
Subject: Object Oriented Concepts (18CS45)

Module 5: Event Handling, Applets and Java Swings

S J P N Trust's

HIRASUGAR INSTITUTE OF TECHNOLOGY, NIDASOSHI.
Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt. of Karnataka and Affiliated to VTU Belagavi.
Accredited at 'A' Grade by NAAC

Programmes Accredited by NBA: CSE, ECE, EEE & ME

Dr. Mahesh G Huddar

Dept. of Computer Science and Engineering

CSE, HIT, Nidasoshi

https://hsit.ac.in/nba-accreditation-status.php

• Event means any activity that interrupts the current ongoing activity.

• For example: When a user clicks the mouse or presses some key from a keyboard during some

processing, then it generates an event.

• In Java, events represent all activity that is carried out between the user and the application.

• Some specific actions are associated with these events.

• Java's Abstract Windowing Toolkit (AWT) conveys these actions to the programs.

• When the user interacts with a program let us say by clicking a button, the system creates an

event representing the click action and passes it to the event-handling code within the

program.

• This code is then responsible for giving an appropriate responses.

Introduction

Mahesh Huddar

CSE, HIT, Nidasoshi

Two Event Handling Mechanism

1. The event handling mechanism used in Java(1.0) is changed in modem versions

of Java.

2. The event handling method used in the old version is still supported in latest

version but it is not recommended to use these method of event handling.

Introduction

Mahesh Huddar

CSE, HIT, Nidasoshi

• It defines standard and consistent mechanisms to generate and process events.

• Here the source generates an event and sends it to one or more listeners.

• The listener simply waits until it receives an event.

• Once it is obtained, It processes this event and returns.

• Listeners should register themselves with a source in order to receive an even

notification.

• Notifications are sent only to listeners that want to receive them.

Delegation Event Model (DEM)

Mahesh Huddar

CSE, HIT, Nidasoshi

• Events

• Event Sources

• Event Listeners

Three components of DEM

Mahesh Huddar

CSE, HIT, Nidasoshi

• In the delegation model, an event is an object that describes a state change in a

source.

• It can be generated as a consequence of a person interacting with the elements in a

graphical user interface.

• Eg: pressing a button, entering a character via the keyboard, selecting an item in a list,

and clicking the mouse.

• Events may also occur that are not directly caused by interactions with a user interface.

• Eg: a timer expires, a counter exceeds a value, a software or hardware failure occurs,

or an operation is completed

Three components of DEM - Events

Mahesh Huddar

CSE, HIT, Nidasoshi

• A source is an object that generates an event. This occurs when the internal state of that

object changes in some way. Sources may generate more than one type of event.

• A source must register listeners in order for the listeners to receive notifications about a

specific type of event.

• Each type of event has its own registration method. Here is the general form:

public void addTypeListener(TypeListener el)

Type→ the name of the event

el→ reference to the event listener

Three components of DEM – Event Sources

Mahesh Huddar

CSE, HIT, Nidasoshi

• When an event occurs, all registered listeners are notified and receive a copy of the event

object. This is known as multicasting the event.

• Some sources may allow only one listener to register. The general form of such a method is

this:

public void addTypeListener(TypeListener el) throws java.util.TooManyListenersException

• When such an event occurs, the registered listener is notified. This is known as unicasting the

event.

• A source must also provide a method that allows a listener to unregister an interest in a

specific type of event. The general form of such a method is this:

public void removeTypeListener(TypeListener el)

Three components of DEM – Event Sources

Mahesh Huddar

CSE, HIT, Nidasoshi

• These are the classes responsible for handling events in the event handling

mechanism.

• The EventObject class is at the top of the event class hierarchy.

• It belongs to the java.util package.

• And other event classes are present in java.awtevent package.

• The getSource() and toString0 are the methods of the EventObject class.

• There is getId0 method belonging to java.awt.event package returns the nature of

the event.

Three components of DEM – Event Classes

Mahesh Huddar

CSE, HIT, Nidasoshi

For example, if a keyboard event occurs, you can find out whether the event was key

press or key release from the event object. Various event classes that are defined in

java.awt.event class are –

1. An ActionEvent object is generated when a component is activated. For

example if a button is pressed or a menu item is selected then this event

occurs.

2. An AdjustmentEvent object is generated when scrollbars are used.

3. A TextEvent object is generated when text of a component or a text field is

changed.

Three components of DEM – Event Classes

Mahesh Huddar

CSE, HIT, Nidasoshi

4. A ContainerEvent object is generated when component are added or removed from

container.

5. A ComponentEvent object is generated when a component is resized, moved, hidden

or made visible.

6. An ItemEvent is generated when an item from a list is selected. For example a choice is

made or if checkbox is selected.

7. A FocusEvent object is generated when component receives keyboard focus for input.

8. A KeyEvent object is generated when key on keyboard is pressed or released.

9. A WindowEvent object is generated when a window activated, maximized or

minimized.

10. A MouseEvent object is generated when a mouse is clicked, moved, dragged, released.

Three components of DEM – Event Classes

Mahesh Huddar

CSE, HIT, Nidasoshi

• The task of handling an event is carried out by the event listener. When an event occurs,

first of all, an event object of the appropriate type is created.

• This object is then passed to a Listener. A listener must implement the interface that has

the method for event handling.

• The java.awt.event package contains definitions of all event classes and listener

interface.

• An Interface contains constant values and method declaration.

• The methods in an interface are only declared and not implemented, i.e. the methods

do not have a body.

• The interfaces are used to define behavior on the occurrence of event that can be

implemented by any class anywhere in the class hierarchy.

Event Listener Interfaces

Mahesh Huddar

CSE, HIT, Nidasoshi

Various event listener interfaces are -

1. ActionListener: This interface defines the method actionPerformed() which is

invoked when an ActionEvent occurs. The syntax of this method is void

actionPerformed(ActionEvent act) where act is an object of ActionEvent class.

2. AdjustmentListener: This interface defines the method

adjustmentValueChanged() which is invoked when an AdjustmentEvent occurs.

The syntax of this method is

void adjustmentValueChanged(ActionEvent act)

Event Listener Interfaces

Mahesh Huddar

CSE, HIT, Nidasoshi

3. TextListener: It has a method textChanged0 when a change in text area or text

field occurs then this method is invoked.

void textChanged(TextEvent tx)

4. ContainerListener: When a component is added to container then this interface

is required. There are two methods for this interface and those are -

void componentAdded(ContainerEvent ct)

void componentRemoved(ContainerEvent ct)

where ct represents the object of class ContainerEvent

Event Listener Interfaces

Mahesh Huddar

CSE, HIT, Nidasoshi

5. ComponentListener When component is shown, hidden, moved or resized then the

corresponding methods are defined by ContainerListener interface. The syntax for the

methods defined by this interface is

void componentShown(ComponentEvent co)

void componentHidden(ComponentEvent co)

void componentMoved(ComponentEvent co)

void componentResized(ComponentEvent co)

6. ItemListener: The itemStateChanged0 is the only method defined by the ItemListener

interface. The syntax is

void itemStateChanged(ItemEvent It)

Event Listener Interfaces

Mahesh Huddar

CSE, HIT, Nidasoshi

7. FocusListener: By this interface the methods related to keyboard focus are

used. These methods are –

void focusGained(FocusEvent fo) void focusLost(FocusEvent fo)

8. WindowFocusListener: By this interface the methods related to windows focus

are used. These methods are –

void windowGainedFocus(WindowEvent fo)

void windowLostFocus(WindowEvent fo)

These methods are called when window gains or loses focus.

Event Listener Interfaces

Mahesh Huddar

CSE, HIT, Nidasoshi

9. KeyListener This interface is defining the events such as keyPressed(),keyReleased() and keyTyped()

are used. These methods are useful for key press, key release and when you type some characters.

void keyPressed(keyEvent k)

void keyReleased(keyEvent k)

void keyTyped(keyEvent k)

10. MouseListener: This interface defines five important methods for various activities such as mouse

click, press, released, entered or exited. These are

void mouseClicked(MouseEvent m)

void mousePressed(MouseEvent m)

void mouseReleased(MouseEvent m)

void mouseEntered(MouseEvent m)

void mouseExited(MouseEvent m)

Event Listener Interfaces

Mahesh Huddar

CSE, HIT, Nidasoshi

11. 11. MouseMotionListener: For handling mouse drag and mouse move events the required methods

are defined by MouseMotionListener interface. These methods are

void mouseDragged(MouseEvent m)

void mouseMoved(MouseEvent m)

12. WindowsListener: There are seven methods in which are related to windows activation and

deactivation.

void windowOpened(WindowEvent w)

void windowClosed(WindowEvent w)

void windowClosing(WindowEvent w)

void windowActivated(WindowEvent w)

void windowDeactivated(WindowEvent w)

void windowlconified(WindowEvent w)

void windowDeiconified(WindowEvent w)

Event Listener Interfaces

Mahesh Huddar

CSE, HIT, Nidasoshi

• While handling the mouse events we use two interfaces

MouseListener and MouseMotionListener.

• These interfaces has certain methods such as mouseClicked(),

mousePressed(), mouseReleased(), mouseEntered(), mouseExited()

and mouseDrag,ged(), mouseMoved() respectively.

• Let us see a simple Java program in which various mouse events are

handled.

Handling Mouse

Mahesh Huddar

CSE, HIT, Nidasoshi

Handling Mouse

Mahesh Huddar

CSE, HIT, Nidasoshi

Program Explanation :

• In above program, we have used

import java.awt.event.*;

• because various commonly used events are defined in the package

java.awt.event.

• The applet has to register itself as a listener to various events (here the same

applet acts as a event source as well as event listener). Hence inside init() method

applet registers itself as a listener by following statements

addMouseListener(this);

addMouseMotionListener(this);

Handling Mouse

Mahesh Huddar

CSE, HIT, Nidasoshi

• And then simple methods of mouse events are defined. The getXO

and getYO methods return the current x and y positional values. To

each of these methods an object of MouseEvent is passed which is

shown by a variable 'm'.

Handling Mouse

Mahesh Huddar

CSE, HIT, Nidasoshi

• When key from a keyboard is pressed then it causes an event.

• There are three commonly used methods from KeyListener interface

and those are keyPressed(), keyReleased() and keyTyped().

Handling Keyboard

Mahesh Huddar

CSE, HIT, Nidasoshi

Handling Keyboard

Mahesh Huddar

CSE, HIT, Nidasoshi

Program Explanation :

• The keyPressed() event is for handling the event of pressing a key, similarly

keyReleasedO event is for handling the event of release of key.

• Using keyTyped() method we can display the character typed on the screen. The

only needed method for this is getKeyChar() which returns the currently typed

character.

• Last but not the least, all these methods require one important method that has

to be invoked in init() function and that is requestFocus(). This method has to be

invoked to gain the focus in the init method and whenever you want to

implement keyListener interface.

Handling Keyboard

Mahesh Huddar

CSE, HIT, Nidasoshi

• Applets are small Java programs that can be used in an internetworking

environment.

• These programs can be transferred over the internet from one

computer to another and can be displayed on various web browsers.

• Various applications of applets are in performing arithmetic

operations, displaying graphics, playing sounds, creating animation,

and so on.

Introduction - Applets

Mahesh Huddar

CSE, HIT, Nidasoshi

Following are the situations in which we need to use applet –

1. For displaying the dynamic web pages we need an applet. The dynamic web

page is a kind of web page on which the contents are constantly changing. For

example, an applet that can represent the sorting process of some numbers.

During the process of sorting the positions of all the elements are changing

continuously.

2. If we want some special effects such as sound, animation and much more then

the applets are used.

3. If we want that the particular application should be used by any user who might

be located remotely. Then in such situation, the applets are embedded into the

web pages and can be transferred over the internet.

Introduction - Applets

Mahesh Huddar

CSE, HIT, Nidasoshi

Advantages of Java applet

1. These are simple programs that provide good user interface.

2. The applets can run many platform such as Windows, Linux, Mac.

3. It is supported by most of the web browsers such as Internet

Explorer, Netscape Navigator, Mozilla browser.

4. It is for supporting real time applications.

5. Using Applet client-server communication is possible.

Advantages and Disadvantages of Applet

Mahesh Huddar

CSE, HIT, Nidasoshi

Disadvantages of applet

1. It require Java plug-ins and can not be available by default on the

web browsers.

2. It's GUI based programming is complex as compared to scripting

languages/technologies such as HTML, DHTML, Flash and so on.

3. It takes lot of downloading time. Hence it is slower to execute.

Advantages and Disadvantages of Applet

Mahesh Huddar

CSE, HIT, Nidasoshi

The applet can be created using two ways –

1) Using the Applet class. This class uses the Abstract Window Toolkit

(AWT) to provide a Graphical User Interface (GUI)

2) The another way of creating an applet is using swing class JAppIet.

Swing components provide rich set of components while executing

the Applet programs.

Two Types of Applets

Mahesh Huddar

CSE, HIT, Nidasoshi

• All the applets are subclasses of class Applet.

• Applets are not stand-alone programs. Applets run either in web browser

or using appletviewer provided by JDK.

• The execution of applet does not start using the main().

• For running the applet code in appletviewer, we need to add following

comment statement in applet program,

• /* <applet code="Name_ofappletclass" width=300 height=100> </applet>

*/

Applet Basics

Mahesh Huddar

CSE, HIT, Nidasoshi

• The AWT allows us to use various graphical components.

• When we start writing any applet program we essentially import

two packages namely - java.awt and java.applet.

• The java.applet package contains a class Applet that uses various

interfaces such as AppletContext, AppletStub and AudioClip.

• The applet class is an extension of the Panel class belonging to

java.awt package.

Applet Class Hierarchy

Mahesh Huddar

CSE, HIT, Nidasoshi

• To create a user-friendly graphical interface we need to place

various components on the GUI window.

• There is a Component class from the java.awt package which derives

several classes for components.

• These classes include Checkbox, Choice, List, buttons and so on.

• The Component class in java.awt is an abstract class.

• The class hierarchy for Applets is as shown in below Fig.

Applet Class Hierarchy

Mahesh Huddar

CSE, HIT, Nidasoshi

Applet Class Hierarchy

Mahesh Huddar

CSE, HIT, Nidasoshi

• There are various methods which are typically used in applet for

initialization and termination purpose.

• These methods are

1. Initialization

2. Running state

3. Idle state

4. Dead or destroyed state

Applet Architecture

Mahesh Huddar

CSE, HIT, Nidasoshi

Applet Architecture

Mahesh Huddar

CSE, HIT, Nidasoshi

• When applet begins, the AWT calls following methods in sequence -

a) init() b) start() c) paint()

• When applet is terminated following method are invoked in

sequence. a) stop() b) destroy()

Applet Architecture

Mahesh Huddar

CSE, HIT, Nidasoshi

1. Initialization state

• When applet gets loaded it enters in the initialization state. For this purpose the

init() method is used. In this method you can initialize the required variables. This

method is called only once initially at the execution of the program. The syntax

can be

public void init()

{

//initialization of variables

}

Applet Architecture

Mahesh Huddar

CSE, HIT, Nidasoshi

In this method various tasks of initialization can be performed such as

–

1. Creation of objects needed by applet

2. Setting up of initial values

3. Loading of image

4. Setting up of colors.

Applet Architecture

Mahesh Huddar

CSE, HIT, Nidasoshi

2. Running state

• When the applet enters in the running state, it invokes the start()

method of Applet class.

• This method is called only after the init method. After stopping the

applet when we restart the applet at that time also this method is

invoked.

• The syntax can be

public void start() { }

Applet Architecture

Mahesh Huddar

CSE, HIT, Nidasoshi

3. Display state

• Applet enters in the display state when it wants to display some output.

• This may happen when applet enters in the running state.

• The paint() method is for displaying or drawing the contents on the screen.

The syntax is: public void paint(Graphics g) { }

• An instance of Graphics class has to be passed to this function as an

argument. In this method various operations such as display of text, circle,

line are invoked.

Applet Architecture

Mahesh Huddar

CSE, HIT, Nidasoshi

4. Idle state

• This is an idle state in which applet becomes idle.

• The stop() method is invoked when we want to stop the applet.

• When an applet is running if we go to another page then this

method is invoked.

• The syntax is public void stop() { }

Applet Architecture

Mahesh Huddar

CSE, HIT, Nidasoshi

5. Dead state

• When applet is said to be dead then it is removed from memory.

• The method destroy() is invoked when we want to terminate applet

completely and want to remove it from the memory.

• The syntax is

public void destroy() { }

• It is good practice to call stop prior to destroy method.

Applet Architecture

Mahesh Huddar

CSE, HIT, Nidasoshi

• Normally the applet code makes use of two classes –

Applet and Graphics.

• For the applet class the package java.applet is required.

• This class provides the applet's life cycle method such as init(),

start() and paint().

• The Graphics class is supported by the package java.awt.

• Here is a simple applet

An Applet Skeleton

Mahesh Huddar

CSE, HIT, Nidasoshi

An Applet Skeleton

Mahesh Huddar

/*This is my First Applet program */

import java.awt.*;

import java.applet.*;

public class FirstApplet extends Applet

{

public void paint(Graphics g)

{

g.drawString("This is my First Applet",50,30);

}

}

CSE, HIT, Nidasoshi

An Applet Skeleton

Mahesh Huddar

• In the above given small applet program, the main intention is to display the message

"This is my First Applet".

• Let us start from the beginning of the program –

• The first three lines represent a comment statement.

• Then next comes import java.awt.*; import java.applet.*;

• We always need these two packages to be imported into the program.

• The java.awt package consists of java awt classes. Here awt stands for Abstract Window

Toolkit.

• The AWT provides support for window-based graphical interfaces such as for drawing

screens, windows, buttons, text boxes, menus, and so on.

• The other imported package is java.applet. This is essential because we need to use the

Applet class in our applet program

CSE, HIT, Nidasoshi

An Applet Skeleton

Mahesh Huddar

• which is included in java.applet package. The functionalities that are required to

run applet inside the web browser are supported by java.applet.

• Then comes public class FirstApplet extends Applet

• The class FirstApplet is a subclass of class Applet. Hence the keyword extends is

used.

• Java requires that your applet subclass (here it is FirstApplet) should be declared

as public. Hence is the declaration! We have then defined a method

• public void paint(Graphics g)

CSE, HIT, Nidasoshi

An Applet Skeleton

Mahesh Huddar

• This method is used to paint something on the screen and it can be text, line, circle,

rectangle or anything.

• Thus paint is a method which provides actual appearance on the screen. And this method

requires a parameter to be passed as an object of class graphics.

• Therefore an object g of class Graphics is passed. Using this object the method drawstring

of Graphics class is invoked. [Note that Graphics class is a part of java.awt package].

• g.drawString("This is my First Applet",50,30);

• To method drawstring, firstly we have passed a string which we want to be displayed, then

50 and 30 represents the position of the string on the screen i.e. x and y positions

respectively.

CSE, HIT, Nidasoshi

How run Applet?

Mahesh Huddar

• There are two methods to run the applet

1. Using web browser

2. Using Appletviewer

• Let us learn both the methods with necessary illustrations

1. Using web browser

Step 1: Compile your Applet source program using javac compiler, i.e.

D:\test>javac FirstApplet.java

CSE, HIT, Nidasoshi

How run Applet?

Mahesh Huddar

Step 2: Write following code in Notepad/Wordpad and save it with

filename and extension .html. For example following code is saved as

Exe_FirstApplet.html, The code is

<applet code="FirstApplet" width=300 height=100> </applet>

Step 3: Load html file with some web browser, This will cause to

execute your html file.

CSE, HIT, Nidasoshi

How run Applet?

Mahesh Huddar

It will look this -

CSE, HIT, Nidasoshi

How run Applet?

Mahesh Huddar

2. Using Appletviewer

Step 1 : To run the applet without making use of web browser or using

command prompt we need to modify the code little bit. This

modification is as shown below
CSE, HIT, Nidasoshi

How run Applet?

Mahesh Huddar

/* This is my First Applet program */

import java.awt.*;

import java.applet.*;

/* <applet code="FirstApplet" width=300 height=100> </applet> */

public class FirstApplet extends Applet

{

public void paint(Graphics g)

{

g.drawString("This is my First Applet",50,30);

}

}

CSE, HIT, Nidasoshi

How run Applet?

Mahesh Huddar

• In above code we have added one more comment at the beginning

of the program

• <applet code="FirstApplet" width=300 height =100> </applet>

• This will help to understand Java that the source program is an

applet with the name FirstApplet.

• By this edition you can run your applet program merely by

Appletviewer command.

CSE, HIT, Nidasoshi

How run Applet?

Mahesh Huddar

Step 2 :

• D:\Atest>javac FirstApplet.java

• D:\test>Appletviewer FirstApplet.java

• And we will getCSE, HIT, Nidasoshi

How run Applet?

Mahesh Huddar

• Note one fact about applet is that: it does not require main

function.

CSE, HIT, Nidasoshi

Simple Applet Display Methods

Mahesh Huddar

• The output message can be displayed using the method drawstring().

• This method is defined in class Graphics.

• This method is typically called from update() or paint().

• Syntax of drawString

void drawString(String msg, int x, int y)

• where msg is a message to be displayed on the console.

• The x and y represent the coordinate x and y respectively at which the message is to be

displayed.

• The upper-left corner of the screen is at co-ordinate 0,0.

• The drawString method does not recognize the newline character.

• You have to manually specify the message at the desired location using x and y

coordinates.

CSE, HIT, Nidasoshi

Colors in Applet

Mahesh Huddar

• When you want to specify the color in order to make your applet

colourful, there are some methods supported by AWT system.

• The syntax of specifying color is

Color(int R,int G,int B);

Color(int RGBVal); //here RGB val denotes the value of color

CSE, HIT, Nidasoshi

Colors in Applet

Mahesh Huddar

• Similarly to set the background color of applet window we use

void setBackground(Color colorname)

• where colorname denotes the name of the background color. In

the same manner we can also specify the foreground color i.e.

color of the text by using method

void setForeground(Color colomame)

CSE, HIT, Nidasoshi

Colors in Applet

Mahesh Huddar

• We can specify the colorname using the Color object as follows –

Color.black Color.lightGray

Color.blue Color.darkGray

Color.magenta Color.pink

Color.cyan Color.gray

Color.orange Color.red

Color.green Color.white

Color.yellow

CSE, HIT, Nidasoshi

Colors in Applet

Mahesh Huddar

import java.awt.*;
import java.applet.*;
/* <applet code="ColorDemo" width=300 height=100> </applet> */
public class ColorDemo extends Applet
{

public void paint(Graphics g)
{

setBackground(Color.cyan);
setForeground(Color.red);
g.drawString("Its a colorful Applet",50,30);
Color newColor=new Color(255,255,0); //creating red+green=yellow color
g.setColor(newColor);
g.drawString("Its a colorful Applet",50,70);

}
}

CSE, HIT, Nidasoshi

Colors in Applet

Mahesh Huddar

CSE, HIT, Nidasoshi

Colors in Applet

Mahesh Huddar

• In above program we see one more method related to color and that is

setColor.

• To set some specific color this method is used.

• The color name has to be passed as a parameter to this method.

• We can create our own color by a method Color(int R,int G,int B).

• In above program we have created yellow color (Red + Green = Yellow)

and then using newColor in setColor method the string 'It's a colourful

applet' is written on the new line.

CSE, HIT, Nidasoshi

Requesting Repainting

Mahesh Huddar

• The repaint method requests an erase and redraw or update after some

delay. There are four forms of repaint method.

• These are as follows –

• 1. public void repaint() This method indicates that AWT calls the

component's update method as soon as possible. This is most common

form of repaint method.

• 2. public void repaint(long time) For this methods, the time represents the

maximum time in milliseconds before update.

CSE, HIT, Nidasoshi

Requesting Repainting

Mahesh Huddar

• 3. public void repaint(int x, int y,int width,int height) Repaints the specified

rectangle of this component. The values x and y represents the co-ordinates and

width and height represents the width and height of the rectangle.

• 4. public void repaint(long time,int x,int y,int width,int height) This method

repaints the specified rectangle of this component within time milliseconds. The

values x and y represents the co-ordinates and width and height represents the

width and height of the rectangle.

• Following is a simple Applet which makes use of repaint method.

CSE, HIT, Nidasoshi

Requesting Repainting

Mahesh Huddar

import java.awt.*;
import java.awlevent.*;
import java.applet.*;
/* <applet code="ScatterDemo" width=300 height=200> </applet> */
public class ScatterDemo extends Applet implements ActionListener
{

private static Color[] colors =
{

Color.black, Color.gray, Color.blue, Color.red,
Color.yellow, Color.orange, Color.cyan,
Color.pink, Color.magenta, Color.green

};

CSE, HIT, Nidasoshi

Requesting Repainting

Mahesh Huddar

public void init()
{

Button button = new Button("Click");
add(button);
button.addActionListener(this);

}
public void paint(Graphics g)
{

for(int i=0; i < 100; ++i)
{

int x = (int)(Math.random()*100);
int y = (int)(Math.random()*100);
g.setColor(colors[(int)(Math.random()*10)]);
g.drawString("Java",x,y);

}
}

CSE, HIT, Nidasoshi

Requesting Repainting

Mahesh Huddar

public void actionPerformed(ActionEvent event)

{

repaint(1000,10,10,50,50);

}

}

Following commands can be given at the command prompt to execute an applet

D:\JavaPrograms>javac ScatterDemo.java

D:\JavaPrograms>AppletViewer ScatterDemo.java

CSE, HIT, Nidasoshi

Requesting Repainting

Mahesh Huddar

Note

• When an applet window will be displayed just click the button

pressed.

• You can see a small portion gets changed due to repaint method as

the repaint method (repaint(1000,10,10,50,50)) repaint specific

rectangular portion.

CSE, HIT, Nidasoshi

Requesting Repainting

Mahesh Huddar

CSE, HIT, Nidasoshi

Requesting Repainting

Mahesh Huddar

• Design an applet to display three buttons "Red", "green", and

"blue". The color of the background changes according to the

button presses by the user. Also, write the HTML code to display the

applet. CSE, HIT, Nidasoshi

Requesting Repainting

Mahesh Huddar

Step 1 :
<html>

<body>
<applet code=13gColorChange" width=350 height=200>

</applet>
</body>

</html>
Step 2 :
<BgColorChange.java>
import java.applet.*;
import java.awt.*;
import java.awt.event.*;

CSE, HIT, Nidasoshi

Requesting Repainting

Mahesh Huddar

public class BgColorChange extends Applet implements ActionListener
{

int flag;
Button buttonl=new Button("lled");
Button button2=new Button("green");
Button button3=new Button("blue");
public void init()
{

add(buttonl);
buttonl.addActionListener(this);
add(button2);
button2.addActionListener(this);
add(button3);
button3.adclActionListener(this);
add(new Label("Click a Button to change the screen color"));

}

CSE, HIT, Nidasoshi

Requesting Repainting

Mahesh Huddar

public void paint(Graphics g)
{

if (flag==1) setBackground(Color.red);
if (flag= =2) setBackground(Color.green);
if (flag= =3) setBackground(Color.blue);

}
public void actionPerformed(ActionEvent e)
{

String str=e.getActionCommand();
if(str.equals("Red")) { flag=1; repaint(); }
if(str.equals("green")) { flag=2; repaint(); }
if(str.equals("blue")) { flag=3; repaint(); }

}
}

CSE, HIT, Nidasoshi

Requesting Repainting

Mahesh Huddar

CSE, HIT, Nidasoshi

Using the Status Window

Mahesh Huddar

• The desired output can be displayed on the applet window.

• There is a status window, which is a good place to give the user feedback about

what is occurring in the applet, suggest options, or possibly report some types of

errors.

• The status window is also helpful for debugging because it gives you an easy way

to output information about your applet.

• One can pass the message string as an argument to showStatus method. The

syntax is void showStatus(String msg);

• Following example shows how to display message in status window

CSE, HIT, Nidasoshi

Using the Status Window

Mahesh Huddar

import java.applet.Applet;

import java.awt.Graphics;

/* <applet code="StatusWindowDemo" width=250 height =200> </applet> */

public class StatusWindowDemo extends Applet

{

public void paint(Graphics g)

{

g.drawString("Hello!! How are You?", 50, 50);

showStatus("This is a status message of an applet window");

}

}

CSE, HIT, Nidasoshi

Using the Status Window

Mahesh Huddar

CSE, HIT, Nidasoshi

The HTML APPLET tag

Mahesh Huddar

The <APPLET> tag can be specified with the help of various attributes. These

attributes help to integrate the applet into overall design of the web page. Various

attributes of APPLET tag are –

CSE, HIT, Nidasoshi

The HTML APPLET tag

Mahesh Huddar

CSE, HIT, Nidasoshi

The HTML APPLET tag

Mahesh Huddar

• Develop an applet that receives two numerical values as input from

the user and then displays the sum of these numbers on the screen.

• Write the HTML code that calls the applet.

• Solution :

• Step 1 :

• test.html

• <html> <body> <applet code="NumOperations" width=300

height=300> </applet> </body> </html>

CSE, HIT, Nidasoshi

The HTML APPLET tag

Mahesh Huddar

import java.applet.*;
import java.awt.*;
import java.awt.event.*;
public class NumOperations extends Applet implements ActionListener
{

Label L1,L2,L3;
TextField T1,T2,T3;
Button B1;
public void init()
{

L1=new Label("Enter Num1 :");
add(L1);
T1 = new TextField(15); //TextField for Numl
add(T1);

CSE, HIT, Nidasoshi

The HTML APPLET tag

Mahesh Huddar

L2=new Label("Enter Num2 :");
add(L2);
T2=new TextField(15); //TextField for Num2
add(T2);
L3=new Label("The Result :");
add(L3);
T3=new TextField(15); //TextField for result
add(T3);
B1=new Button("Sum");
add(B1); //Button to invoke addition operation
B1.addActionListener(this);

}

CSE, HIT, Nidasoshi

The HTML APPLET tag

Mahesh Huddar

public void actionPerformed(ActionEvent e)
{

if(e.getSource()==B1)
{

int a=Integer.parseInt(T1.getText());
int b=Integer.parseInt(T2.getText());
int c=a+b;
T3.setText(String.valueOf(c));

}
}

}

CSE, HIT, Nidasoshi

Swings

Mahesh Huddar

CSE, HIT, Nidasoshi

Swings

Mahesh Huddar

CSE, HIT, Nidasoshi

Swings

Mahesh Huddar

CSE, HIT, Nidasoshi

