
Dept. of CSE, HIT, Nidasoshi Page 1

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

Applets

 Applet is a small program that

 can be placed on a web page

 will be executed by the web browser

 give web pages “dynamic content”.

 Java Applets enable user interaction with GUI elements

 Applets are Java programs that can be embedded in HTML documents

 When browser loads Web page containing applet,Applet downloads into

Web browser and begins execution or applets can be executed in

appletviewer.

 Applets are not stand alone programs.

 Applets are specified in html document by using applet tag

 /* <applet code=”MyApplet” width=200 height=100>

</applet> */

 [thus applet will be executed in java enabled web browser when it encounters

applet tag within the html file.]

 The Applet class

 Applet class provides all necessary methods to start and stop the applet

program.

 It also provides methods to load and display images, and play audio clips.

 Applet extends the AWT class Panel.

 Panel extends Container which extends Component.

Dept. of CSE, HIT, Nidasoshi Page 2

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

Dept. of CSE, HIT, Nidasoshi Page 3

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

Applet Architecture

 An applet is a window-based program. As such, its architecture is different from the

console-based programs.

 Applets are event driven.

 An applet waits until an event occurs.

 The run-time system notifies the applet about an event by calling an event handler that

has been provided by the applet.

 Once this happens, the applet must take appropriate action and then quickly return.

 Applet must perform specific actions in response to events and then return control to the

run-time system.

 In those situations in which your applet needs to perform a repetitive task on its own

(for example, displaying a scrolling message across its window), an additional thread of

execution must be started.

 The user interacts with the applet as he or she wants, when he or she wants.

These interactions are sent to the applet as events to which the applet must

respond.

 For example, when the user clicks the mouse inside the applet’s window, a mouse-

clicked event is generated.

 If the user presses a key while the applet’s window has input focus, a keypress event is

generated.

 Applets can contain various controls, such as push buttons and check boxes. When the

user interacts with one of these controls, an event is generated.

Dept. of CSE, HIT, Nidasoshi Page 4

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

An Applet Skeleton

 It defines init(),start(),stop(),destroy() methods.

 AWT-based applets will override paint() method defined by AWT Component class.

This method is called when applet’s output must be redisplayed.

import java.awt.*;

import java.applet.*;

/*

<applet code=”AppletSkel” width=300 height=200>

</applet>

*/

public class AppletSkel extends Applet

{

// Called first.

public void init()

{

// initialization

}

/* Called second, after init(). Also called whenever the applet is restarted. */

public void start()

{
// start or resume execution

}
// Called when the applet is stopped.

public void stop()

{

// suspends execution

}

/* Called when applet is terminated. This is the last method executed. */

public void destroy()

{

// perform shutdown activities
}

// Called when an applet's window must be restored.

public void paint(Graphics g)

{

// redisplay contents of window

}

}

When run, it generates the following window when viewed with an Appletviewer

.

Dept. of CSE, HIT, Nidasoshi Page 5

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

-Applet Initialization and Termination

 Applet methods are called in the following order

 When an applet begins, the following methods are called, in this sequence:

 1. init()

 2. start()

 3. paint()

 When an applet is terminated, the following sequence of method calls takes place

 1. stop()

 2. destroy()

 init(): The init() method is the first method to be called. Initialization of variables is

done here. This method is called only once during the run time of applet.

 start(): The start() method is called after init(). It is also called to restart an applet after it has

been stopped. Whereas init() is called once—the first time an applet is loaded. start() is called

each time an applet’s HTML document is displayed onscreen. So, if a user leaves a web page

and comes back, the applet resumes execution at start().

 paint():

− The paint() method is called each time when applet’s output must be redrawn.

− For example, the window in which the applet is running may be overwritten by another

window and then uncovered.

− Or the applet window may be minimized and then restored.

− paint() is also called when the applet begins execution. Whatever the cause, whenever

the applet must redraw its output, paint() is called.

− The paint() method has one parameter of type Graphics. This parameter will contain the

graphics context, which describes the graphics environment in which the applet is

running.

 stop():

o The stop() method is called when a web browser leaves the HTML document

containing the applet—when it goes to another page

o For example. stop() is called,when the applet is probably running. stop() is

used to suspend threads that don’t need to run when the applet is not visible.

 destroy()

− The destroy() method is called when the environment determines that the applet needs to

be removed completely from memory.

− We should free up any resources the applet may be using.

− The stop() method is always called before destroy().

Dept. of CSE, HIT, Nidasoshi Page 6

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

Overriding update()

 AWT, defines a method called update(). This method is called when applet has

requested that a portion of its window be redrawn.

 update() method simply calls paint().

Simple Applet Display Methods

 AWT-based applets use AWT to perform input and output.

 to output a string to an applet, drawString() method is used, which is a member of

the Graphics class. Typically, it is called from within either update() or paint().

 It has the following general form:

void drawString(String message, int x, int y) Here, message is the string to be

displayed at x,y location. In a Java window, the upper- left corner is location 0,0.

 To set the background color of an applet’s

window, setBackground() method is used.

 To set the foreground color setForeground() method is used.

 These methods are defined by

Component, and they have the following

general forms:

 void setBackground(Color newColor)

 void setForeground(Color newColor)

 Here, newColor specifies the new color.

The class Color defines the constants shown here that can be used to specify colors:

Color.black Color.magenta Color.blue Color.orange Color.cyan

Color.pink Color.darkGray Color.red Color.gray Color.white

Color.green Color.yellow Color.lightGray

 The following example sets the background color to green and the text color to red:

setBackground(Color.green);

setForeground(Color.red);

 A good place to set the foreground and background colors is in the init() method.

 We can obtain the current settings for the background and foreground colors by calling

getBackground() and getForeground(), respectively.

 They are also defined by Component ,they are:

Color getBackground() Color getForeground()

 Here is a very simple applet that sets the background color to cyan, the foreground color

to red, and displays a message that illustrates the order in which the init(), start(), and

paint() methods are called when an applet starts up:

Dept. of CSE, HIT, Nidasoshi Page 7

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

/* A simple applet that sets the foreground and background colors and outputs a string. */

import java.awt.*;

import java.applet.*;

/*<applet code=”Sample” width=300 height=200>

</applet> */

public class Sample extends Applet

{

String msg;

// set the foreground and background colors. public void init()

{

setBackground(Color.cyan); setForeground(Color.red);

msg = "Inside init() --";

}

// Initialize the string to be displayed. public void start()

{

msg += " Inside start() --";0

}

// Display msg in applet window. public void

paint(Graphics g)

{

msg += " Inside paint()."; g.drawString(msg, 10, 30);

}

}

Requesting Repainting

 As a general rule, an applet writes to its window only when its update() or paint()

method is called by the AWT.

 An applet must quickly return control to the run-time system.(constraint)

 It cannot create a loop inside paint() that repeatedly scrolls the banner. This would

prevent control from passing back to the AWT.

 If applet needs to update the information displayed in the window, it simply calls repaint(

).

 The repaint() method is defined by the AWT. It causes the AWT run-time system to

execute a call to your applet’s update() method, which by default, calls paint().

 The AWT will then execute a call to paint(), which can display the stored information.

 The repaint() method has four forms.

The simplest version of repaint() is shown here:

void repaint()

This version causes the entire window to be repainted.

Dept. of CSE, HIT, Nidasoshi Page 8

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

 The following version specifies a region that will be repainted: void repaint(int left, int

top, int width, int height)

 These dimensions are specified in pixels.

 Update may not be called immediately if system is slow or busy. In this case the

following forms of repaint() are used:

void repaint(long maxDelay)

void repaint(long maxDelay, int x, int y, int width, int height)

 Here, maxDelay specifies the maximum number of milliseconds that can elapse before

update() is called.

 It is possible for a method other than paint() or update() to output to applet window,to

do so it must obtain a graphics context by calling getGraphics() (defined by Component)

and then use this context to output to the window.

A Simple Banner Applet

 To demonstrate repaint(), a simple banner applet is developed. This applet scrolls a

message, from right to left, across the applet’s window.

 The scrolling of the message is a repetitive task, it is performed by a separate thread,

created by the applet when it is initialized.

import java.awt.*;

import java.applet.*;

/*<applet code=SimpleBanner width=300 height=200>

</applet> */

public class SimpleBanner extends Applet implements Runnable

{

String msg = " A Simple Moving Banner.";

Thread t = null;

int state;

boolean stopFlag;

// Set colors and initialize thread.

public void init()

{

setBackground(Color.cyan);

setForeground(Color.red);

}

// Start thread

public void start()

{

t = new Thread(this);

stopFlag = false;

t.start();

}

Dept. of CSE, HIT, Nidasoshi Page 9

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

// Entry point for the thread that runs the banner.

public void run()

{

char ch;

// Display banner

for(; ;)

{

try

{

repaint();

Thread.sleep(250);

ch = msg.charAt(0);

msg = msg.substring(1, msg.length());

msg += ch;

if(stopFlag)

break;

} catch(InterruptedException e) {}

}

}

// Pause the banner.

public void stop()

{

stopFlag = true;

t = null;

}

// Display the banner.

public void paint(Graphics g)

{

g.drawString(msg, 50, 30);

}

}

 SimpleBanner extends Applet and implements Runnable Interface.

 It is necessary to implement Runnable interface since the applet will be creating a second

thread of execution that will be used to scroll the banner.

 Inside init(), the foreground and background colors of the applet are set.

 After initialization, the run-time system calls start() to start the applet running.

 Inside start(), a new thread of execution is created and assigned to the Thread variable t.

 Then, the boolean variable stopFlag, which controls the execution of the applet, is set to

false.

 the thread is started by a call to t.start().

 t.start() calls run() to begin executing.

 Inside run(), the characters in the string contained in msg are repeatedly rotated left.

 Between each rotation, a call to repaint() is made. This eventually causes the paint()

Dept. of CSE, HIT, Nidasoshi Page 10

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

method to be called, and the current contents of msg are displayed.

 Between each iteration, run() sleeps for a quarter of a second.

 The stopFlag variable is checked on each iteration. When it is true, the run() method

terminates.

 If a browser is displaying the applet when a new page is viewed, the stop() method is

called, which sets stopFlag to true, causing run() to terminate.

Using the Status Window

 An applet can also output a message to the status window of the browser or applet viewer

on which it is running.

 showStatus() method displays the msg in the status window which is passed as a

parameter to it.

 The following applet demonstrates showStatus():

// Using the Status Window.

import java.awt.*;

import java.applet.*;

/* <applet code StatusWindow width=300 height=100>

</applet>*/

public class StatusWindow extends Applet

{

public void init()

{

setBackground(Color.cyan);

}

// Display msg in applet window.

public void paint(Graphics g)

{

g.drawString("This is in the applet window.", 10, 20);

showStatus("This is shown in the status window.");

}

}

Sample output from this program is shown here

Dept. of CSE, HIT, Nidasoshi Page 11

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

The HTML APPLET Tag

 The APPLET tag can be used to start an applet from both an HTML document and

from an applet viewer.

 An applet viewer will execute each APPLET tag that it finds in a separate window, while

web browsers will allow many applets on a single page.

 Bracketed items are optional.

< APPLET

[CODEBASE = codebaseURL]

CODE = appletFile

[ALT = alternateText]

[NAME = appletInstanceName]

WIDTH = pixels HEIGHT = pixels

[ALIGN = alignment]

[VSPACE = pixels]

[HSPACE = pixels] >

[< PARAM NAME = AttributeName VALUE = AttributeValue>] [< PARAM NAME =

AttributeName2 VALUE =AttributeValue>]

[HTML Displayed in the absence of Java]

</APPLET>

 CODEBASE

CODEBASE is an optional attribute that specifies the base URL of the applet code

 The HTML document’s URL directory is used as the CODEBASE if this attribute is not

specified.

 CODE

CODE is a required attribute that gives the name of the file containing your applet’s

compiled .class file.

 ALT

The ALT tag is an optional attribute used to specify a short text message that should be

displayed if the browser recognizes the APPLET tag but can’t currently run Java applets.

 NAME

NAME is an optional attribute used to specify a name for the applet instance.

To obtain an applet by name, getApplet() methos is ised, which is defined by the

AppletContext interface.

 WIDTH and HEIGHT

WIDTH and HEIGHT are required attributes that give the size (in pixels) of the applet

display area.

 ALIGN

ALIGN is an optional attribute that specifies the alignment of the applet.with values:

Dept. of CSE, HIT, Nidasoshi Page 12

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

LEFT, RIGHT, TOP, BOTTOM, MIDDLE,

BASELINE, TEXTTOP, ABSMIDDLE, and ABSBOTTOM.

 VSPACE and HSPACE

These attributes are optional.

VSPACE specifies the space, in pixels, above and below the applet.

HSPACE specifies the space, in pixels, on each side of the applet.

 PARAM NAME and VALUE

The PARAM specifies applet-specific arguments in an HTML page. Applets access

their attributes with the getParameter() method.

Passing Parameters to Applets

 The APPLET tag in HTML allows to pass parameters to applet.

 To retrieve a parameter, getParameter() method is used.

 It returns the value of the specified parameter in the form of a String object.

 Thus, for numeric and boolean values,its need to convert their string representations into

their internal formats.

 Here is an example that demonstrates passing parameters:

// Use Parameters

import java.awt.*;

import java.applet.*;

/* <applet code=”ParamDemo” width=300 height=200>

</applet> */

public class ParamDemo extends Applet

{

String fontName;

int fontSize;

float leading;

boolean active;

// Initialize the string to be displayed.

public void start()

{

String param;

fontName = getParameter("fontName");

if(fontName == null)

fontName = "Not Found";

param = getParameter("fontSize");

try

{

if(param != null) // if not found

fontSize = Integer.parseInt(param);

else

Dept. of CSE, HIT, Nidasoshi Page 13

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

fontSize = 0;

} catch(NumberFormatException e) {

fontSize = -1;

}

param = getParameter("leading");

try {

if(param != null) // if not found

leading = Float.valueOf(param).floatValue();

else

leading = 0;

} catch(NumberFormatException e) {

leading = -1;

}

param = getParameter("accountEnabled");

if(param != null)

active = Boolean.valueOf(param).booleanValue();

}

// Display parameters.

public void paint(Graphics g)

{

g.drawString("Font name: " + fontName, 0, 10);

g.drawString("Font size: " + fontSize, 0, 26);

g.drawString("Leading: " + leading, 0, 42);

g.drawString("Account Active: " + active, 0, 58);

}

}

getDocumentBase() and getCodeBase()

 Java allows applet to load data from the directory holding the HTML file that started the

applet (the document base)

 and the directory from which the applet’s class file was loaded (the code base).

 These directories are returned as URL objects by getDocumentBase() and

getCodeBase().

 To actually load another file, will use the showDocument() method defined by the

AppletContext interface.

import java.awt.*;

import java.applet.*;

import java.net.*;

/*<applet code=”Bases” width=300 height=200> </applet>*/

public class Bases extends Applet

{

Dept. of CSE, HIT, Nidasoshi Page 14

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

// Display code and document bases.

public void paint(Graphics g)

{

String msg;

URL url = getCodeBase();

// get code base

msg = "Code base: " + url.toString();

g.drawString(msg, 10, 20);

url = getDocumentBase();

// get document base

msg = "Document base: " + url.toString();

g.drawString(msg, 10, 40);

}

}

Sample output from this program is shown here:

AppletContext and showDocument()

 One application of Java is to use active images and animation to provide a graphical

means of navigating the Web that is more interesting than simple text-based links.

 To allow applet to transfer control to another URL, we use showDocument() method

defined by the AppletContext interfac

 The context of the currently executing applet is obtained by a call to the

getAppletContext() method defined by Applet.

 This method has no return value and throws no exception if it fails.

 There are two showDocument() methods.

 The method showDocument(URL) displays the document at the specified URL.

 The method showDocument(URL, String) displays the specified document at the

specified location within the browser window.

 The methods defined by AppletContext are shown in

Dept. of CSE, HIT, Nidasoshi Page 15

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

Method Description

Applet getApplet(String appletName) Returns the applet specified by appletName if it is

within the current applet context. Otherwise, null is
returned.

Enumeration<Applet> getApplets() Returns an enumeration that contains all of the

applets within the current applet context.

AudioClip getAudioClip(URL url) Returns an AudioClip object that encapsulates the

audio clip found at the location specified by url.

Image getImage(URL url) Returns an Image object that encapsulates the image

found at the location specified by url.

InputStream getStream(String key) Returns the stream linked to key. Keys are linked to

streams by using the setStream() method. A null
reference is returned if no stream is linked to

key.Iterator<String> getStreamKeys() Returns

an iterator for the keys associated with the

invoking object. The keys are linked to streams. See

getStream() and setStream().

void setStream(String key,

InputStream strm)

Links the stream specified by strm to the key passed

in key. The key is deleted from the invoking object

if strm is null.

void showDocument(URL url) Brings the document at the URL specified by url

into view. This method may not be supported by

applet viewers.

void showDocument(URL url,
String where)

Brings the document at the URL specified by url

into view. This method may not be supported by

applet viewers. The placement of the document is

specified by where as described in the text.

Dept. of CSE, HIT, Nidasoshi Page 16

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

void showStatus(String str) Displays str in the status window.

 Upon execution, it obtains the current applet context and uses that context to transfer

control to a file called Test.html. This file must be in the same directory as the applet.

import java.awt.*;

import java.applet.*;

import java.net.*;

/*<applet code=”ACDemo” width=300 height=200>

</applet> */

public class ACDemo extends Applet

{

public void start()

{

AppletContext ac = getAppletContext();

URL url = getCodeBase();

// get url of this applet

try

{

ac.showDocument(new URL(url+"Test.html"));

}

catch(MalformedURLException e)

{

showStatus("URL not found");

}

}

}

The AudioClip Interface

 The AudioClip interface defines these methods: play() (play a clip from the beginning),

stop() (stop playing the clip), and loop() (play the loop continuously).

 After its loaded ,using getAudioClip(), we can use these methods to play it.

The AppletStub Interface

 The AppletStub interface provides the means by which an applet and the browser (or

applet viewer) communicate.

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

17

Swings

 Swing is a set of classes that provides more powerful and flexible components than are

possible with the AWT.

 In addition to the familiar components, such as buttons, check boxes, and labels, Swing

supplies several exciting additions, including tabbed panes, scroll panes, trees, and tables.

 Even familiar components such as buttons have more capabilities in Swing. For example, a

button may have both an image and a text string associated with it. Also, the image can be

changed as the state of the button changes.

 Unlike AWT components, Swing components are not implemented by platform-specific

code. Instead, they are written entirely in Java and, therefore, are platform-independent. The

term lightweight is used to describe such elements.

 Swing are built on AWT.

Explain two key features of Swing.

1. Swing components are light weight

They are entirely written in java they does not map to native platform specific

code. More flexible and more efficient. Not in rectangular shapes.

2. Swing supports a pluggable look and feel.

It becomes possible to change the that component is rendered with out affecting

any of its other aspects. Possible to create new look and feel for any given

component with out side effects. Look and feel is simply plugged in.

Briefly explain Container and Component of Swing.

 A Swing GUI consists of two key items: Components and Container

 A term component is an independent visual control such as push button or slider.

 A container holds group of components. Thus container is special kind of component that

holds that is designed to hold other components. Container are also called components so

container can hold other container.

Components

Swing components are derived from JComponent Class. Supports pluggable look and feel. It

inherits Component and Container of AWT.

Swing Components : JButton, JCheckBox, JComboBox ,JTree ,JLabel, JTable ,JPanel …etc

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

18

Container

-Swing defines two types of heavy weight container. JFrame , JApplet

-Others are light weight containers.

-Top level containers should be declared first like JFrame and JApplet.

-Light weight containers example if JPanel. This is used to manage group of related components

-JPanel is used to create subgroups of related components that are contained with in another

container.

Examples of containers

JPanel is Swing’s version of the AWT class Panel and uses the same default layout,FlowLayout.

JPanel is descended directly from JComponent.

JFrame is Swing’s version of Frame and is descended directly from that class. The components

added to the frame are referred to as its contents; these are managed by the contentPane. To add a

component to a JFrame, we must use its contentPane instead.

JWindow is Swing’s version of Window and is descended directly from that class. LikeWindow, it

uses BorderLayout by default.

JDialog is Swing’s version of Dialog and is descended directly from that class. Like Dialog, it uses

BorderLayout by default. Like JFrame and JWindow,

Explain MVC architecture of swing:

 In general a visual component is composite of three distinct aspects The way that

the component looks when rendered on the screen The way the component reacts

to the user.

 The state information associated with the component

 The architecture has proven itself to be effective is MVC

 MVC mean Model View Controller.

 Model corresponds to the state information associated with the component. For example in

case of check Box model contained a field that indicates if check box ix checked or

unchecked.

 View determines how the component is displayed on the screen

 Controller determines how the component react to the user after that result in the view is

updated.

 By separating model , view , and controller the specific implementation of one model can

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

19

be changed with out affecting other model.

 The MVC architecture sounds good but in swing separating view and controller is not

beneficial.

 Swing uses modified version of MVC called UI delegate. For this reason swings approach

is called Model delegate architecture.

 Swings pluggable look and feel is possible by its model delegate architecture.

 Because view and controller are separate look and feel can be changed without affecting

the component.

A Simple Swing Application
// A simple Swing application.

import javax.swing.*;

class SwingDemo

 {

SwingDemo()

{

// Create a new JFrame container.

JFrame jfrm = new JFrame("A Simple Swing Application");

// Give the frame an initial size.

jfrm.setSize(275, 100);

// Terminate the program when the user closes the application.

jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Create a text-based label.

JLabel jlab = new JLabel(" Swing means powerful GUIs.");

// Add the label to the content pane.

jfrm.add(jlab);

// Display the frame.

jfrm.setVisible(true);

}

public static void main(String args[])

{

// Create the frame on the event dispatching thread.

SwingUtilities.invokeLater(new Runnable()

{

public void run()

{

new SwingDemo();

}

});

}
}

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

20

Class Description

AbstractButton Abstract super class for Swing buttons.

ButtonGroup Encapsulates a mutually exclusive set of buttons.

Image Icon encapsulates an icon.

JApplet The Swing version of Applet.

JButton The Swing push button class.

JCheckBox The Swing check box class.

JComboBox Encapsulates a combo box (an combination of a

drop-down listand text field).

JLabel The Swing version of a label.

JRadioButton The Swing version of a radio button.

JScrollPane Encapsulates a scrollable window.

JTabbedPane Encapsulates a tabbed window.

JTable Encapsulates a table-based control.

JTextField The Swing version of a text field.

JTree Encapsulates a tree-based control.

The Swing-related classes are contained in javax.swing

JLabel: Swing labels are instances of the JLabel class, which extends JComponent. It can

display text and/or an icon. Some of its constructors are shown here:

JLabel(Icon i)

Label(String s)

JLabel(String s, Icon i, int align)

Here, s and i are the text and icon used for the label.

The align argument is either LEFT,RIGHT, or CENTER

The text associated with the label can be read and written by the following

methods: String getText() ,void setText(String s)

Example Program

import javax.swing.*;

import javax.swing.*;

class SwingDemo

{

SwingDemo()

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

21

{

JFrame jfrm=new JFrame("A simple Swing Application");

jfrm.setSize(275,100);

jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JLabel jlab=new JLabel("Swing means power ful GUI");

jfrm.add(jlab);

jfrm.setVisible(true);

}

public static void main(String args[]) {

ob= new SwingDemo();

}

}

Text Fields
The Swing text field is encapsulated by the JTextComponent class, which extends

JComponent.

It provides functionality that is common to Swing text components.

One of its subclasses is JTextField, which allows you to edit one line of text. Some of its

constructors are shown here:

JTextField()

JTextField(int cols)

JTextField(String s, int cols)

JTextField(String s)

Here, s is the string to be presented, and cols is the number of columns in the text field.

The following example illustrates how to create a text field. The applet begins by getting

its content pane, and then a flow layout is assigned as its layout manager. Next, a

JTextField object is created and is added to the content pane.

import java.awt.*;

import javax.swing.*;

/*

<applet code="JTextFieldDemo" width=300 height=50>

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

22

</applet>

*/

public class JTextFieldDemo extends JApplet {

JTextField jtf;

public void init() {

Container contentPane = getContentPane();

contentPane.setLayout(new FlowLayout());

jtf = new JTextField(15);

contentPane.add(jtf);

}

}

JButton
The JButton class provides the functionality of a push button. JButton allows an icon, a

string, or both to be associated with the push button. Some of its constructors are shown

here:

JButton(Icon i)

JButton(String s)

JButton(String s, Icon i)

Here, s and i are the string and icon used for the button.

The following program displays a button on swing frame and displays string “SayHello”

import javax.swing.*;

import java.awt.*;

public class First {

JFrame jf;

public First()

{

jf=new JFrame("My window");

JButton btn= new JButton("say Hello");

jf.add(btn);

jf.setLayout(new FlowLayout());

jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

23

jf.setSize(400,400);

jf.setVisible(true);

}

public static void main(String[] args) {

new First();

}

}

Check Boxes
The JCheckBox class, which provides the functionality of a check box, is a concrete

implementation of AbstractButton. Some of its constructors are shown here:

JCheckBox(Icon i)

JCheckBox(Icon i, boolean state)

JCheckBox(String s)

JCheckBox(String s, boolean state)

JCheckBox(String s, Icon i)

JCheckBox(String s, Icon i, boolean state)

Here, i is the icon for the button. The text is specified by s. If state is true, the check box

is initially selected. Otherwise, it is not. The state of the check box can be changed via the

following method: void setSelected(boolean state) Here, state is true if the check box should be

checked.

1. The following example illustrates how to create an applet that displays four check boxes

and a text field. When a check box is pressed, its text is displayed in the text field.

2.) flow layout is assigned as its layout manager.

3.).four check boxes are added to the content pane, and icons are assigned for the normal,

rollover, and selected states. The applet is then registered to receive item events.

Finally, a text field is added to the JFrame. When a check box is selected or deselected, an item

event is generated. This is handled by itemStateChanged(). Inside itemStateChanged(), the

getItem() method gets the JCheckBox object that generated the event. The getText() method

gets the text for that check box and uses it to set the text inside the text field.

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

24

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

/*

<applet code="JCheckBoxDemo" width=400 height=50>

</applet>

*/

public class JCheckBoxDemo extends JFrame

implements ItemListener {

JTextField jtf;

JCheckBoxDemo()

{
setLayout(new FlowLayout());

JCheckBox cb = new JCheckBox("C");

cb.addItemListener(this);

add(cb);

cb = new JCheckBox("C++");

cb.addItemListener(this);

add(cb);

cb = new JCheckBox("Java");

addItemListener(this);

add(cb);

cb = new JCheckBox("Perl", normal);

addItemListener(this);

add(cb);

jtf = new JTextField(15);

add(jtf);

}

public void itemStateChanged(ItemEvent ie) {

JCheckBox cb = (JCheckBox)ie.getItem();

jtf.setText(cb.getText());

}

Public static void main(String args[])

{

new JCheckBoxDemo();

}

}

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

25

Combo Boxes
1. Swing provides a combo box (a combination of a text field and a drop-down list)

through the JComboBox class, which extends JComponent.

2. A combo box normally displays one entry. However, it can also display a drop-

down list that allows a user to select a different entry. You can also type your

selection into the text field.

3. Two of JComboBox's

constructors are shown here:

JComboBox()

JComboBox(array a)

Here, a is a array that initializes the combo box.

4. Items are added to the list of choices via the addItem() method, whose signature

is shown here: void addItem(Object obj)

Here, obj is the object to be added to the combo box.

The following example contains a combo box and a label. The label displays an icon. The

combo box contains entries for "France", "Germany", "Italy", and "Japan". When a country

is selected, the label is updated to display the flag for that country.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class JComboBoxDemo extends JFrame

implements ItemListener {

JLabel jl;

ImageIcon france, germany, italy, japan;

public void init() {

setLayout(new FlowLayout());

JComboBox jc = new JComboBox();

jc.addItem("France");

jc.addItem("Germany");

jc.addItem("Italy");

jc.addItem("Japan");

jc.addItemListener(this);

add(jc);

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

26

jl = new JLabel();

add(jl);

}
public void itemStateChanged(ItemEvent ie) {

String s = (String)ie.getItem();

jl.setText(s);

}

}

Radio Buttons
Radio buttons are supported by the JRadioButton class, which is a concrete

implementation of AbstractButton. Some of its constructors are shown here:

JRadioButton(Icon i)

JRadioButton(Icon i, boolean state)

JRadioButton(String s)

JRadioButton(String s, boolean state)

JRadioButton(String s, Icon i)

JRadioButton(String s, Icon i, boolean state)

Radio buttons must be configured into a group. Only one of the buttons in that group can

be selected at any time.

For example, if a user presses a radio button that is in a group,

any previously selected button in that group is automatically deselected.

The ButtonGroup class is instantiated to create a button group. Its default constructor is

invoked for this purpose. Elements are then added to the button group via the following

method:

void add(AbstractButton ab)

Here, ab is a reference to the button

import java.awt.*;
import java.awt.event.*;

import javax.swing.*;

public class JRadioButtonDemo extends JFrame
implements ActionListener
{

JTextField tf;

JRadioButtonDemo()

setLayout(new FlowLayout());

JRadioButton b1 = new JRadioButton("A");
b1.addActionListener(this);

add(b1);
JRadioButton b2 = new JRadioButton("B");

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

27

b2.addActionListener(this);

add(b2);
JRadioButton b3 = new JRadioButton("C");
b3.addActionListener(this);

add(b3);

// Define a button group

ButtonGroup bg = new ButtonGroup();

bg.add(b1);

bg.add(b2);

bg.add(b3);

// Create a text field and add it

// to the frame

tf = new JTextField(5);

add(tf);
}
public void actionPerformed(ActionEvent ae) {

tf.setText(ae.getActionCommand());
}
}

Tabbed Panes
1. A tabbed pane is a component that appears as a group of folders in a file cabinet.

Each folder has a title. When a user selects a folder, its contents become visible.

Only one of the folders may be selected at a time. Tabbed panes are commonly

used for setting configuration options.

2. Tabbed panes are encapsulated by the JTabbedPane class, which extends

JComponent. We will use its default constructor. Tabs are defined via the following

method: void addTab(String str, Component comp)

Here, str is the title for the tab, and comp is the component that should be added to the

tab. Typically, a JPanel or a subclass of it is added. The general procedure to use a

tabbed pane in an applet is outlined here:

1. Create a JTabbedPane object.

2. Call addTab() to add a tab to the pane. (The arguments to this method define

the title of the tab and the component it contains.)

3. Repeat step 2 for each tab.

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

28

4. Add the tabbed pane to the content pane of the applet. The following example illustrates
how to create a tabbed pane.

import javax.swing.*;
/*

<applet code="JTabbedPaneDemo" width=400 height=100>

</applet>
*/

public class JTabbedPaneDemo extends JApplet {

public void init() {

JTabbedPane jtp = new JTabbedPane();

jtp.addTab("Cities", new CitiesPanel());

jtp.addTab("Colors", new ColorsPanel());
jtp.addTab("Flavors", new FlavorsPanel());

getContentPane().add(jtp);

}
}

class CitiesPanel extends JPanel {

public CitiesPanel() {

JButton b1 = new JButton("New York");

add(b1);

JButton b2 = new JButton("London");

add(b2);
JButton b3 = new JButton("Hong Kong");
add(b3);
JButton b4 = new JButton("Tokyo");

add(b4);

}
}

class ColorsPanel extends JPanel { public ColorsPanel() {

JCheckBox cb1 = new JCheckBox("Red"); add(cb1);

JCheckBox cb2 = new JCheckBox("Green"); add(cb2);
JCheckBox cb3 = new JCheckBox("Blue"); add(cb3);

}

}

class FlavorsPanel extends JPanel { public FlavorsPanel() {

JComboBox jcb = new JComboBox();

jcb.addItem("Vanilla"); jcb.addItem("Chocolate");
jcb.addItem("Strawberry");

add(jcb);

}

}

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

29

Scroll Panes
1. A scroll pane is a component that presents a rectangular area in which a

component may be viewed. Horizontal and/or vertical scroll bars may be provided

if necessary.

2. Scroll panes are implemented in Swing by the JScrollPane class, which extends

JComponent. Some of its constructors are shown here:

JScrollPane(Component comp)

Here are the steps that you should follow to use a scroll pane in an applet:

1. Create a JComponent object.

2. Create a JScrollPane object. (The arguments to the constructor specify the

component and the policies for vertical and horizontal scroll bars.)

3. Add the scroll pane to the content pane of the applet.

The following example illustrates a scroll pane. First, the content pane of the JApplet

object is obtained and a border layout is assigned as its layout manager. Next, a JPanel

object is created and four hundred buttons are added to it, arranged into twenty columns.

The panel is then added to a scroll pane, and the scroll pane is added to the content

pane. This causes vertical and horizontal scroll bars to appear. You can use the scroll

bars to scroll the buttons into view.

import javax.swing.*;

import java.awt.BorderLayout;

import java.awt.GridLayout;

public class JScrollPaneDemo extends JApplet{

public void init()

{
JPanel jp=new JPanel();

jp.setLayout(new GridLayout(20,20));

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

30

add(jp);

int b=0;

for(int i=0;i<20;i++)

for(int j=0;j<20;j++)
{

jp.add(new JButton("Button"+b));

++b;
}

JScrollPane jsp=new JScrollPane(jp);

add(jsp,BorderLayout.CENTER);

}

}

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

31

Tables
A table is a component that displays rows and columns of data. You can drag the cursor on

column boundaries to resize columns. You can also drag a column to a new position. Tables

are implemented by the JTable class, which extends JComponent. One of its constructors

is shown here:

JTable(Object data[][], Object colHeads[])

Here, data is a two-dimensional array of the information to be presented, and

colHeads is a one-dimensional array with the column headings.

Here are the steps for using a table in an applet:

 Create a JTable object.

 Create a JScrollPane object.

 Add the table to the scroll pane.

 Add the scroll pane to the content pane of the applet.

The following example illustrates how to create and use a table. array of strings is created for

the column headings. This table has three columns. A two-dimensional array of strings is created

for the table cells. You can see that each element in the array is an array of three strings. These

arrays are passed to the JTable constructor. The table is added to a scroll pane and then the

scroll pane is added to the content pane.

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class JTableDemo extends JFrame {

JTable jtbl;

final String[] colHeads = { "Name", "Phone", "Fax" };

final Object[][] data = {{ "Gail", "4567", "8675" },{ "Ken", "7566", "5555" },{ "Viviane", "5634",

"5887" },

{ "Melanie", "7345", "9222" },{ "Anne", "1237", "3333" },{ "John", "5656", "3144" },{ "Matt", "5672",
"2176" },

{ "Claire", "6741", "4244" },{ "Erwin", "9023", "5159" },{ "Ellen", "1134", "5332" },{ "Jennifer",

"5689", "1212" },{ "Ed", "9030", "1313" },{ "Helen", "6751", "1415" }};

JTableDemo()

{

setTitle("MY window");

Sem: IV Subject: Object Oriented Concepts Module: 5 Author: Prof. S V Manjaragi

32

setSize(400,400);

setLayout(new FlowLayout());

jtbl=new JTable(data,col);
add(jtbl);

setVisible(true);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}

public static void main(String[] args) {
// TODO Auto-generated method stub

new JTableDemo();

}

}

