
Subject: Operating System (18CS43)

Multi-threaded Programming
Module 2- Chapter 4

By: Prof. Prasanna Patil
Asst. Prof. , Dept. of Computer Science & Engg.,

Hirasugar Institute of Technology, Nidasoshi

Chapter 4: Threads

• Overview

• Multicore Programming

• Multithreading Models

• Thread Libraries

• Implicit Threading

• Threading Issues

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Objectives
• To introduce the notion of a thread—a

fundamental unit of CPU utilization that
forms the basis of multithreaded computer
systems

• To discuss the APIs for the Pthreads,
Windows, and Java thread libraries

• To explore several strategies that provide
implicit threading

• To examine issues related to multithreaded
programming

• To cover operating system support for threads
in Windows and Linux

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Motivation

• Most modern applications are multithreaded
• Threads run within application
• Multiple tasks with the application can be

implemented by separate threads
– Update display
– Fetch data
– Spell checking
– Answer a network request

• Process creation is heavy-weight while thread
creation is light-weight

• Can simplify code, increase efficiency
• Kernels are generally multithreaded

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Benefits

• Responsiveness – may allow continued
execution if part of process is blocked,
especially important for user interfaces

• Resource Sharing – threads share resources of
process, easier than shared memory or
message passing

• Economy – cheaper than process creation,
thread switching lower overhead than context
switching

• Scalability – process can take advantage of
multiprocessor architectures

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Single and Multithreaded
Processes

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

User Threads and Kernel Threads
• User threads - management done by user-level threads

library

• Kernel threads - Supported by the Kernel

• Examples – virtually all general purpose operating
systems, including:
– Windows

– Solaris

– Linux

– Tru64 UNIX

– Mac OS X

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Multithreading Models

• Many-to-One

• One-to-One

• Many-to-Many

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Many-to-One Model

• Many user-level threads mapped to single
kernel thread

• Examples:

– Solaris Green Threads

– GNU Portable Threads

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Many-to-One Model

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

One-to-one Model

• Each user-level thread maps to kernel thread

• Examples

– Windows NT/XP/2000

– Linux

– Solaris 9 and later

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

One-to-one Model

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Many-to-Many Model

• Allows many user level threads to be mapped to
many kernel threads

• Allows the operating system to create a sufficient
number of kernel threads

• Solaris prior to version 9

• Windows NT/2000 with the ThreadFiber package

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Many-to-Many Model

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Two-level Model

• Similar to M:M, except that it allows a
user thread to be bound to kernel thread

• Examples
– IRIX

– HP-UX

– Tru64 UNIX

– Solaris 8 and earlier

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Two-level Model

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Thread Libraries

• Thread library provides programmer
with API for creating and managing
threads

• Two primary ways of implementing

– Library entirely in user space

– Kernel-level library supported by the OS

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

• Three primary thread libraries:

– POSIX Pthreads (user or kernel Level)

– Windows threads (kernel Level)

– Java threads (implemented using a thread library available on the host system)

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Pthreads
• May be provided either as user-level or kernel-level

• A POSIX standard (IEEE 1003.1c) API for thread
creation and synchronization

• API specifies behavior of the thread library,
implementation is up to development of the library

• Common in UNIX operating systems (Solaris, Linux,
Mac OS X & Tru64 UNIX)

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Pthreads Example
• Here is a program that creates a new thread.

– Hence a process will have two threads :

• 1 - the initial/main thread that is created to execute the main() function
(that thread is always created even there is no support for
multithreading);

• 2 - the new thread.

(both threads have equal power)

• The program will just create a new thread to do a simple computation. The new
thread will get a parameter, an integer value (as a string), and will sum all integers
from 1 up to that value.

– sum = 1+2+…+ parameter value

• The main thread will wait until sum is computed into a global variable.

• Then the main thread will print the result.

=

=
N

i

isum
1

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Pthreads Example

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Pthreads Example (Cont.)

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

• pthtread_attr_t attr represents thread attr.
declaration including stack size and scheduling info.

• set attr using pthtread_attr_init(& attr)

• argv[1] gives the integer val as cmd line arg (i.e. n)
for summation function

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Win32 Threads
• The technique for creating threads using the Win32 thread

library is similar to the Pthreads technique in several ways.

• We must include the windows.h when using the Win32 API.

• Just as in the Pthreads version data shared by the separate
threads—in this case, Sum—are declared globally (the DWORD
data type is an unsigned 32-bit integer.

• We also define the Summation function to be performed in a
separate thread. This function is passed a pointer to a void,
which Win32 defines as LPVOID.

• The thread performing this function sets the global data Sum to
the value of the summation from 0 to the parameter

• passed to Summation().

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Win32 Threads
• Threads are created in the Win32 API using the CreateThread() function

and—just as in Pthreads—a set of attributes for the thread is passed to
this function.

• These attributes include security information, the size of the stack, and a
flag that can be set to indicate if the thread is to start in a suspended
state.

• In this program, we use the default values for these attributes (which do
not initially set the thread to a suspended state and instead make it
eligible to be run by the CPU scheduler).

• Once the summation thread is created, the parent must wait for it to
complete before outputting the value of Sum, asthe value is set by the
summation thread. Recall that the Pthread program had the parent
thread wait for the summation thread using the pthread_j oin ()
statement. We perform the equivalent of this in the Win32 APIusing the
WaitForSingleObj ect () function, which causes the creating threadto
block until the summation thread has exited.

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Windows Multithreaded C Program

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Windows Multithreaded C Program (Cont.)

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Java Threads

• Java threads are managed by the JVM

• Typically implemented using the threads model
provided by underlying OS

• Java threads may be created by:

– Extending Thread class

– Implementing the Runnable interface

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Java Multithreaded Program

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Java Multithreaded Program (Cont.)

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Threading Issues

• Semantics of fork() and exec() system
calls

• Signal handling

– Synchronous and asynchronous

• Thread cancellation of target thread

– Asynchronous or deferred

• Thread pools

• Thread- specific data

• Scheduler Activations
Prof. Prasanna Patil, Dept of CSE,

HSIT Nidasoshi

fork() and exec() System Calls

• fork()- used to create separate, duplicate
process.

• exec()- when a exec() system call is invoked, the
program specified in the parameter to exec()
will replace the entire process – including all
threads.

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

Int main() {

printf(“Good Morning \n PID= %d \n”, getpid());

return 0;

}

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Output:
Good Morning
PID= 7890

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

Int main() {

fork();

printf(“Good Morning \n PID= %d \n”, getpid());

return 0;

}

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Output:
Good Morning
PID= 7890
Good Morning
PID= 7891

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

Int main() {

fork();

fork();

fork();

printf(“Good Morning \n PID= %d \n”, getpid());

return 0;

}

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Output:
Good Morning
PID= 7890
Good Morning
PID= 7893
Good Morning
PID= 7896
Good Morning
PID= 7891

Good Morning
PID= 7898
Good Morning
PID= 7892
Good Morning
PID= 7897
Good Morning
PID= 7899

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

Int main(int argc, char *argv[]) {

printf(“PID of prg1.c= %d \n”, getpid());

char *args[]={‘good’, ‘ morning’, ‘all’, NULL);

exec (“ ./prg2.c”, args);

printf(“Back to prg1.c”);

return 0;

}

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

Int main(int argc, char *argv[]) {

printf(“ We are in prg2.c \n”);

printf(“PID of prg2.c= %d \n”, getpid());

return 0;

}

prg1.c

prg2.c

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Output:
PID of prg1.c= 4567
We are in prg2.c
PID of prg2.c= 4567

gcc prg1.c –o prg1

gcc prg2.c –o prg2

prg1

Commands to execute the files

Semantics of fork() and exec()

• Does fork()duplicate only the calling
thread or all threads?

– Some UNIXes have two versions of fork

• exec()

– The program specified in the parameter to exec()
will replace the entire process including all
threads

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

But which version of fork() to use
and when?

• It depends on the application

– If exec() is called immediately after forking

• Then duplicating all threads is unnecessary. As the
program specified in the parameters to exec() will
replace the process.

• In this case, duplicating only the calling thread is
appropriate.

– If the separate process does not call exec() after
forking.

• Then the separate process should duplicate all threads.

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Thread Cancellation
• Thread Cancellation is the task of terminating a thread before it

has finished.

• For ex, if multiple threads are concurrently searching through a
database and one thread returns the result, the remaining threads
might be canceled.

• Another ex, when a user presses a button on a web browser that
stops a web page from loading any further. Often, a web page is
loaded using several threads—each image is loaded in a separate
thread. When a user presses the stop button on the browser, all
threads loading the page are canceled.

• Thread to be canceled is target thread

• Two general approaches:

– Asynchronous cancellation terminates the target thread
immediately

– Deferred cancellation allows the target thread to periodically
check if it should be cancelledProf. Prasanna Patil, Dept of CSE,

HSIT Nidasoshi

Difficulty in Thread Cancellation
•The difficulty with cancellation occurs in situations where resources
have been allocated to a canceled thread or where a thread is
canceled while in the midst of updating data it is sharing with other
threads.

• This becomes especially troublesome with asynchronous cancellation.

•Often, the OS will reclaim system resources from a canceled thread
but will not reclaim all resources. Therefore, canceling a thread
synchronously may not free a necessary system-wide resource.

•With deferred cancellation, in contrast, one thread indicates that a
target thread is to be canceled, but cancellation occurs only after the
target thread has checked a flag to determine if it should be canceled
or not.

•This allows a thread to check whether it should be canceled at a point
when it can be canceled safely.

•Pthreads refers to such points as cancellation points.Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Signal Handling

• A signal is used in UNIX systems to notify a
process that a particular event has occurred.

• All signals follow the same pattern:

– A signal is generated by the occurrence of a
particular event.

– A generated signal is delivered to a process.

– Once delivered, the signal must be handled.

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

• Synchronous signals are delivered to the same
process that performed the operation that caused
the signal.

– Examples
• illegal memory access

• division by zero

• When a signal is generated by an event external to a
running process, that process receives the signal
asynchronously.

– Examples
• terminating a process with specific keystrokes (ctrl +C)

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

• Every signal may be handled by one of two possible
handlers:

– 1. A default signal handler

– 2. A user-defined signal handler

• Every signal has a default signal handler that is run
by the kernel when handling that signal.

• This default action can be overridden by a user-
defined signal handler that is called to handle the
signal.

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Handling signals in multi-threaded
programs

• Delivering signals is more complicated in
multithreaded programs, where a process may have
several threads. Where should a signal be delivered?

• In general, the following options exist:

– Deliver the signal to the thread to which the signal applies.

– Deliver the signal to every thread in the process.

– Deliver the signal to certain threads in the process.

– Assign a specific thread to receive all signals for the
process

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Thread Pool

Why?

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Why Thread Pools
• Whenever multithreading web server receives a request, it

creates a separate thread to service the request. Whereas
creating a separate thread is certainly superior to creating a
separate process.

• But multithreaded server has potential problems.

• The first concerns the amount of time required to create the
thread prior to servicing the request and also discarding of
thread once it has completed its work.

• The second issue is: If we allow all concurrent requests to be
serviced in a new thread, we have not placed a bound on the
number of threads concurrently active in the system.

• Unlimited threads could exhaust system resources, such as
CPU time or memory.

• One solution to this issue is to use a thread pool.
Prof. Prasanna Patil, Dept of CSE,

HSIT Nidasoshi

Thread pool concept

• The general concept of a thread pool is to create a
number of threads at process startup and place them
into a pool, where they sit and wait for work.

• When a server receives a request, it awakens a thread
from this pool—if one is available—and passes it the
request to service. Once the thread completes its
service, it returns to the pool and awaits more work.

• If the pool contains no available thread, the server
waits until one becomes free.

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

Advantages of Thread Pools

– Usually slightly faster to service a request with an existing
thread than create a new thread

– A thread pool limits the number of threads in the
application(s) to be bound to the size of the pool. More
suitable for the system that can not support large number of
concurrent threads.

• Windows API supports thread pools:
– A function that is to run as a separate thread is defied as below

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

• A pointer to PoolFunction() is passed to one of the functions in
the thread pool API, and a thread from the pool executes this
function.

• One such member in thread pool API is : QueueUserWorkltem() ,
which is passed with 3 parameters:
– LPTHREAD_START-ROUTINE Function—a pointer to the function that is to

run as a separate thread

– PVOID Param—the parameter passed to Function

– ULONG Flags—flags indicating how the thread pool is to create and
manage execution of the thread

• An example of an invocation is:

QueueUserWorkltem(&PoolFunction, NULL, 0);

• This causes a thread from the thread pool to invoke
PoolFunction() on behalf of the programmer.

• In this instance, we pass no parameters to PoolFunction ().
Because we specify 0 as a flag, we provide the thread pool with
no special instructions for thread creation.Prof. Prasanna Patil, Dept of CSE,

HSIT Nidasoshi

Scheduler Activations
• Final issue with multi-threaded programs concerns

communication between the kernel and the thread
library.

• Both M:M and Two-level models require
communication to maintain the appropriate number
of kernel threads allocated to the application.

• Typically use an intermediate data structure
between user and kernel threads: lightweight
process (LWP)

– Appears to be a virtual processor on which a process
can schedule user thread to run

– Each LWP attached to kernel thread

– How many LWPs to create?

• Scheduler activations provide upcalls - a communication
mechanism from the kernel to the upcall handler in the
thread library

• This communication allows an application to maintain the
correct number kernel threads

Prof. Prasanna Patil, Dept of CSE,
HSIT Nidasoshi

End of Chapter 4

