
Subject: Object Oriented Concepts (18CS45)

Module 4: Packages, Interfaces and Multithreading

S J P N Trust's

HIRASUGAR INSTITUTE OF TECHNOLOGY, NIDASOSHI.
Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt. of Karnataka and Affiliated to VTU Belagavi.
Accredited at 'A' Grade by NAAC

Programmes Accredited by NBA: CSE, ECE, EEE & ME

Dr. Mahesh G Huddar

Dept. of Computer Science and Engineering

CSE,HIT, Nidasoshi

https://hsit.ac.in/nba-accreditation-status.php

• A java package is a group of similar types of classes, interfaces and sub-

packages.

• Package in java can be categorized in two form,

• built-in package

• user-defined package

• There are many built-in packages such as java, lang, awt, javax, swing,

net, io, util, sql etc.

Packages - Introduction

Mahesh Huddar

CSE,HIT, Nidasoshi

• Using a package in Java Program is very simple. Just include the command

package at the beginning of the program.

• The syntax for declaring the package is

• package name_of_package

• This package statement defines the name space in which the classes are

stored. If we omit the package then the default classes are put in the

package that has no name. Basically Java creates a directory and the name of

this directory becomes the package name.

Packages - Introduction

Mahesh Huddar

CSE,HIT, Nidasoshi

• For example - In your program, if you declare the package as -package

My_Package; then we must create the directory name My_Package in

the current working directory and the required classes must be stored

in that directory.

• Note that the name of the package and the name of the directory

must be the same. This name is case sensitive.

Packages - Introduction

Mahesh Huddar

CSE,HIT, Nidasoshi

• We can create hierarchy of packages.

• For instance if you save the required class files in the subfolder

MyPkg3 and the path for this subfolder is C: \ MyPkg1 \ MyPkg2 \

MyPkg3 then the declaration for the package in your java program

will be -

• package MyPkg1.MyPkg2.MyPkg3;

Packages - Introduction

Mahesh Huddar

CSE,HIT, Nidasoshi

• Java package is used to categorize the classes and interfaces so

that they can be easily maintained.

• Java package provides access protection.

• Java package removes naming collision.

Packages - Advantages

Mahesh Huddar

CSE,HIT, Nidasoshi

• In this section we will discuss how to develop a program which makes use the

classes from other package.

• Step 1 : Create a folder named My_Package.

• Step 2 : Create one class which contains two methods. We will store this class in

a file named A.java. This file will be stored in a folder My_Package. The code for

this class will be as follows - Java Program[A.java]

• package My_Package;

• //include this package at the beginning public class A

• methods defined must be public

Creating and Accessing Packages

Mahesh Huddar

CSE,HIT, Nidasoshi

Creating and Accessing Packages

Mahesh Huddar

//Java Program[A.java]

package My_Package; //include this package at the beginning

public class A

{

int a;

public void set_val(int n)

{

a = n;

}

public void display()

{

System.out.println("The value of a is: "+a);

}

}

CSE,HIT, Nidasoshi

• Note that this class contains two methods namely - set_val and

display. By the set_val method we can assign some value to a

variable. The display function displays this stored value.

• Step 3 : Now we will write another java program named

PackageDemo.java. This program will use the methods defined in

class A. This source file is also stored in the subdirectory My_Package.

The java code for this file is-

Creating and Accessing Packages

Mahesh Huddar

CSE,HIT, Nidasoshi

• Step 4 : Now, open the command prompt and issue the following commands in order to run the

package programs

• D:\> set CLASSPATH=.;D:\;

• D:\ >cd My_Package

• Setting the class path

• D:\My_Package>javac A.java

• Creating the classes A.class anf package Demo.Class files

• D:\Mypackage>javac PackageDemo.java

• D:\Mypackage>java PackageDemo

• The value of a is: 10

• D: \Mypackage >

Creating and Accessing Packages

Mahesh Huddar

CSE,HIT, Nidasoshi

Java Program[PackageDemo.java]

import My_Package.A;

//The java class A is referenced here by import statement

class PackageDemo

{

public static void main(String args[]) throws NoClassDefFoundError

{

A obj=new A(); //creating an object of class

obj.set_val(10); //Using the object of class A, the methods present

obj.display(); //in class A are accessed

}

}

Creating and Accessing Packages

Mahesh Huddar

CSE,HIT, Nidasoshi

• The packages are nothing but the directories.

• For locating the specified package the Java run time system makes

use of current working directory as its starting point.

• Thus if the required packages is in the current working directory then

it will found.

Concept of CLASSPATH

Mahesh Huddar

CSE,HIT, Nidasoshi

• Otherwise you can specify the directory path setting the CLASSPATH

statement.

• For instance - if the package name My_Package is present at prompt D: \ >

then we can specify

• set CLASSPATH=.;

• D:\; D:\ >cd My_Package

• D:\My_Package\> Now you can execute the required class files from this

location

Concept of CLASSPATH

Mahesh Huddar

CSE,HIT, Nidasoshi

• If public or private specifier is not used then by default the classes,

methods, data fields are assessable by any class in the same package.

• This is called package-private or package-access.

• A package is essentially grouping of classes.

Access Protection

Mahesh Huddar

CSE,HIT, Nidasoshi

package Test;

public class class1

{

public int a;

int b;

private int c;

public void funl() { }

void fun2() { }

private void fun3() { }

}

Access Protection

Mahesh Huddar

public class class2
{

void My_method()
{

classl obj=new classl();
obj.a; //allowed
obj.b; //allowed
obj.c; //error: cannot access
obj.funl(); //allowed
obj.fun2(); //allowed
obj.fun3(); //error cannot access

}
}

CSE,HIT, Nidasoshi

package Test

public class class3

{

void My_method()

{

class1 obj=new class1();

obj.a; //allowed

obj.b; // error:cannot access

obj.c; //error:cannot access

obj.funl(); //allowed

obj.fun2(); //erroccannot access

obj.fun3(); //erroncannot access

}

}

Access Protection

Mahesh Huddar

CSE,HIT, Nidasoshi

In above example,

• We have created two packages are created namely - Test and another

Test.

• Inside the package Test there are two classes defined - classi and class2

• Inside the package another Test there is only one class defined and i.e.

class3.

• There are three data fields - a, b and c. The data field a is declared as

public, b is defined as default and C is defined as private.

Access Protection

Mahesh Huddar

CSE,HIT, Nidasoshi

• The variable a and method fun10 both are accessible from the classes class2 and

class3 (even if it is in another package). This is because they are declared as

public.

• The variable b and method fun20 both are accessible from class2 because class2

lies in the same package. But they are not accessible from class3 because class3

is defined in another package.

• The variable c and method fun3() both are not accessible from any of the class,

because they are declared as private.

Access Protection

Mahesh Huddar

CSE,HIT, Nidasoshi

• Protected mode is another access specifier which is used in inheritance. The

protected mode allows accessing the members to all the classes and subclasses

in the same package as well as to the subclasses in other package. But the non

subclasses in other package can not access the protected members.

Access Protection

Mahesh Huddar

CSE,HIT, Nidasoshi

• The effect of access specifiers for class, subclass or package is enlisted below,

• For example, if some variable is declared as protected, then the class itself can

access it, its subclass can access it and any class in the same package can also

access it. Similarly if the variable is declared as private then that variable is

accessible by that class only and its subclass can not access it.

Access Protection

Mahesh Huddar

CSE,HIT, Nidasoshi

• All the standard classes in Java are stored in named packages.

• There is no standard class present in Java which is unnamed. But it is always

complicated to write the class name using a long sequence of packages

containing dot operator. Hence the import statement is needed.

• The import statement can be written at the beginning of the Java program,

using the keyword import.

• There are two ways of accessing the classes stored in the core package.

Importing Packages

Mahesh Huddar

CSE,HIT, Nidasoshi

Method 1:

• We import the java package class using the keyword import.

• Suppose we want to use the Data class stored in the java.util package then

we can write the import statement at the beginning of the program. It is as

follows -

Importing Packages

Mahesh Huddar

CSE,HIT, Nidasoshi

2. Method:

• There are some situations in which we want to make use of several classes

stored in a package.

• Then we can write it as

import java.util.*

• Here * means any class in the corresponding package.

Importing Packages

Mahesh Huddar

CSE,HIT, Nidasoshi

An interface is similar to a class but there lies some difference between the two.

Interfaces

Mahesh Huddar

CSE,HIT, Nidasoshi

The interface can be defined using following syntax

access_modifier interface name_of_interface

{

return_type method_name1(parameter1, parameter2, ... parametern);

return_type method_name2(parameter1, parameter2, ... parametern);

type static final variable_name=value;

}

Interfaces – Syntax

Mahesh Huddar

CSE,HIT, Nidasoshi

• Interfaces can be extended similar to the classes.

• That means we can derive subclasses from the main class using the keyword extend ,

similarly we can derive the sub-interfaces from main interfaces by using the keyword

extends.

• The syntax is

interface Interface_name2 extends interface_name1

{

//Body of interface

}

Extending Interfaces

Mahesh Huddar

CSE,HIT, Nidasoshi

For example

interface A

{

int val=10;

}

interface B extends A

{

void print_val()

{

System.out.println(“The value val is “+val);

}

}

That means in interface B the display method can access the value of variable val. Similarly more than
one interfaces can be extended.

Extending Interfaces

Mahesh Huddar

CSE,HIT, Nidasoshi

• It is necessary to create a class for every interface.

• The class must be defined in the following form while using the interface

class Class_name extends superclass_name

implements interface_name1,interface_name2,...

{

//body of class

}

Implementation of Interface

Mahesh Huddar

CSE,HIT, Nidasoshi

• Let us learn how to use interface for a class

• Step 1 : Write following code and save it as my_interface.java

public interface my_interface

{

void my_method(int val);

}

•

• Do not compile this program. Simply save it.

Implementation of Interface

Mahesh Huddar

CSE,HIT, Nidasoshi

Implementation of Interface

Mahesh Huddar

CSE,HIT, Nidasoshi

Implementation of Interface

Mahesh Huddar

CSE,HIT, Nidasoshi

• Program Explanation

• In above program, the interface my_interface declares only one method i.e. my_method. This

method can be defined by class A. There is another method which is defined in class A and that is

another method. Note that this method is not declared in the interface my_interface. That means, a

class can define any additional method which is not declared in the interface.

Implementation of Interface

Mahesh Huddar

CSE,HIT, Nidasoshi

• Write a Java program to define an interface called Area

which contains a method called Compute() and calculate

areas of rectangle(I*b) and triangle(1/2*b*h) using

classes Rectangle and Triangle. VTU : July-18, Marks 8

Implementation of Interface

Mahesh Huddar

CSE,HIT, Nidasoshi

Implementation of Interface

Mahesh Huddar

CSE,HIT, Nidasoshi

Implementation of Interface

Mahesh Huddar

CSE,HIT, Nidasoshi

• Briefly explain the role of interfaces while implementing

multiple inheritances in Java. July 17, 6 Marks

• Java does not support the concept of multiple inheritance

using typical class hierarchy. However, it is possible to

implement multiple inheritance using interface.

Multiple inheritance using Interface

Mahesh Huddar

CSE,HIT, Nidasoshi

• The multiple inheritance can be represented as follows:

• The simple Java code to implement multiple inheritance is as follows

Multiple inheritance using Interface

Mahesh Huddar

CSE,HIT, Nidasoshi

Mahesh Huddar

CSE,HIT, Nidasoshi

• One of the exciting features of Windows operating system is that - It allows the

user to handle multiple tasks together. This facility in Windows operating system

is called multitasking.

• In Java we can write the programs that perform multitasking using the

multithreading concept. Thus Java allows to have multiple control flows in a

single program by means of multithreading.

• Definition of thread : Thread is a tiny program running continuously. It is

sometimes called as light-weight process. But there lies differences between

thread and process.

What are Threads…?

Mahesh Huddar

CSE,HIT, Nidasoshi

Thread vs. Process

Mahesh Huddar

CSE,HIT, Nidasoshi

Difference between Multiple Processes and Multiple Threads

Mahesh Huddar

CSE,HIT, Nidasoshi

• In Java we can implement the thread programs using two approaches –

– Using Thread class

– Using runnable interface.

How to make classes threadable

Mahesh Huddar

CSE,HIT, Nidasoshi

As given in Fig., there are two methods by which we can write the Java thread programs one

is by extending thread class and the other is by implementing the Runnable interface.

1. The run() method is the most important method in any threading program. By using this

method the thread's behaviour can be implemented. The run method can be written as

follows –

public void run()

{

Statement for implementing thread

}

How to make classes y threadable

Mahesh Huddar

CSE,HIT, Nidasoshi

2. For invoking the thread's run method the object of a thread is required. This

object can be obtained by creating and initiating a thread using the start()

method.

How to make classes y threadable

Mahesh Huddar

CSE,HIT, Nidasoshi

• The Thread class can be used to create a thread.

• Using the extend keyword your class extends the Thread class for

creation of thread.

• For example if I have a class named A then it can be written as

class A extends Thread

• Constructor of Thread Class: Following are various syntaxes used

for writing the constructor of Thread Class.

Extending Threads

Mahesh Huddar

CSE,HIT, Nidasoshi

• Thread()

• Thread(String s)

• Thread(Runnable obj)

• Thread(String s, Runnable obj)

Extending Threads

Mahesh Huddar

CSE,HIT, Nidasoshi

Various commonly used methods during thread programming are as given

below -

• start() - The thread can be started and invokes the run method.

• run() - Once thread is started it executes in run method.

• setName() - We can give the name to a thread using this method.

• getName() - The name of the thread can be obtained using this name.

• join() - This method waits for thread to end

Extending Threads

Mahesh Huddar

CSE,HIT, Nidasoshi

class MyThread extends Thread
{

public void run()
{

System.out.println("Thread is created!!!");
}

}
class ThreadProg
{

public static void main(String args[])
{

MyThread t =new MyThread();
t.start();

}
}

Extending Threads

Mahesh Huddar

CSE,HIT, Nidasoshi

Program Explanation:

• In above program, we have created two classes.

• One class named MyThread extends the Thread class.

• In this class the run method is defined.

• This run method is called by t.start() in main() method of class ThreadProg

• The thread gets created and executes by displaying the message Thread is

created.

Extending Threads

Mahesh Huddar

CSE,HIT, Nidasoshi

Create a thread by extending the Thread Class. Also make use of constructor and display
message "You are Welcome to Thread Programming"

class MyThread extends Thread
{

String str="; //data member of class MyThread
MyThread(String s)//constructor
{

this.str=s;
}
public void run()
{

System.out.println(str);
}

}

Extending Threads

Mahesh Huddar

CSE,HIT, Nidasoshi

class ThreadProg
{

public static void main(String args[])
{

MyThread t = new MyThread("You are Welcome to Thread
Programming");

t.start();
}

}

Extending Threads

Mahesh Huddar

CSE,HIT, Nidasoshi

• The thread can also be created using runnable interface.

• Implementing thread program using Runnable interface is preferable than

implementing it by extending the thread class because of the following two

reasons –

1. If a class extends a thread class then it can not extends any other class which

may be required to extend.

2. If a class thread is extended then all its functionalities get inherited. This is an

expensive operation.

Implementing Runnable

Mahesh Huddar

CSE,HIT, Nidasoshi

• Following Java program shows how to implement Runnable interface for creating

a single thread.

Implementing Runnable

Mahesh Huddar

class ThreadProgRunn
{

public static void main(String args[])
{

MyThread obj=new MyThread();
Thread t=new Thread(obj);
t.start();

}
}

class MyThread implements Runnable
{

public void run()
{

System.out.println("Thread is
created!");

}
}

CSE,HIT, Nidasoshi

Program Explanation:

• In above program, we have used interface Runnable.

• While using the interface, it is necessary to use implements keyword.

• Inside the main method

1. Create the instance of class MyThread.

2. This instance is passed as a parameter to Thread class.

3. Using the instance of class Thread invoke the start method.

4. The start method in-turn calls the run method written in MyThread.

• The run method executes and display the message for thread creation.

Implementing Runnable

Mahesh Huddar

CSE,HIT, Nidasoshi

Create a thread by implementing runnable interface. Also make use

of constructor and display message "You are Welcome to Thread

Programming"

Implementing Runnable

Mahesh Huddar

CSE,HIT, Nidasoshi

Implementing Runnable

Mahesh Huddar

class MyThread implements Runnable
{

String str;
MyThread(String s)
{

this.str=s;
}
public void run()
{

System.out.println(str);
}

}

class ThreadProgRunn
{

public static void main(String args[])
{

MyThread obj=new MyThread("You
are Welcome to Thread Programming");

Thread t =new Thread(obj);
t.start();

}
}

Output
You are Welcome to Thread Programming

CSE,HIT, Nidasoshi

1. What is Thread ? Explain two ways of creation of thread. VTU : Jan.-18, Marks 5

2. Elucidate the two ways of making a class threadable, with examples. VTU : July-

18, Marks 8

3. What is thread ? Explain two ways of creating a thread in JAVA with example.

VTU : Jan.-19, Marks 8

4. Explain the concepts of multithreading in Java. Explain the two ways of making

class threadable with examples. VTU : July-19, Marks 10

University Questions

Mahesh Huddar

CSE,HIT, Nidasoshi

• Multiple threads can be created by extending the Thread class and by

implementing the runnable interface.

Creating Multiple Threads

Mahesh Huddar

CSE,HIT, Nidasoshi

class A extends Thread
{

public void run()
{

for (int i=1; i<=5; i++)
{

System.out.println("Thread - 1");
}

}
}

Creating Multiple Threads using Threads Class

Mahesh Huddar

CSE,HIT, Nidasoshi

class B extends Thread
{

public void run()
{

for (int i=1; i<5; i++)
{

System.out.println("Thread - 2");
}

}
}

Creating Multiple Threads using Threads Class

Mahesh Huddar

CSE,HIT, Nidasoshi

public class MultipleThreadsUsingThreadCLass
{

public static void main(String args[])
{

A t1 = new A();
B t2 = new B();
t1.start();
t2.start();

}
}

Creating Multiple Threads using Threads Class

Mahesh Huddar

CSE,HIT, Nidasoshi

SAMPLE OUTPUT:

Thread - 1

Thread - 2

Thread - 2

Thread - 2

Thread - 2

Thread - 1

Thread - 1

Thread - 1

Thread - 1

Creating Multiple Threads using Threads Class

Mahesh Huddar

CSE,HIT, Nidasoshi

Java program for creating multiple threads by implementing

the Runnable Interface

Creating Multiple Threads by Implementing Runnable Interface

Mahesh Huddar

CSE,HIT, Nidasoshi

class AA implements Runnable
{

public void run()
{

for (int i=1; i<=5; i++)
{

System.out.println("Thread - 1");
}

}
}

Creating Multiple Threads by Implementing Runnable Interface

Mahesh Huddar

CSE,HIT, Nidasoshi

class BB implements Runnable
{

public void run()
{

for (int i=1; i<5; i++)
{

System.out.println("Thread - 2");
}

}
}

Creating Multiple Threads by Implementing Runnable Interface

Mahesh Huddar

CSE,HIT, Nidasoshi

public class MultipleThreadsUsingRunnable
{

public static void main(String args[])
{

AA obj1 = new AA();
BB obj2 = new BB();
Thread t1 = new Thread(obj1);
Thread t2 = new Thread(obj2);
t1.start();
t2.start();

}
}

Creating Multiple Threads by Implementing Runnable Interface

Mahesh Huddar

CSE,HIT, Nidasoshi

SAMPLE OUTPUT:

Thread - 1

Thread - 1

Thread - 1

Thread - 2

Thread - 2

Thread - 1

Thread - 1

Thread - 2

Thread - 2

Creating Multiple Threads by Implementing Runnable Interface

Mahesh Huddar

CSE,HIT, Nidasoshi

• When two or more threads need to access shared memory, then there is some way to

ensure that the access to the resource will be by only one thread at a time. The process of

ensuring one access at a time by one thread is called synchronization. The synchronization

is the concept which is based on monitor. Monitor is used as mutually exclusive lock or

mutex. When a thread owns this monitor at a time then the other threads can not access

the resources. Other threads have to be there in waiting state.

• In Java every object has implicit monitor associated with it. For entering in object's

monitor, the method is associated with a keyword synchronized. When a particular

method is in synchronized state then all other threads have to be there in waiting state.

Multiple Threads – Synchronization

Mahesh Huddar

CSE,HIT, Nidasoshi

• In Java every object has implicit monitor associated with it. For entering in

object's monitor, the method is associated with a keyword synchronized.

• When a particular method is in synchronized state then all other threads

have to be there in waiting state.

• There are two ways to achieve the synchronization –

1. Using Synchronized Methods

2. Using Synchronized Blocks (Statements).

Multiple Threads – Synchronization

Mahesh Huddar

CSE,HIT, Nidasoshi

• Let us make the method synchronized to achieve the

synchronization by using following Java program -

Synchronization – Using Synchronized Method

Mahesh Huddar

CSE,HIT, Nidasoshi

class Sync
{

synchronized void display(int n)
{

System.out.println("The table for "+n);
for (int i=1;i<=10; i++)
{

System.out.print(" "+n*i);
}
System.out.println("\nEnd of table");

}
}

Synchronization – Using Synchronized Method

Mahesh Huddar

CSE,HIT, Nidasoshi

class thread1 extends Thread
{

Sync s1;
thread1(Sync s)
{

s1 = s;
}
public void run()
{

s1.display(2);
}

}

Synchronization – Using Synchronized Method

Mahesh Huddar

CSE,HIT, Nidasoshi

class thread2 extends Thread
{

Sync s2;
thread2(Sync s)
{

s2 = s;
}
public void run()
{

s2.display(10);
}

}

Synchronization – Using Synchronized Method

Mahesh Huddar

CSE,HIT, Nidasoshi

public class SynchronizedMethod
{

public static void main(String args[])
{

Sync obj = new Sync();
thread1 t1 = new thread1(obj);
thread2 t2 = new thread2(obj);
t1.start();
t2.start();

}
}

Synchronization – Using Synchronized Method

Mahesh Huddar

CSE,HIT, Nidasoshi

Sample Output:

The table for 2

2 4 6 8 10 12 14 16 18 20

End of table

The table for 10

10 20 30 40 50 60 70 80 90 100

End of table

Synchronization – Using Synchronized Method

Mahesh Huddar

CSE,HIT, Nidasoshi

Program Explanation:

• In above program we have written one class named Sync. Inside this class the synchronized

method named display is written. This method displays the table of numbers.

• We have written two more classes named thread1 and thread2 for executing the thread.

The constructors for class thread1 and Class thread2 are written and to initialize the

instance variables of class Sync as s1 (as a variable for class thread1) and s2 (as a variable

for class thread2)

• Inside the run methods of these classes we have passed number 2 and 10 respectively and

display method is invoked.

• The display method executes firstly for thread s1 and then for s2 in synchronized manner.

Synchronization – Using Synchronized Method

Mahesh Huddar

CSE,HIT, Nidasoshi

Using Synchronized Block

• When we want to achieve synchronization using the synchronized block then create a

block of code and mark it as synchronized.

• Synchronized statements must specify the object that provides the intrinsic lock.

Syntax The syntax for using the synchronized block is –

synchronized (object references)

{

// Block of code to be synchronized

}

Synchronization – Using Synchronized Block

Mahesh Huddar

CSE,HIT, Nidasoshi

class Sync
{

void display(int n)
{

synchronized (this)
{

System.out.println("The table for "+n);
for (int i=1;i<=10; i++)
{

System.out.print(" "+n*i);
}
System.out.println("\nEnd of table");

}
}

}

Synchronization – Using Synchronized Block

Mahesh Huddar

CSE,HIT, Nidasoshi

class thread1 extends Thread
{

Sync s1;
thread1(Sync s)
{

s1 = s;
}
public void run()
{

s1.display(2);
}

}

Synchronization – Using Synchronized Block

Mahesh Huddar

CSE,HIT, Nidasoshi

class thread2 extends Thread
{

Sync s2;
thread2(Sync s)
{

s2 = s;
}
public void run()
{

s2.display(10);
}

}

Synchronization – Using Synchronized Block

Mahesh Huddar

CSE,HIT, Nidasoshi

public class SynchronizedMethod
{

public static void main(String args[])
{

Sync obj = new Sync();
thread1 t1 = new thread1(obj);
thread2 t2 = new thread2(obj);
t1.start();
t2.start();

}
}

Synchronization – Using Synchronized Block

Mahesh Huddar

CSE,HIT, Nidasoshi

Sample Output:

The table for 2

2 4 6 8 10 12 14 16 18 20

End of table

The table for 10

10 20 30 40 50 60 70 80 90 100

End of table

Synchronization – Using Synchronized Block

Mahesh Huddar

CSE,HIT, Nidasoshi

• The static synchronization can be achieved by making the static

method as synchronized.

• In static synchronization the lock will be on the class and not on the

instance.

• That means while execution of a static method the whole class is

blocked.

• So other static synchronized methods are also blocked.

Concept of static synchronization

Mahesh Huddar

CSE,HIT, Nidasoshi

• Static synchronized methods synchronize on the class. If one thread

is executing a static synchronized method, all other threads trying to

execute any static synchronized methods will be blocked.

• Non-static synchronized methods synchronize on the instance of the

class. If one thread is executing a synchronized method, all other

threads trying to execute any synchronized methods will be blocked.

What is the difference between static synchronized and synchronized methods ?

Mahesh Huddar

CSE,HIT, Nidasoshi

class Sync
{

synchronized static void display(int n)
{

System.out.println("The table for "+n);
for (int i=1;i<=10; i++)
{

System.out.print(" "+n*i);
}
System.out.println("\nEnd of table");

}
}

Synchronization – static synchronization

Mahesh Huddar

CSE,HIT, Nidasoshi

class thread1 extends Thread
{

Sync s1;
thread1(Sync s)
{

s1 = s;
}
public void run()
{

s1.display(2);
}

}

Synchronization – static synchronization

Mahesh Huddar

CSE,HIT, Nidasoshi

class thread2 extends Thread
{

Sync s2;
thread2(Sync s)
{

s2 = s;
}
public void run()
{

s2.display(10);
}

}

Synchronization – static synchronization

Mahesh Huddar

CSE,HIT, Nidasoshi

public class SynchronizedMethod
{

public static void main(String args[])
{

Sync obj = new Sync();
thread1 t1 = new thread1(obj);
thread2 t2 = new thread2(obj);
t1.start();
t2.start();

}
}

Synchronization – static synchronization

Mahesh Huddar

CSE,HIT, Nidasoshi

Sample Output:

The table for 2

2 4 6 8 10 12 14 16 18 20

End of table

The table for 10

10 20 30 40 50 60 70 80 90 100

End of table

Synchronization – static synchronization

Mahesh Huddar

CSE,HIT, Nidasoshi

1. How synchronization can be achieved for threads in Java ? Explain with syntax.

VTU: July-17, Marks 6

2. Discuss briefly Synchronization in Java (2). VTU: July-18, Marks 2

3. Write an example Program for implementing static synchronization in Java. VTU:

July-18, Marks 6

4. What is the need of synchronization? Explain with an example how

synchronization is implemented in JAVA. VTU: Jan.-19, Marks 8

5. What is synchronization? When do we use it? VTU: Jan.-18, Marks 5

University Questions

Mahesh Huddar

CSE,HIT, Nidasoshi

Thread always exists in any one of the following states

1. New or create state

2. Runnable state

3. Waiting state

4. Timed waiting state

5. Blocked state

6. Terminated state.

Changing the State of the Thread

Mahesh Huddar

CSE,HIT, Nidasoshi

Thread life cycle specifies how a thread gets processed in the Java program

by executing various methods. Following Fig. represents how a particular

thread can be in one of the state at any time

Changing the State of the Thread – Life Cycle

Mahesh Huddar

CSE,HIT, Nidasoshi

New state

When a thread starts its life cycle it enters in the new state or a create state.

Runnable state

This is a state in which a thread starts executing.

Waiting state

Sometimes one thread has to undergo in waiting state because another

thread starts executing.

Changing the State of the Thread – Life Cycle

Mahesh Huddar

CSE,HIT, Nidasoshi

Timed waiting state

There is a provision to keep a particular threading waiting for some time

interval. This allows to execute high prioritized threads first. After the timing

gets over, the thread in waiting state enters in runnable state.

Blocked state

When a particular thread issues an Input/Output request then operating

system sends it in blocked state until the I/O operation gets completed. After

the I/O completion the thread is sent back to the runnable state.

Changing the State of the Thread – Life Cycle

Mahesh Huddar

CSE,HIT, Nidasoshi

Terminated state

After successful completion of the execution the thread in runnable state enters the

terminated state.

Suspending and Stopping the thread

1. Stopping a thread: A thread can be stopped from running further by issuing

the following statement - th.stop(); By this statement the thread enters in a

dead state. From stopping state a thread can never return to a runnable

state.

2. Blocking a thread: A thread can be temporarily stopped from running. This is

called blocking or suspending of a thread.

Changing the State of the Thread – Life Cycle

Mahesh Huddar

CSE,HIT, Nidasoshi

Following are the ways by which thread can be blocked –

1. sleep() By sleep() method a thread can be blocked for some specific

time. When the specified time gets elapsed then the thread can return

to a runnable state.

2. suspend - By suspend() method the thread can be blocked until further

request comes. When the resume() method is invoked then the thread

returns to a runnable state.

Changing the State of the Thread – Life Cycle

Mahesh Huddar

CSE,HIT, Nidasoshi

3. wait - The thread can be made suspended for some specific conditions using

wait() method.

• When the notify method is called then the blocked thread returns to the runnable

state.

• The difference between the suspending and stopping thread is that if a thread is

suspended then its execution is stopped temporarily and it can return to a

runnable state. But in case , if a thread is stopped then it goes to a dead state and

can never return to runnable state.

• Note that while using these methods, the exception InterupttedException must

be used.

Changing the State of the Thread – Life Cycle

Mahesh Huddar

CSE,HIT, Nidasoshi

/* Program for demonstrating the use of suspend() and resume() methods using two thread */
public class Suspend_ResumeDemo extends Thread
{

public void run()
{

try
{

for(int i = 0; i < 5; i+ +)
{

Thread.sleep(500);
System.out.println(this.getName() + ": " + i);

}
}
catch(InterruptedException e)
{

e.printStackTrace();
}

}

Changing the State of the Thread – Life Cycle

Mahesh Huddar

CSE,HIT, Nidasoshi

public static void main(String args[])
{

Suspend_ResumeDemo t1 = new Suspend_ResumeDemo();
Suspend_ResumeDemo t2 = new Suspend_ResumeDemo();
t1.setName("A");
t2.setName("B");
t1.start();
t2.start();
try
{

Thread.sleep(1000);
t1.suspend();
System.out.println("Suspending A Thread");
Thread.sleep(1000);
t1.resume();
System.out.println("Resuming A Thread");

Changing the State of the Thread – Life Cycle

Mahesh Huddar

CSE,HIT, Nidasoshi

Thread.sleep(1000);
t2.suspend();
System.out.println("Suspending B Thread");
Thread.sleep(1000);
t2.resume();
System.out.println("Resuming B Thread");

}
catch(InterruptedException e)
{

e.printStackTrace();
}

}
}

Changing the State of the Thread – Life Cycle

Mahesh Huddar

Output
A: 0
B: 0
Suspending A Thread
B: 1
B: 2
Resuming A Thread
A: 1
B: 3
A: 2
B: 4
Suspending B Thread
A: 3
A: 4
Resuming B Thread

CSE,HIT, Nidasoshi

1. What are the differences between suspending and stopping the

threads ? VTU : July-17, Marks 5

2. Define the concept of multithreading in Java and explain the

different phases in the life cycle of a thread, with a neat sketch.

VTU : July-18, Marks 8

University Questions

Mahesh Huddar

CSE,HIT, Nidasoshi

• There are two ways that determine whether the thread has finished or not.

• These methods are isAlive() and join().

• The isAlive() returns true upon which it is called is still running. It returns false

otherwise.

• The syntax of isAliv() method is as follows - final boolean isAlive()

• The method that is used commonly to wait for a thread to finish is called join().

• The syntax of join() is as follows - final void join() throws InterruptedException

• This method waits until the thread on which it is called terminates.

isAlive() and join() Methods

Mahesh Huddar

CSE,HIT, Nidasoshi

/*Following is a Java program that demonstrates the use of these methods.*/
class A extends Thread
{

public void run()
{

System.out.println("First Thread!!!");
try
{

for(int i=0;i<5;i+ +)
{

System.out.println(i);
Thread.sleep(1000);

}
}
catch(InterruptedException e){}

}
}

isAlive() and join() Methods

Mahesh Huddar

CSE,HIT, Nidasoshi

class B extends Thread
{

public void run()
{

System.out.println("Second Thread!!!");
try
{

for(int i= 10;i> 5;i--)
{

System.out.println(i);
Thread.sleep(1000);

}
}
catch(InterruptedException e){}

}
}

isAlive() and join() Methods

Mahesh Huddar

CSE,HIT, Nidasoshi

class ThreadJoin
{

public static void main(String args[])
{ A t1=new A();

t1.start();
try
{

t1.join();
}
catch(InterruptedException e){}
System.out.println("IS threadl alive? “+t1.isAlive());
B t2=new B();
System.out.println("IS thread2 alive? "+t2.isAlive());
t2.start();
System.out.println("IS thread2 alive? "+t2.isAlive());

}
}

isAlive() and join() Methods

Mahesh Huddar

Output
First Thread!!!
0
1
2
3
4
IS thread1 alive? false
IS thread2 alive? false
IS thread2 alive? true
Second Thread!!!
10
9
8
7
6

CSE,HIT, Nidasoshi

1. With the syntax explain the use of isAlive() and Join() methods.

VTU : July-17, Marks 6

2. With the syntax, explain the use of is Alive() and join() methods.

VTU : Jan.-19, Marks 4

3. With a syntax, explain is Alive() and join() with suitable program.

VTU : July-19, Marks 10

University Questions

Mahesh Huddar

CSE,HIT, Nidasoshi

• Two or more threads communicate with each other by exchanging

messages. This mechanism is called inter-thread communication.

• Polling is a mechanism generally implemented in a loop in which

certain condition is repeatedly checked.

• To better understand the concept of polling, consider the producer-

consumer problem in which producer thread produces and the

consumer thread consumes whatever is produced.

Producer Consumer Problem

Mahesh Huddar

CSE,HIT, Nidasoshi

• Both must work in coordination to avoid wastage of CPU cycles.

• But there are situations in which the producer has to wait for the

consumer to finish consuming data.

• Similarly, the consumer may need to wait for the producer to produce

the data. In the Polling system either the consumer will waste many

CPU cycles when waiting for the producer to produce or the producer

will waste CPU cycles when waiting for the consumer to consume the

data.

Producer Consumer Problem

Mahesh Huddar

CSE,HIT, Nidasoshi

• In order to avoid polling, there are three in-built methods that take

part in inter-thread communication –

Producer Consumer Problem

Mahesh Huddar

notify() If a particular thread is in the sleep mode then that thread can be
resumed using the notify call.

notifyall() This method resumes all the threads that are in the suspended
state.

wait() The calling thread can be sent into sleep mode.

CSE,HIT, Nidasoshi

• Example Program

• Following is a simple Java program in which two threads are created

one for the producer and another is for the consumer.

• The producer thread produces(writes) the numbers from 0 to 9 and

the consumer thread consumes(reads) these numbers.

• The wait and notify methods are used to send a particular thread to

sleep or to resume the thread from sleep mode respectively.

Producer Consumer Problem

Mahesh Huddar

CSE,HIT, Nidasoshi

Producer Consumer Problem

Mahesh Huddar

class MyClass
{

int val;
boolean flag = false;
synchronized int get() //by toggling the flag Synchronized read and write is performed
{

if(!flag)
{

try { wait(); }
catch(InterruptedException e)
{

System.out.println("InterruptedException!!!");
}

}
System.out.println("Consumer consuming: " + val);
flag = false;
notify();
return val;

}

CSE,HIT, Nidasoshi

Producer Consumer Problem

Mahesh Huddar

synchronized void put(int val)
{

if(flag)
{

try
{

wait();
}
catch(InterruptedException e)
{

System.out.println("InterruptedException!!!");
}

}
this.val = val;
flag = true;
System.out.println("Producer producing: " + val);
notify();

}
}

CSE,HIT, Nidasoshi

Producer Consumer Problem

Mahesh Huddar

class Producer extends Thread
{

MyClass th1;
Producer(MyClass t)
{

th1 = t;
}
public void run()
{

for(int i=0; i<10; i++)
{

th1.put(i);
}

}
}

class Consumer extends Thread
{

MyClass th2;
Consumer(MyClass t)
{

th2 = t;
}
public void run()
{

for (int i = 0;i<10; i++)
{

th2.get();
}

}
}

CSE,HIT, Nidasoshi

Producer Consumer Problem

Mahesh Huddar

class ProducerConsumer
{

public static void main(String arg[])
{

MyClass TObj = new MyClass();
Producer pthread=new Producer(TObj);
Consumer cthread=new Consumer(TObj);
pthread.start();
cthread.start();

}
}

Output
Producer producing: 0
Consumer consuming: 0
Producer producing: 1
Consumer consuming: 1
Producer producing: 2
Consumer consuming: 2
Producer producing: 3
Consumer consuming: 3
Producer producing: 4
Consumer consuming: 4
Producer producing: 5
Consumer consuming: 5
Producer producing: 6
Consumer consuming: 6
Producer producing: 7
Consumer consuming: 7
Producer producing: 8
Consumer consuming: 8
Producer producing: 9
Consumer consuming: 9

CSE,HIT, Nidasoshi

Program Explanation

• Inside get() -The wait() is called in order to suspend the execution by

that time the producer writes the value and when the data gets ready

it notifies other threads that the data is now ready.

• Similarly, when the consumer reads the data execution inside get() is

suspended. After the data has been obtained, get() calls notify(). This

tells the producer that now the producer can write the next data in the

queue.

Producer Consumer Problem

Mahesh Huddar

CSE,HIT, Nidasoshi

• Inside put() - The wait() suspends execution by that time the

consumer removes the item from the queue.

• When execution resumes, the next item of data is put in the queue,

and notify() is called.

• When the notify is issued the consumer can now remove the

corresponding item for reading.

Producer Consumer Problem

Mahesh Huddar

CSE,HIT, Nidasoshi

• The bounded buffer problem is a classic problem in which there is a

buffer of n slots and each slot is capable of storing one unit of data.

• There are two processes running, namely, producer and consumer,

which are operating on the buffer.

• The producer inserts data in the buffer and Consumer deletes the

data from the buffer

Bounded Buffer Problems

Mahesh Huddar

CSE,HIT, Nidasoshi

class Buffer
{

int Max;
int[] Queue;
int front, rear, QSize;
public Buffer(int size)
{

Max = size;
rear = -1;
front = 0;
QSize = 0;
Queue = new int[Max];

}

Bounded Buffer Problems

Mahesh Huddar

CSE,HIT, Nidasoshi

public synchronized void insert(int ch)
{

try
{

while (QSize == Max)
{

wait();
}
rear = (rear + 1) % Max;
Queue[rear] = ch;
QSize++;
notifyAll();

}
catch (InterruptedException e) {}

}

Bounded Buffer Problems

Mahesh Huddar

CSE,HIT, Nidasoshi

Bounded Buffer Problems

Mahesh Huddar

public synchronized int delete()
{

int ch = 0;
try
{

while (QSize == 0)
{

wait();
}
ch = Queue[front];
front = (front + 1) % Max;
QSize--;
notifyAll();

}
catch (InterruptedException e) {}
return ch;

}
}

CSE,HIT, Nidasoshi

Bounded Buffer Problems

Mahesh Huddar

class Consumer extends Thread
{

Buffer buffer; public Consumer(Buffer b)
{

buffer = b;
}
public void run()
{

while (!Thread.currentThread().isInterrupted())
{

pi int c = butter.delete();
System.out.println(c);

}
}

}

CSE,HIT, Nidasoshi

Bounded Buffer Problems

Mahesh Huddar

class Producer extends Thread
{

Buffer buffer;
public Producer(Buffer b)
{

buffer = b;
}
public void run()
{

for(int c=0;c<10;c++)
buffer.insert(c);

}
}

CSE,HIT, Nidasoshi

Bounded Buffer Problems

Mahesh Huddar

class BoundedBuffer
{

public static void main(String[] args)
{

Buffer Q = new Buffer(5); // Queue of size 5
Producer prod = new Producer(Q); //for inserting data to Queue
Consumer cons = new Consumer(Q); //for deleting data from Queue
prod.start();
cons.start();
try
{

prod.join();
cons.interrupt();

}
catch (InterruptedException e) {}

}
}

CSE,HIT, Nidasoshi

1. Explain the role of synchronization with producer and consumer

problem. VTU : Jan.-18, Marks 8

2. Explain the role of synchronization with Bounded buffer problem.

University Questions

Mahesh Huddar

CSE,HIT, Nidasoshi

CSE,HIT, Nidasoshi

