne Shell Command Interpreter

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

10

The Mac OS X GUI

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

11

System Calls
• Programming interface to the services provided by

the OS

• Typically written in a high-level language (C or C++)

• Mostly accessed by programs via a high-level
Application Program Interface (API) rather than
direct system call use

• Three most common APIs are Win32 API for
Windows, POSIX API for POSIX-based systems
(including virtually all versions of UNIX, Linux, and
Mac OS X), and Java API for the Java virtual machine
(JVM)

• Why use APIs rather than system calls?

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

12

Example of System Calls
• System call sequence to copy the contents of

one file to another file

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

13

Example of Standard API
• Consider the ReadFile() function in the Win32 API—a function for reading from a file

• A description of the parameters passed to ReadFile()

– HANDLE file—the file to be read

– LPVOID buffer—a buffer where the data will be read into and written from

– DWORD bytesToRead—the number of bytes to be read into the buffer

– LPDWORD bytesRead—the number of bytes read during the last read

– LPOVERLAPPED ovl—indicates if overlapped I/O is being used

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

14

System Call Implementation
• Typically, a number associated with each system call

– System-call interface maintains a table indexed according to
these numbers

• The system call interface invokes intended system call in
OS kernel and returns status of the system call and any
return values

• The caller needs to know nothing about how the system
call is implemented
– Just needs to obey API and understand what OS will do as a

result call

– Most details of OS interface hidden from programmer by API
• Managed by run-time support library (set of functions built into

libraries included with compiler)

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

15

API – System Call – OS Relationship

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

16

Standard C Library Example

• C program invoking printf() library call,
which calls write() system call

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

17

System Call Parameter Passing

• Often, more information is required than simply
identity of desired system call
– Exact type and amount of information vary according to OS

and call

• Three general methods used to pass parameters to the
OS
– Simplest: pass the parameters in registers

• In some cases, may be more parameters than registers
– Parameters stored in a block, or table, in memory, and

address of block passed as a parameter in a register
• This approach taken by Linux and Solaris

– Parameters placed, or pushed, onto the stack by the
program and popped off the stack by the operating system

– Block and stack methods do not limit the number or length
of parameters being passed

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

18

Parameter Passing via Table

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

19

Types of System Calls

• Process control
– end, abort
– load, execute
– create process, terminate process
– get process attributes, set process attributes
– wait for time
– wait event, signal event
– allocate and free memory

• File management
– create file, delete file
– open, close file
– read, write, reposition
– get and set file attributes

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

20

Types of System Calls (Cont.)

• Device management
– request device, release device
– read, write, reposition
– get device attributes, set device attributes
– logically attach or detach devices

• Information maintenance
– get time or date, set time or date
– get system data, set system data
– get and set process, file, or device attributes

• Communications
– create, delete communication connection
– send, receive messages
– transfer status information
– attach and detach remote devices

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

21

Examples of Windows and
Unix System Calls

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

22

Example: MS-DOS

• Single-tasking

• Shell invoked when system booted

• Simple method to run program

• Single memory space

• Loads program into memory, overwriting all
but the kernel

• Program exit -> shell reloaded

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

23

MS-DOS execution

(a) At system startup (b) running a program

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

24

Example: FreeBSD
• Unix variant
• Multitasking
• User login -> invoke user’s choice of shell
• Shell executes fork() system call to create

process
– Executes exec() to load program into process
– Shell waits for process to terminate or continues

with user commands

• Process exits with code of 0 – no error or > 0 –
error code

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

25

FreeBSD Running Multiple Programs

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

26

System Programs

• System programs provide a convenient environment
for program development and execution. They can
be divided into:
– File manipulation
– Status information
– File modification
– Programming language support
– Program loading and execution
– Communications
– Application programs

• Most users’ view of the operation system is defined
by system programs, not the actual system calls

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

27

System Programs
• Provide a convenient environment for program

development and execution
– Some of them are simply user interfaces to system calls;

others are considerably more complex

• File management - Create, delete, copy, rename, print,
dump, list, and generally manipulate files and directories

• Status information
– Some user ask the system for info - date, time, amount of

available memory, disk space, number of users
– Others provide detailed performance, logging, and

debugging information
– Typically, these programs format and print the output to

the terminal or other output devices
– Some systems implement a registry - used to store and

retrieve configuration information

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

28

System Programs (Cont.)

• File modification
– Text editors to create and modify files
– Special commands to search contents of files or perform

transformations of the text

• Programming-language support - Compilers,
assemblers, debuggers and interpreters sometimes
provided

• Program loading and execution- Absolute loaders,
relocatable loaders, linkage editors, and overlay-
loaders, debugging systems for higher-level and
machine language

• Communications - Provide the mechanism for creating
virtual connections among processes, users, and
computer systems
– Allow users to send messages to one another’s screens,

browse web pages, send electronic-mail messages, log in
remotely, transfer files from one machine to another

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

29

Operating System Design
and Implementation

• Few Problems in Design and Implementation of OS
are not “completely solvable”, but some approaches
have proven successful.

• Internal structure of different Operating Systems can
vary widely

• Start by defining goals and specifications

• Affected by choice of hardware, type of system

• User goals and System goals
– User goals – operating system should be convenient to

use, easy to learn, reliable, safe, and fast
– System goals – operating system should be easy to

design, implement, and maintain, as well as flexible,
reliable, error-free, and efficient

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

30

Operating System Design and
Implementation (Cont.)

• Important principle to separate

Policy: What will be done?
Mechanism: How to do it?

• Mechanisms determine how to do something,
policies decide what will be done
– The separation of policy from mechanism is a very

important principle, it allows maximum flexibility
if policy decisions are to be changed later

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

31

Simple Structure

• MS-DOS – written to provide the most
functionality in the least space

– Not divided into modules

– Although MS-DOS has some structure, its
interfaces and levels of functionality are not well
separated

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

32

MS-DOS Layer Structure

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

33

Layered Approach
• The operating system is divided into a

number of layers (levels), each built on top
of lower layers. The bottom layer (layer
0), is the hardware; the highest (layer N) is
the user interface.

• With modularity, layers are selected such
that each uses functions (operations) and
services of only lower-level layers

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

34

Traditional UNIX System Structure

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

35

UNIX

• UNIX – limited by hardware functionality, the
original UNIX operating system had limited
structuring. The UNIX OS consists of two
separable parts
– Systems programs
– The kernel

• Consists of everything below the system-call interface
and above the physical hardware

• Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a
large number of functions for one level

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

36

Layered Operating System

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

37

Microkernel System Structure
• Moves as much from the kernel into “user” space

• Communication takes place between user
modules using message passing

• Benefits:
– Easier to extend a microkernel
– Easier to port the operating system to new

architectures
– More reliable (less code is running in kernel mode)
– More secure

• Detriments:
– Performance overhead of user space to kernel space

communication

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

38

Mac OS X Structure

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

39

Modules

• Most modern operating systems implement
kernel modules
– Uses object-oriented approach

– Each core component is separate

– Each talks to the others over known interfaces

– Each is loadable as needed within the kernel

• Overall, similar to layers but with more
flexible

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

40

Solaris Modular Approach

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

41

Virtual Machines
• A virtual machine takes the layered approach to its

logical conclusion. It treats hardware and the
operating system kernel as though they were all
hardware.

• A virtual machine provides an interface identical to the
underlying bare hardware.

• The operating system host creates the illusion that a
process has its own processor and (virtual memory).

• Each guest provided with a (virtual) copy of underlying
computer.

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

42

Virtual Machines History and Benefits

• First appeared commercially in IBM mainframes in 1972
• Fundamentally, multiple execution environments (different

operating systems) can share the same hardware
• Protect from each other
• Some sharing of file can be permitted, controlled
• Commutate with each other, other physical systems via

networking
• Useful for development, testing
• Consolidation of many low-resource use systems onto fewer

busier systems
• “Open Virtual Machine Format”, standard format of virtual

machines, allows a VM to run within many different virtual
machine (host) platforms

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

43

Virtual Machines (Cont.)

(a) Nonvirtual machine (b) virtual
machine

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

44

Para-virtualization

• Presents guest with system similar but not
identical to hardware

• Guest must be modified to run on
paravirtualized hardware

• Guest can be an OS, or in the case of Solaris
10 applications running in containers

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

45

Virtualization Implementation

• Difficult to implement – must provide an exact
duplicate of underlying machine
– Typically runs in user mode, creates virtual user

mode and virtual kernel mode

• Timing can be an issue – slower than real
machine

• Hardware support needed
– More support-> better virtualization

– i.e. AMD provides “host” and “guest” modes

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

46

Solaris 10 with Two Containers

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

47

VMware Architecture

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

48

The Java Virtual Machine

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

49

Operating-System Debugging

• Debugging is finding and fixing errors, or bugs
• OSes generate log files containing error information
• Failure of an application can generate core dump file capturing

memory of the process
• Operating system failure can generate crash dump file containing

kernel memory
• Beyond crashes, performance tuning can optimize system

performance
• Kernighan’s Law: “Debugging is twice as hard as writing the code in

the first place. Therefore, if you write the code as cleverly as possible,
you are, by definition, not smart enough to debug it.”

• DTrace tool in Solaris, FreeBSD, Mac OS X allows live instrumentation
on production systems
– Probes fire when code is executed, capturing state data and sending it to

consumers of those probes

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

50

Solaris 10 dtrace Following System Call

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

51

Operating System Generation

• Operating systems are designed to run on any of a
class of machines; the system must be configured
for each specific computer site

• SYSGEN program obtains information concerning
the specific configuration of the hardware system

• Booting – starting a computer by loading the kernel

• Bootstrap program – code stored in ROM that is
able to locate the kernel, load it into memory, and
start its execution

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

52

System Boot
• Operating system must be made available

to hardware so hardware can start it
– Small piece of code – bootstrap loader,

locates the kernel, loads it into memory, and
starts it

– Sometimes two-step process where boot
block at fixed location loads bootstrap loader

– When power initialized on system, execution
starts at a fixed memory location
• Firmware used to hold initial boot code

Prof. Prasanna Patil, Dept of CSE,
HIT, Nidasoshi

53

End of Chapter 2

