

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

Introducing Classes

 Class defines the shape and nature of an object.

 Class forms the basis for object-oriented programming in Java.

 Any concept can be implemented in a Java program must be encapsulated within a class.

Class Fundamentals

 A class defines a new data type. Once defined, this new type can be used to create

objects of that type.

 Thus, a class is a template for an object, and an object is an instance of a class.

The General Form of a Class

 Class specifies the data that it contains and the code that operates on that data.

 While very simple classes may contain only code or only data, most real-world classes

contain both.

 A class is declared by use of the class keyword.

 A simplified general form of a class definition is shown here:

class classname

{

type instance-variable1;

type instance-variable2;

// ...
type instance-variableN;

type methodname1(parameter-list) {

// body of method

}

type methodname2(parameter-list) {

// body of method

}

// ...

type methodnameN(parameter-list) {

// body of method

}

}

 The data, or variables, defined within a class are called instance variables.

 The code is contained within methods.

 Collectively, the methods and variables defined within a class are called members of the

class.

 Thus the methods that determine how a class’ data can be used.

 Each object of the class contains its own copy of these variables.

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

 Thus, the data for one object is separate and unique from the data for another.

A Simple Class

 Here is a class called Box that defines three instance variables: width, height, and depth.

class Box

{

double width;

double height;

double depth;

}

class BoxDemo2

{

public static void main(String args[])

{

Box mybox1 = new Box();

Box mybox2 = new Box();

double vol;

mybox1.width = 10;

mybox1.height = 20;

mybox1.depth = 15;

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// compute volume of first box

vol = mybox1.width * mybox1.height * mybox1.depth;

System.out.println("Volume is " + vol);

// compute volume of second box

vol = mybox2.width * mybox2.height * mybox2.depth;

System.out.println("Volume is " + vol);

}

}

output:

Volume is 3000.0

Volume is 162.0

mybox1’s data is completely separate from the data contained in mybox2.

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

Declaring Objects

 When a class is created , we are creating a new data type.

 We can use this type to declare objects of that type.

 However, obtaining objects of a class is a two-step process.

 First, we must declare a variable of the class type. This variable does not define an object.

Instead, it is simply a variable that can refer to an object.

 Second, we must acquire an actual, physical copy of the object and assign it to that

variable by using the new operator.

 The new operator dynamically allocates (that is, allocates at run time) memory for an

object and returns a reference to it

 Box mybox = new Box();

This statement combines the two steps just described. It can be rewritten like this to show

each step more clearly:

Box mybox; // declare reference to object
mybox = new Box(); // allocate a Box object

Assigning Object Reference Variables

Box b1 = new Box();

Box b2 = b1;

 b1 and b2 will both refer to the same object.

 The assignment of b1 to b2 did not allocate any memory or copy any part of the original

object. It simply makes b2 refer to the same object as does b1.

 Thus, any changes made to the object through b2 will affect the object to which b1 is

referring, since they are the same object.

 Although b1 and b2 both refer to the same object, they are not linked in any other

way.

 For example, a subsequent assignment to b1 will simply unhook b1 from the original

object without affecting the object or affecting b2.

 For example:

Box b1 = new Box();

Box b2 = b1;

// ...

b1 = null;
Here, b1 has been set to null, but b2 still points to the original object.

Introducing Methods

 Classes usually consist of two things: instance variables and methods.

 This is the general form of a method:

type name(parameter-list) {

// body of method
}

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

 Here, type specifies the type of data returned by the method. This can be any valid type,

including class types that we create.

 If the method does not return a value, its return type must be void.

 The name of the method is specified by name.

 The parameter-list is a sequence of type and identifier pairs separated by commas.

class Box

{
double width;

double height;

double depth;

//

void volume()

{
System.out.print("Volume is ");

System.out.println(width * height * depth);

}

}

class BoxDemo3

{

public static void main(String args[])

{

Box mybox1 = new Box();

Box mybox2 = new Box();

mybox1.width = 10;

mybox1.height = 20;

mybox1.depth = 15;

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// display volume of first box

mybox1.volume();

// display volume of second box

mybox2.volume();

}

}

This program generates the following output, which is the same as the previous version.

Volume is 3000.0

Volume is 162.0

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

Returning a Value

class Box

{

double width;

double height;

double depth;

// compute and return volume

double volume()

{

return width * height * depth;

}

}

class BoxDemo4

{

public static void main(String args[])

{

Box mybox1 = new Box();

Box mybox2 = new Box();

double vol;

mybox1.width = 10;

mybox1.height = 20;

mybox1.depth = 15;

mybox2.width = 3;

mybox2.height = 6;

mybox2.depth = 9;

// get volume of first box
vol = mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume is " + vol);

}
}

Adding a Method That Takes Parameters

 Parameters allow a method to be generalized.

 That is, a parameterized method can operate on a variety of data and/or be used in a

number of slightly different situations.

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

 Here is a method that returns the square of the number 10:

int square()

{

return 10 * 10;
}

 While this method does, indeed, return the value of 10 squared, its use is very limited.

 However, if we modify the method so that it takes a parameter, as shown next, then we

can make square() much more useful.

int square(int i)

{

return i * i;

}

 Now, square() will return the square of whatever value it is called with. That is, square(

) is now a general-purpose method that can compute the square of any integer value,

rather than just 10.

// This program uses a parameterized method.

class Box

{
double width;

double height;

double depth;

double volume()

{

return width * height * depth;

}

void setDim(double w, double h, double d)

{

width = w;

height = h;

depth = d;

}
}

class BoxDemo5

{

public static void main(String args[])

{

Box mybox1 = new Box();

Box mybox2 = new Box();

double vol;

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

mybox1.setDim(10, 20, 15);

mybox2.setDim(3, 6, 9);

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume is " + vol);

}
}

Constructors

 It can be tedious to initialize all of the variables in a class each time an instance is
created.

 Thus automatic initialization is performed through the use of a constructor.

 A constructor initializes an object immediately upon creation.

 It has the same name as the class in which it resides and is syntactically similar to a

method.

 the constructor is automatically called immediately after the object is created, before the

new operator completes.

 Constructors have no return type, not even void. This is because the implicit return type

of a class’ constructor is the class type itself.

class Box

{

double width;

double height;

double depth;

Box()

{

}

System.out.println("Constructing Box"); width = 10;

height = 10;

depth = 10;

double volume()

{

return width * height * depth;

}
}

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

class BoxDemo6
{

public static void main(String args[])
{

Box mybox1 = new Box();

Box mybox2 = new Box();

double vol;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume is " + vol);

}
}

Output:
Constructing Box Constructing

Box Volume is 1000.0

Volume is 1000.0

 Both mybox1 and mybox2 were initialized by the Box() constructor when they

were created.

 Since the constructor gives all boxes the same dimensions, 10 by 10 by 10, both mybox1

and mybox2 will have the same volume.

Parameterized Constructors

 While the Box() constructor in the preceding example initializes with value 10.all boxes

have the same dimensions.

 Box objects of various dimensions can be assigned by using parameterized constructor.

class Box

{

double width;

double height;

double depth;

Box(double w, double h, double d)

{

width = w;

height = h;

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

depth = d;

}

double volume()

{

return width * height * depth;

}
}

class BoxDemo7
{

public static void main(String args[])
{

Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box(3, 6, 9);

double vol;

// get volume of first box

vol = mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box

vol = mybox2.volume();

System.out.println("Volume is " + vol);

}
}

Output:

Volume is 3000.0

Volume is 162.0

The this Keyword

 this can be used inside any method to refer to the current object.

 That is, this is always a reference to the object on which the method was invoked.

// A redundant use of this.

Box(double w, double h, double d)

{

this.width = w;

this.height = h;

this.depth = d;

}

Instance Variable Hiding

 it is illegal in Java to declare two local variables with the same name inside the same or

enclosing scopes.

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

 However, when a local variable has the same name as an instance variable, the local
variable hides the instance variable.

// Use this to resolve name-space collisions.

Box(double width, double height, double depth)

{

this.width = width;

this.height = height;

this.depth = depth;

}

Garbage Collection

 Since objects are dynamically allocated by using the new operator, how such objects are

destroyed and their memory released for later reallocation.

 In some languages, such as C++, dynamically allocated objects must be manually

released by use of a delete operator.

 Java handles deallocation automatically.

 The technique that accomplishes this is called garbage collection.

 when no references to an object exist, that object is assumed to be no longer needed, and

the memory occupied by the object can be reclaimed.

 Garbage collection only occurs sporadically (if at all) during the execution of program.

The finalize() Method

 An object will need to perform some action when it is destroyed.

 if an object is holding some non-Java resource such as a file handle or character font,
then we might want to make sure these resources are freed before an object is destroyed.

 To handle such situations, Java provides a mechanism called finalization.

 By using finalization, we can define specific actions that will occur when an object is

just about to be reclaimed by the garbage collector.

 To add a finalizer to a class, simply define the finalize() method.

 The Java run time calls that method whenever it is about to recycle an object of that

class.

 Inside the finalize() method, you will specify those actions that must be performed

before an object is destroyed.

 The finalize() method has this general form:

protected void finalize()

{

// finalization code here

}

 Here, the keyword protected is a specifier that prevents access to finalize() by code

defined outside its class.

 finalize() is only called just prior to garbage collection.

 It is not called when an object goes out-of-scope

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

A Stack Class

 Stacks are controlled through two operations traditionally called push and pop.

 To put an item on top of the stack, we will use push.

 To take an item off the stack, we will use pop.

 Here is a class called Stack that implements a stack for integers:

// This class defines an integer stack that can hold 10 values.

class Stack

{

int stck[] = new int[10];

int tos;

// Initialize top-of-stack

Stack()

{

tos = -1;

}

// Push an item onto the stack

void push(int item)

{

if(tos==9)

System.out.println("Stack is full.");

else

stck[++tos] = item;

}

// Pop an item from the stack

int pop()

{

if(tos < 0)

{

System.out.println("Stack underflow.");

return 0;

}

else

return stck[tos--];

}

}

class TestStack

{

public static void main(String args[])

{

Stack mystack1 = new Stack();
Stack mystack2 = new Stack();

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

for(int i=0; i<10; i++) mystack1.push(i);

for(int i=10; i<20; i++) mystack2.push(i);

System.out.println("Stack in mystack1:");

for(int i=0; i<10; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");

for(int i=0; i<10; i++)

System.out.println(mystack2.pop());

}

}
This program generates the following output:

Stack in mystack1:

9

8

7

6

5

4

3

2

1

0

Stack in mystack2:
19

18

17

16

15

14

13

12

11

10

Inheritance
 One class can acquire the properties of another class.

 A class that is inherited is called a superclass.

 The class that does the inheriting is called a subclass. Therefore, a subclass is a

specialized version of a superclass. It inherits all of the instance variables and methods

defined by the superclass and adds its own, unique elements.

Inheritance Basics

 To inherit a class, simply incorporate the definition of one class into another by using the

extends keyword.

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

 The following program creates a superclass called A and a subclass called B.the

keyword extends is used to create a subclass of A.

// Create a superclass.

class A

{

int i, j;

void showij()

{

System.out.println("i and j: " + i + " " + j);

}

}

// Create a subclass by extending class A.

class B extends A

{

int k;

void showk()

{

System.out.println("k: " + k);

}

void sum()

{

System.out.println("i+j+k: " + (i+j+k));

}
}

class SimpleInheritance

{

public static void main(String args[])

{
A superOb = new A();

B subOb = new B();

// The superclass may be used by itself.

superOb.i = 10;

superOb.j = 20;

System.out.println("Contents of superOb: ");

superOb.showij();

System.out.println();

/* The subclass has access to all public members of its superclass. */

subOb.i = 7;

subOb.j = 8;

subOb.k = 9;

System.out.println("Contents of subOb: ");

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

subOb.showij();

subOb.showk();

System.out.println();

System.out.println("Sum of i, j and k in subOb:");

subOb.sum();

}

}

output:

Contents of superOb: i and j: 10 20

Contents of subOb:

i and j: 7 8

k: 9

Sum of i, j and k in subOb: i+j+k: 24

 The subclass B includes all of the members of its superclass, A. This
is why subOb can access i and j and call showij(). Also, inside

sum(), i and j can be referred to directly, as if they were part of B.

 Even though A is a superclass for B, it is also a completely independent, stand-alone

class. Being a superclass for a subclass does not mean that the superclass cannot be used

by itself.

 a subclass can be a superclass for another subclass.

 The general form of a class declaration that inherits a superclass is shown here:
class subclass-name extends superclass-name

{

// body of class

}

 Java does not support the inheritance of multiple superclasses into a single subclass.

 But a subclass can become a superclass of another subclass.

 However, no class can be a superclass of itself.

Member Access and Inheritance

 Although a subclass includes all of the members of its superclass, it cannot access those

members of the superclass that have been declared as private.

// Create a superclass.

class A

{

int i; // public by default

private int j; // private to A

void setij(int x, int y)

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

{

i = x;

j = y;

}

}

// A's j is not accessible here.

class B extends A

{

int total;

void sum()

{

total = i + j; // ERROR, j is not accessible here

}

}

class Access

{

public static void main(String args[])

{

B subOb = new B();

subOb.setij(10, 12);

subOb.sum();

System.out.println("Total is " + subOb.total);

}
}

 This program will not compile because the reference to j inside the sum() method of B

causes an access violation. Since j is declared as private, it is only accessible by other

members of its own class. Subclasses have no access to it.

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

A More Practical Example

 the Box class developed will be extended to include a fourth component called weight.

 Thus, the new class will contain a box’s width, height, depth, and weight.

// This program uses inheritance to extend Box.

class Box

{
double width;

double height;

double depth;

// construct clone of an object

Box(Box ob)

{ // pass object to constructor

width = ob.width;

height = ob.height;

depth = ob.depth;

}

// constructor used when all dimensions specified

Box(double w, double h, double d)

{

width = w;

height = h;

depth = d;

}

// constructor used when no dimensions specified

Box()

{

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created

Box(double len)

{

width = height = depth = len;

}

// compute and return volume

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

double volume()

{

return width * height * depth;

}
}

// Here, Box is extended to include weight.

class BoxWeight extends Box

{

double weight; // weight of box

// constructor for BoxWeight

BoxWeight(double w, double h, double d, double m) {

width = w;

height = h;

depth = d;

weight = m;

}

}

class DemoBoxWeight

{

public static void main(String args[])

{

BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);

BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);

double vol;

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

System.out.println("Weight of mybox1 is " + mybox1.weight);
System.out.println();

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);

System.out.println("Weight of mybox2 is " + mybox2.weight);

}

}

Output:

Volume of mybox1 is 3000.0 Weight of

mybox1 is 34.3 Volume of mybox2 is 24.0

Weight of mybox2 is 0.076

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

 the following class inherits Box and adds a color attribute:

// Here, Box is extended to include color.

class ColorBox extends Box

{

int color; // color of box

ColorBox(double w, double h, double d, int c)

{

width = w;

height = h;

depth = d;

color = c;

}

}

A Superclass Variable Can Reference a Subclass Object

 A reference variable of a superclass can be assigned a reference to any subclass derived

from that superclass.

class RefDemo

{

public static void main(String args[])

{

BoxWeight weightbox = new BoxWeight(3, 5, 7, 8.37);
Box plainbox = new Box();

double vol;

vol = weightbox.volume();

System.out.println("Volume of weightbox is " + vol);

System.out.println("Weight of weightbox is " + weightbox.weight);
System.out.println();

// assign BoxWeight reference to Box reference

plainbox = weightbox;

vol = plainbox.volume(); // OK, volume() defined in Box

System.out.println("Volume of plainbox is " + vol);

/* The following statement is invalid because plainbox does not define a weight

member. */

// System.out.println("Weight of plainbox is " + plainbox.weight);

}

}

 Here, weightbox is a reference to BoxWeight objects, and plainbox is a reference to Box

objects.

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

 Since BoxWeight is a subclass of Box, it is permissible to assign plainbox a reference to
the weightbox object.

Using super

 Whenever a subclass needs to refer to its immediate superclass, it can do so by use of the
keyword super.

 super has two general forms.

o The first calls the superclass’ constructor.
o The second is used to access a member of the superclass that has been hidden by

a member of a subclass.

Using super to Call Superclass Constructors

 Asubclass can call a constructor defined by its superclass by use of the following form of

super:

super(arg-list);

 Here, arg-list specifies any arguments needed by the constructor in the superclass.

 super() must always be the first statement executed inside a subclass’ constructor.

// BoxWeight now uses super to initialize its Box attributes.

class BoxWeight extends Box

{
double weight;

BoxWeight(double w, double h, double d, double m)

{

super(w, h, d); // call superclass constructor

weight = m;

}

}

 Here, BoxWeight() calls super() with the arguments w, h, and d. This causes the Box()

constructor to be called, which initializes width, height, and depth using these values.

class Box

{

private double width;

private double height;

private double depth;

// construct clone of an object

Box(Box ob)

{

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

width = ob.width;

height = ob.height;

depth = ob.depth;

}

// constructor used when all dimensions specified

Box(double w, double h, double d)

{

width = w;

height = h;

depth = d;

}

// constructor used when no dimensions specified

Box()

{

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

// constructor used when cube is created
Box(double len)

{

width = height = depth = len;
}

// compute and return volume

double volume()

{

return width * height * depth;

}

}

// BoxWeight now fully implements all constructors.

class BoxWeight extends Box

{

double weight;

BoxWeight(BoxWeight ob)

{

super(ob);

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

weight = ob.weight;

}

// constructor when all parameters are specified

BoxWeight(double w, double h, double d, double m)

{
super(w, h, d); // call superclass constructor

weight = m;

}

// default constructor
BoxWeight()

{

super();

weight = -1;

}

// constructor used when cube is created

BoxWeight(double len, double m)

{
super(len);

weight = m;

}

}

class DemoSuper

{

public static void main(String args[])

{

BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);

BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);

BoxWeight mybox3 = new BoxWeight(); // default

BoxWeight mycube = new BoxWeight(3, 2);

BoxWeight myclone = new BoxWeight(mybox1);

double vol;

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);

System.out.println("Weight of mybox1 is " + mybox1.weight);

System.out.println();

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);

System.out.println("Weight of mybox2 is " + mybox2.weight);

System.out.println();

vol = mybox3.volume();

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

System.out.println("Volume of mybox3 is " + vol);

System.out.println("Weight of mybox3 is " + mybox3.weight);

System.out.println();

vol = myclone.volume();
System.out.println("Volume of myclone is " + vol);

System.out.println("Weight of myclone is " + myclone.weight);
System.out.println();

vol = mycube.volume();

System.out.println("Volume of mycube is " + vol);

System.out.println("Weight of mycube is " + mycube.weight);

System.out.println();

}
}

output:
Volume of mybox1 is 3000.0

Weight of mybox1 is 34.3

Volume of mybox2 is 24.0

Weight of mybox2 is 0.076

Volume of mybox3 is -1.0

Weight of mybox3 is -1.0

Volume of myclone is 3000.0

Weight of myclone is 34.3

Volume of mycube is 27.0

Weight of mycube is 2.0

A Second Use for super

 super is most applicable to situations in which member names of a subclass hide
members by the same name in the superclass.

// Using super to overcome name hiding.

class A

{
int i;// Create a subclass by extending class A.

}

class B extends A

{

int i; // this i hides the i in A

B(int a, int b)

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

{

super.i = a; // i in A

i = b; // i in B

}

void show()

{

System.out.println("i in superclass: " + super.i);

System.out.println("i in subclass: " + i);

}
}

class UseSuper

{

public static void main(String args[])

{

B subOb = new B(1, 2);

subOb.show();

}

}

This program displays the following:
i in superclass: 1

i in subclass: 2

Creating a Multilevel Hierarchy

 given three classes called A, B, and C, C can be a subclass of B, which is a subclass of A.
When this type of situation occurs, each subclass inherits all of the traits found in all of

its superclasses. In this case, C inherits all aspects of B and A.

 In it, the subclass BoxWeight is used as a superclass to create the subclass called

Shipment. Shipment inherits all of the traits of BoxWeight and Box, and adds a field

called cost, which holds the cost of shipping such a parcel.

class Box

{
private double width;

private double height;

private double depth;

// construct clone of an object

Box(Box ob)

{

width = ob.width;

height = ob.height;

depth = ob.depth;

}

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}

// constructor used when no dimensions specified

Box()

{
width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}

Box(double len)

{

width = height = depth = len;
}

double volume()

{

return width * height * depth;

}

}

// Add weight.

class BoxWeight extends Box

{

double weight;

BoxWeight(BoxWeight ob)

{

super(ob);

weight = ob.weight;

}

BoxWeight(double w, double h, double d, double m)

{
super(w, h, d);

weight = m;

}

BoxWeight()

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

{
super();

weight = -1;

}

BoxWeight(double len, double m)

{
super(len);

weight = m;

}

}

// Add shipping costs.

class Shipment extends BoxWeight

{

double cost;

Shipment(Shipment ob)

{
super(ob);

cost = ob.cost;

}

Shipment(double w, double h, double d,double m, double c)

{
super(w, h, d, m); // call superclass constructor

cost = c;

}

Shipment()

{
super();

cost = -1;

}

Shipment(double len, double m, double c)

{
super(len, m);

cost = c;

}

}

class DemoShipment

{

public static void main(String args[])

{

Shipment shipment1 = new Shipment(10, 20, 15, 10, 3.41);

Shipment shipment2 = new Shipment(2, 3, 4, 0.76, 1.28);

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

double vol;

vol = shipment1.volume();

System.out.println("Volume of shipment1 is " + vol);

System.out.println("Weight of shipment1 is " + shipment1.weight);

System.out.println("Shipping cost: $" + shipment1.cost);

System.out.println();

vol = shipment2.volume();
System.out.println("Volume of shipment2 is " + vol);

System.out.println("Weight of shipment2 is " + shipment2.weight);

System.out.println("Shipping cost: $" + shipment2.cost);

}

}

output:

Volume of shipment1 is 3000.0

Weight of shipment1 is 10.0

Shipping cost: $3.41

Volume of shipment2 is 24.0

Weight of shipment2 is 0.76

Shipping cost: $1.28

When Constructors Are Called

 given a subclass called B and a superclass called A, is A’s constructor called before B’s,

or vice versa? The answer is that in a class hierarchy, constructors are called in order of

derivation, from superclass to subclass.

 Further, since super() must be the first statement executed in a subclass’ constructor,

this order is the same whether or not super() is used.

// Demonstrate when constructors are called.

// Create a super class.

class A

 {

A()

{

System.out.println("Inside A's constructor.");

}

}

// Create a subclass by extending class A.

class B extends A

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

{

B()

{

System.out.println("Inside B's constructor.");

}

}

// create another subclass by extending B.

class C extends B

{

C() {

System.out.println("Inside C's constructor.");

}

}

class CallingCons

{

public static void main(String args[])

{

C c = new C();

}
}

Output:

Inside A’s constructor Inside B’s

constructor Inside C’s constructor

Method Overriding

 when a method in a subclass has the same name and type signature as a method in its

superclass, then the method in the subclass is said to override the method in the

superclass.

class

A

{

int i, j;

A(int a, int b)

{

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

i = a;

j = b;

}

// display i and j

void show()

{

System.out.println("i and j: " + i + " " + j);

}

}

class B extends A

{

int k;

B(int a, int b, int c)

{
super(a, b);

k = c;

}

void show()

{

System.out.println("k: " + k);

}

}

class Override
{

public static void main(String args[])

{
B subOb = new B(1, 2, 3);

subOb.show(); // this calls show() in B

}

}

output:
k: 3

 the version of show() inside B overrides the version declared in A.

 to access the superclass version of an overridden method can be called using super.

class B extends A

{

int k;

B(int a, int b, int c)

{
super(a, b);

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

k = c;

}

void show()

{
super.show(); // this calls A's show()

System.out.println("k: " + k);

}

}

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

output:

i and j: 1 2

k: 3

Here, super.show() calls the superclass version of show().

 Method overriding occurs only when the names and the type signatures of the two

methods are identical. If they are not, then the two methods are simply overloaded.

class A

{

int i, j;

A(int a, int b)

{
i = a;

j = b;

 }

// display i and j void show()

{

System.out.println("i and j: " + i + " " + j);

}

}

// Create a subclass by extending class A.

class B extends A

{

int k;

B(int a, int b, int c)

{

super(a, b);
k = c;

}

// overload show()

void show(String msg)

{

System.out.println(msg + k);

}

}

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

class Override
{

public static void main(String args[])
{

B subOb = new B(1, 2, 3);
subOb.show("This is k: "); // this calls show() in B

subOb.show(); // this calls show() in A

}
}

The output produced by this program is shown here:
This is k: 3

i and j: 1 2

Packages and Interfaces

 Packages are containers for classes that are used to keep the class name space

compartmentalized.

 Through the use of the interface keyword, Java allows to fully abstract the interface from

its implementation.

 Using interface, we can specify a set of methods that can be implemented by one or

more classes.

 The interface, itself, does not actually define any implementation.

 A class can implement more than one interface.

Packages

 Java provides a mechanism for partitioning the class name space into more manageable
chunks. This mechanism is the package.

 The package is both a naming and a visibility control mechanism.

 It is possible to define classes inside a package that are not accessible by code outside

that package.

 We can define class members that are only exposed to other members of the same
package.

Defining a Package

 To create a package ,simply include a package command as the first statement in a Java
source file.

 Any classes declared within that file will belong to the specified package.

 The package statement defines a name space in which classes are stored.

 If we skip the package statement, the class names are put into the default package, which

has no name.

 The general form of the package statement:

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

package pkg;

 Here, pkg is the name of the package.

 For example, the following statement creates a package called MyPackage.

package MyPackage;

 The general form of a multileveled package statement is shown here:
package pkg1[.pkg2[.pkg3]];

 Finding Packages and CLASSPATH

 How does the Java run-time system know where to look for packages that we create?

 The answer has three parts.

 First, by default, the Java run-time system uses the current working directory as its

starting point.

 Second, we can specify a directory path or paths by setting the CLASSPATH

environmental variable.

 Third, we can use the -classpath option with java and javac to specify the path to our
classes.

A Short Package Example

package MyPack;

class Balance

{
String name;

double bal;

Balance(String n, double b)

{

name = n;

bal = b;

}

void show()

{
if(bal<0)

System.out.print("--> ");

System.out.println(name + ": $" + bal);

}
}

class AccountBalance

{

public static void main(String args[])

{

Balance current[] = new Balance[3];

current[0] = new Balance("K. J. Fielding", 123.23);

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

current[1] = new Balance("Will Tell", 157.02);

current[2] = new Balance("Tom Jackson", -12.33);

for(int i=0; i<3; i++)
current[i].show();

}

}

 Call this file AccountBalance.java and put it in a directory called MyPack.

Access Protection

 Packages add another dimension to access control.

 Classes and packages are both means of encapsulating and containing the name space and
scope of variables and methods.

 Packages act as containers for classes and other subordinate packages.

 Classes act as containers for data and code.

 Java addresses four categories of visibility for class members:

• Subclasses in the same package

• Non-subclasses in the same package

• Subclasses in different packages

• Classes that are neither in the same package nor subclasses

 The three access specifiers, private, public, and protected, provide a variety of ways to

produce the many levels of access required by these categories.

 Anything declared public can be accessed from anywhere.

 Anything declared private cannot be seen outside of its class.

 When a member does not have an explicit access specification, it is visible to subclasses

as well as to other classes in the same package. This is the default access.

 If we want to allow an element to be seen outside our current package, but only to classes

that subclass our class directly, then declare that element protected.

 Private No Modifier Protected Public

Same class yes yes yes yes

Same

package

subclass

No

Yes

Yes

Yes

Same

package

non-subclass

No

Yes

Yes

Yes

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

Different

package

subclass

No

No

Yes

Yes

Different

package

non-subclass

No

No

No

Yes

An Access Example

 This has two packages and five classes.

 Remember that the classes for the two different packages need to be stored in directories

named after their respective packages—in this case, p1 and p2.

This is file Protection.java:

package p1;

public class Protection

{

int n = 1;
private int n_pri = 2;

protected int n_pro = 3;

public int n_pub = 4;

public Protection()

{
System.out.println("base constructor");

System.out.println("n = " + n);

System.out.println("n_pri = " + n_pri);

System.out.println("n_pro = " + n_pro);

System.out.println("n_pub = " + n_pub);

}

}

This is file Derived.java:

package p1;

class Derived extends Protection

{

Derived()

{
System.out.println("derived constructor");

System.out.println("n = " + n);

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

// System.out.println("n_pri = "4 + n_pri);

System.out.println("n_pro = " + n_pro);
System.out.println("n_pub = " + n_pub);

}

}

This is file SamePackage.java:

package p1;

class SamePackage

{

SamePackage()
{

Protection p = new Protection();

System.out.println("same package constructor");

System.out.println("n = " + p.n);

// System.out.println("n_pri = " + p.n_pri);

System.out.println("n_pro = " + p.n_pro);

System.out.println("n_pub = " + p.n_pub);

}
}

 Following is the source code for the other package, p2.

 The first class, Protection2, is a subclass of p1.Protection. This grants access to all of

p1.Protection’s variables except for n_pri (because it is private) and n, the variable

declared with the default protection.

 the default only allows access from within the class or the package, not extra-package

subclasses.

 the class OtherPackage has access to only one variable, n_pub, which was declared

public.
This is file Protection2.java:

package p2;

class Protection2 extends p1.Protection

{

Protection2()

{

System.out.println("derived other package constructor");

// System.out.println("n = " + n);

// System.out.println("n_pri = " + n_pri);

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

System.out.println("n_pro = " + n_pro);

System.out.println("n_pub = " + n_pub);

}

}

This is file OtherPackage.java:

package p2;

class OtherPackage

{

OtherPackage()

{

p1.Protection p = new p1.Protection();

System.out.println("other package constructor");

// System.out.println("n = " + p.n);

// System.out.println("n_pri = " + p.n_pri);

// System.out.println("n_pro = " + p.n_pro);

System.out.println("n_pub = " + p.n_pub);

}

}
.

package p1;

// Instantiate the various classes in p1.

public class Demo

{
public static void main(String args[])
{

Protection ob1 = new Protection();

Derived ob2 = new Derived();

SamePackage ob3 = new SamePackage();

}

}

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

// Demo package p2.

package p2;

public class Demo

{

public static void main(String args[])

{
Protection2 ob1 = new Protection2();

OtherPackage ob2 = new OtherPackage();

}

}

Importing Packages

 the import statement is used to bring certain classes, or entire packages, into visibility.

 import statements occur immediately following the package statement (if it exists) and

before any class definitions.

 This is the general form of the import statement:

import pkg1[.pkg2].(classname|*);

 Here, pkg1 is the name of a top-level package, and pkg2 is the name of a subordinate

package inside the outer package separated by a dot (.).

This code fragment shows both forms in use:

import java.util.Date;

import java.io.*;.

 All of the standard Java classes included with Java are stored in a package called java.

 The basic language functions are stored in a package inside of the java package called

java.lang.
import java.lang.*;

import java.util.*;

class MyDate extends Date

{

}

class MyDate extends java.util.Date

{

}

 if you want the Balance class of the package MyPack shown earlier to be available as a

stand-alone class for general use outside of MyPack,

public class Balance

{

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

String name;

double bal;

public Balance(String n, double b)

{

name = n;

bal = b;

}

public void show()

{
if(bal<0)

System.out.print("--> ");

System.out.println(name + ": $" + bal);

}
}

 the Balance class is now public. Also, its constructor and its show() method are public,

too. This means that they can be accessed by any type of code outside the MyPack

package.

 TestBalance imports MyPack and is then able to make use of the Balance class:

import MyPack.*;

class TestBalance

{

public static void main(String args[])

{

class and call its constructor. */

Balance test = new Balance("J. J. Jaspers", 99.88);

test.show(); // you may also call show()

}

}

 Using the keyword interface, you can fully abstract a class’ interface from its

implementation.

 Once interface is defined, any number of classes can implement an interface.

 Also, one class can implement any number of interfaces.

 To implement an interface, a class must create the complete set of methods defined by the

interface.

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

Defining an Interface

An interface is defined much like a class. This is the general form of an interface:

access interface name

{

return-type method-name1(parameter-list);

return-type method-name2(parameter-list);

type final-varname1 = value;

type final-varname2 = value;

// ...
return-type method-nameN(parameter-list);
type final-varnameN = value;

}

When no access specifier is included, then default access results, and the interface is only available

to other members of the package in which it is declared.

 When it is declared as public, the interface can be used by any other code.

 the methods that are declared have no bodies. They end with a semicolon after the
parameter list.

 They are abstract methods; there can be no default implementation of any method

specified within an interface.

 Each class that includes an interface must implement all of the methods.

 Variables can be declared inside of interface declarations. They are implicitly final and
static, meaning they cannot be changed by the implementing class. They must also be

initialized.

 All methods and variables are implicitly public.

 Here is an example of a simple interface that contains one method called callback() that

takes a single integer parameter.

interface Callback

{

void callback(int param);
}

Implementing Interfaces

 Once an interface has been defined, one or more classes can implement that interface.

 To implement an interface, include the implements clause in a class definition, and then

create the methods defined by the interface.

 The general form of a class that includes the implements clause:

class classname [extends superclass] [implements interface [,interface...]]

{

// class-body

}

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

 If a class implements more than one interface, the interfaces are separated with a comma.

 If a class implements two interfaces that declare the same method, then the same method

will be used by clients of either interface.

 The methods that implement an interface must be declared public.

 the type signature of the implementing method must match exactly the type signature
specified in the interface definition.

 Here is a small example class that implements the Callback interface shown earlier.

class Client implements Callback

{
// Implement Callback's interface

public void callback(int p)

{

System.out.println("callback called with " + p);

}

}

 Notice that callback() is declared using the public access specifier.

 It is both permissible and common for classes that implement interfaces to define

additional members of their own.

 For example, the following version of Client implements callback() and adds the
method nonIfaceMeth():

class Client implements Callback

{

// Implement Callback's interface

public void callback(int p)

{

System.out.println("callback called with " + p);
}

void nonIfaceMeth()
{

System.out.println("Classes that implement interfaces " + "may also define other

members, too.");

}

}

Accessing Implementations Through Interface References

 we can declare variables as object references that use an interface rather than a class
type.

 Any instance of any class that implements the declared interface can be referred to by

such a variable.

 When we call a method through one of these references, the correct version will be

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

called based on the actual instance of the interface being referred to

The following example calls the callback() method via an interface reference variable:

class TestIface

{

public static void main(String args[])

{
Callback c = new Client();

c.callback(42);

}

}

output :

callback called with 42

 variable c is declared to be of the interface type Callback, yet it was assigned an instance

of Client.

 Although c can be used to access the callback() method, it cannot access any other
members of the Client class.

 c could not be used to access nonIfaceMeth() since it is defined by Client but not

Callback.
the second implementation of Callback, shown here to show the polymorphic behavior:

// Another implementation of Callback.

class AnotherClient implements Callback

{

public void callback(int p)

{

System.out.println("Another version of callback");
System.out.println("p squared is " + (p*p));

}

}

class TestIface2

{

public static void main(String args[])

{

Callback c = new Client();
AnotherClient ob = new AnotherClient();

c.callback(42);

c = ob; // c now refers to AnotherClient object

c.callback(42);

}

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

}

output:

callback called with 42

Another version of callback

p squared is 1764

the version of callback() that is called is determined by the type of object that c refers to at run

time.

Partial Implementations

 If a class includes an interface but does not fully implement the methods defined by that

interface, then that class must be declared as abstract.

 For example:

abstract class Incomplete implements Callback

{
int a, b;
void show()

{

System.out.println(a + " " + b);

}

// ...

}

 the class Incomplete does not implement callback() and must be declared as abstract.

 Any class that inherits Incomplete must implement callback() or be declared abstract

itself.

Applying Interfaces

 a class called Stack that implemented a simple fixed-size stack.

 the methods push() and pop() define the interface to the stack independently of the
details of the implementation.

 First, here is the interface that defines an integer stack. Put this in a file called

IntStack.java.

This interface will be used by both stack implementations.

interface IntStack

{
void push(int item);

int pop();

}

 The following program creates a class called FixedStack that implements a fixed-length

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

version of an integer stack:

// An implementation of IntStack that uses fixed storage.

class FixedStack implements IntStack

{

private int stck[];

private int tos;

FixedStack(int size)

{

stck = new int[size];

tos = -1;

}

public void push(int item)

{

if(tos==stck.length-1) // use length member
System.out.println("Stack is full.");

else

stck[++tos] = item;

}

public int pop()

{

if(tos < 0)

{

System.out.println("Stack underflow.");
return 0;

}

else

return stck[tos--];

}

}

class IFTest

{

public static void main(String args[])

{

FixedStack mystack1 = new FixedStack(5);

FixedStack mystack2 = new FixedStack(8);

for(int i=0; i<5; i++)

mystack1.push(i);

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

for(int i=0; i<8; i++)

mystack2.push(i);

System.out.println("Stack in mystack1:");

for(int i=0; i<5; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");

for(int i=0; i<8; i++)

System.out.println(mystack2.pop());

}

}

 another implementation of DynaStack that creates a dynamic stack by use of the same

interface definition.

// Implement a "growable" stack.

class DynStack implements IntStack

{

private int stck[];

private int tos;

// allocate and initialize stack

DynStack(int size)

{

stck = new int[size];

tos = -1;

}

// Push an item onto the stack

public void push(int item)

 {

// if stack is full, allocate a larger stack

if(tos==stck.length-1)

{

int temp[] = new int[stck.length * 2]; // double size

for(int i=0; i<stck.length; i++) temp[i] = stck[i];

stck = temp;

stck[++tos] = item;

}

else

stck[++tos] = item;

}

// Pop an item from the stack

public int pop()

{

if(tos < 0)

{

System.out.println("Stack underflow.");

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

return 0;

}

else

return stck[tos--];

}

}

class IFTest2

{

public static void main(String args[])

{

DynStack mystack1 = new DynStack(5);

DynStack mystack2 = new DynStack(8);

// these loops cause each stack to grow

for(int i=0; i<12; i++) mystack1.push(i);

for(int i=0; i<20; i++) mystack2.push(i);

System.out.println("Stack in mystack1:");

for(int i=0; i<12; i++)

System.out.println(mystack1.pop());

System.out.println("Stack in mystack2:");

for(int i=0; i<20; i++)

System.out.println(mystack2.pop());

}

}

 The following class uses both the FixedStack and DynStack implementations. It does so

through an interface reference. This means that calls to push() and pop() are resolved at

run time rather than at compile time.

class IFTest3

{

public static void main(String args[])

{

IntStack mystack; // create an interface reference variable

DynStack ds = new DynStack(5);

FixedStack fs = new FixedStack(8);

mystack = ds; // load dynamic stack
// push some numbers onto the stack

for(int i=0; i<12; i++) mystack.push(i);

mystack = fs; // load fixed stack

for(int i=0; i<8; i++) mystack.push(i);

mystack = ds;

System.out.println("Values in dynamic stack:");

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

for(int i=0; i<12; i++)

System.out.println(mystack.pop());

mystack = fs;

System.out.println("Values in fixed stack:");

for(int i=0; i<8; i++)

System.out.println(mystack.pop());

}

}

 mystack is a reference to the IntStack interface. Thus, when it refers to ds, it uses the

versions of push() and pop() defined by the DynStack implementation.

 When it refers to fs, it uses the versions of push() and pop() defined by FixedStack.

 Accessing multiple implementations of an interface through an interface reference
variable is the most powerful way that Java achieves run-time polymorphism.

Interfaces Can Be Extended

 One interface can inherit another by use of the keyword extends.

 The syntax is the same as for inheriting classes

interface A

{

void meth1();

void meth2();

}

interface B extends A

{

void meth3();

}

class MyClass implements B

{

public void meth1()

{

System.out.println("Implement meth1().");

}

public void meth2()

{

System.out.println("Implement meth2().");

}

public void meth3()
{

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

System.out.println("Implement meth3().");

}

}

class IFExtend

{

public static void main(String arg[])

{
MyClass ob = new MyClass();

ob.meth1();

ob.meth2();

ob.meth3();

}

}

 any class that implements an interface must implement all methods defined by that
interface, including any that are inherited from other interfaces.

Exception Handling

 an exception is a run-time error.

 languages that do not support exception handling, errors must be checked and handled

manually—typically through the use of error codes, and so on.

 Java’s exception handling avoids handling problems manually and, in the process, brings

run-time error management into the object toriented world.

Exception-Handling Fundamentals

 A Java exception is an object that describes an exceptional (that is, error) condition that

has occurred in a piece of code.

 When an exceptional condition arises, an object representing that exception is created

and thrown in the method that caused the error.

 That method may choose to handle the exception itself, or pass it on.

 Either way, at some point, the exception is caught and processed.

 Exceptions can be generated by the Java run-time system,

 or they can be manually generated by your code.

 Java exception handling is managed via five keywords: try, catch, throw, throws, and

finally.

 Briefly, here is how they work. Program statements that create exceptions are contained

within a try block.

 If an exception occurs within the try block, it is thrown.we can catch this exception

(using catch) and handle it .

 System-generated exceptions are automatically thrown by the Java run-time system.

 To manually throw an exception, use the keyword throw.

 Any exception that is thrown out of a method must be specified as such by a throws

clause.

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

 Any code that absolutely must be executed after a try block completes is put in a finally

block.

This is the general form of an exception-handling block:

try {

// block of code to monitor for errors

}

catch (ExceptionType1 exOb) {

// exception handler for ExceptionType1

}

catch (ExceptionType2 exOb) {

// exception handler for ExceptionType2

}
// ...

finally {

// block of code to be executed after try block ends

}

 Here, ExceptionType is the type of exception that has occurred.

Exception Types

 All exception types are subclasses of the built-in class Throwable. Thus, Throwable is

at the top of the exception class hierarchy.

 Immediately below Throwable are two subclasses that partition exceptions into two
distinct branches.

 One branch is headed by Exception. This class is used for exceptional conditions that

user programs should catch.

 There is an important subclass of Exception, called RuntimeException. Exceptions of

this type are automatically defined for the programs that you write and include things
such as division by zero and invalid array indexing.

 The other branch is topped by Error, which defines exceptions that are not expected to
be caught under normal circumstances by your program.

 Exceptions of type Error are used by the Java run-time system to indicate errors having

to do with the run-time environment, itself. Stack overflow is an example of such an error

Uncaught Exceptions

This program includes an expression that intentionally causes a divide-by-zero error:

class Exc0

{

public static void main(String args[])
{

int d = 0;

int a = 42 / d;

}

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

}

 When the Java run-time system detects the attempt to divide by zero, it constructs a

new exception object and then throws this exception.

 This causes the execution of Exc0 to stop, because once an exception has been thrown, it

must be caught by an exception handler and dealt with immediately.

 Here we don’t have any exception handlers of our own, so the exception is caught by

the default handler provided by the Java run-time system.

 Any exception that is not caught by our program will ultimately be processed by the

default handler.

 The default handler displays a string describing the exception, prints a stack trace from

the point at which the exception occurred, and terminates the program.

 Here is the exception generated when this example is executed:

java.lang.ArithmeticException: / by zero at Exc0.main(Exc0.java:4)

Using try and catch

 Although the default exception handler provided by the Java run-time system is useful for

debugging,we should handle an exception ourself.

 Doing so provides two benefits.

 First, it allows you to fix the error.

 Second, it prevents the program from automatically terminating.

 To handle a run-time error, simply enclose the code inside a try block.

 Immediately following the try block, include a catch clause that specifies the exception

type to catch

class Exc2

{

public static void main(String args[])

{
int d, a;

try

{

d = 0;

a = 42 / d;

}

System.out.println("This will not be printed.");

catch (ArithmeticException e)

{

System.out.println("Division by zero.");

}

System.out.println("After catch statement.");

}

}

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

This program generates the following output:

Division by zero.

After catch statement.

 A try and its catch statement form a unit.

 The scope of the catch clause is restricted to those statements specified by the

immediately preceding try statement.

 A catch statement cannot catch an exception thrown by another try statement.

class HandleError

{

public static void main(String args[])

{

int a=0, b=0, c=0;

Random r = new Random();

for(int i=0; i<32000; i++)

{

try

{
b = r.nextInt();

c = r.nextInt();

a = 12345 / (b/c);

}

catch (ArithmeticException e)
{

System.out.println("Division by zero.");

a = 0; // set a to zero and continue

}

System.out.println("a: " + a);

}

}

}

Multiple catch Clauses

 more than one exception could be raised by a single piece of code.

 To handle this type of situation, we can specify two or more catch clauses, each catching
a different type of exception.

 When an exception is thrown, each catch statement is inspected in order, and the first

one whose type matches that of the exception is executed.

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

// Demonstrate multiple catch statements.

class MultiCatch

 {

public static void main(String args[])

{

try

{

int a = args.length;

System.out.println("a = " + a);

int b = 42 / a;

int c[] = { 1 };

c[42] = 99;

}

catch(ArithmeticException e)

{

System.out.println("Divide by 0: " + e);

}

catch(ArrayIndexOutOfBoundsException e)

{

System.out.println("Array index oob: " + e);

}

System.out.println("After try/catch blocks.");

}

}

Here is the output generated by running it both ways:

C:\>java MultiCatch

a = 0

Divide by 0: java.lang.ArithmeticException: / by zero

After try/catch blocks.

C:\>java MultiCatch TestArg

a = 1

Array index oob: java.lang.ArrayIndexOutOfBoundsException:42

After try/catch blocks.

Nested try Statements

 The try statement can be nested. That is, a try statement can be inside the block of
another try.

// An example of nested try statements.

class NestTry

{

public static void main(String args[])

 {

try

{

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

int a = args.length;

/* If no command-line args are present,

the following statement will generate

a divide-by-zero exception. */

int b = 42 / a;

System.out.println("a = " + a);

try

{

// nested try block

/* If one command-line arg is used,

then a divide-by-zero exception

will be generated by the following code. */

if(a==1) a = a/(a-a); // division by zero

/* If two command-line args are used,

then generate an out-of-bounds exception. */

if(a==2)

{

int c[] = { 1 };

c[42] = 99; // generate an out-of-bounds exception

}

}

 catch(ArrayIndexOutOfBoundsException e)

{

System.out.println("Array index out-of-bounds: " + e);

}

}

catch(ArithmeticException e)

 {

System.out.println("Divide by 0: " + e);

 }

}

}

 When we execute the program with no command-line arguments, a divide-by-zero

exception is generated by the outer try block.

 Execution of the program with one command-line argument generates a divide-by-zero

exception from within the nested try block.

 Since the inner block does not catch this exception, it is passed on to the outer try block,
where it is handled.

 If we execute the program with two command-line arguments, an array boundary

exception is generated from within the inner try block.

C:\>java NestTry
Divide by 0: java.lang.ArithmeticException: / by zero

C:\>java NestTry One

a = 1

Divide by 0: java.lang.ArithmeticException: / by zero

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

C:\>java NestTry One Two

a = 2
Array index out-of-bounds:

java.lang.ArrayIndexOutOfBoundsException:42

throw

 it is possible for your program to throw an exception explicitly, using the throw

statement.

 The general form of throw is shown here:

throw ThrowableInstance;

 Here, ThrowableInstance must be an object of type Throwable or a subclass of

Throwable.

 Primitive types, such as int or char, as well as non-Throwable classes, such as String

and Object, cannot be used as exceptions.

class ThrowDemo

{

static void demoproc()

{

try
{

}

throw new NullPointerException("demo");

catch(NullPointerException e)
{

System.out.println("Caught inside demoproc.");

throw e; // rethrow the exception

}

}

public static void main(String args[])

{

try
{

}

demoproc();

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

catch(NullPointerException e)
{

System.out.println("Recaught: " + e);

}

}

}

 First, main() sets up an exception context and then calls demoproc().

 The demoproc() method then sets up another exceptionhandling context and

immediately throws a new instance of NullPointerException, which is caught on the

next line.

 The exception is then rethrown.

 Here is the resulting output:

Caught inside demoproc.

throws

 If a method is capable of causing an exception that it does not handle, it must specify this

behavior so that callers of the method can guard themselves against that exception.

 We can do this by including a throws clause in the method’s declaration.

 A throws clause lists the types of exceptions that a method might throw

.

 This is the general form of a method declaration that includes a throws clause:

type method-name(parameter-list) throws exception-list

{

// body of method
}

class ThrowsDemo

{

static void throwOne() throws IllegalAccessException

{
System.out.println("Inside throwOne.");

throw new IllegalAccessException("demo");

}

public static void main(String args[])
{

try
{

}

throwOne();

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

catch (IllegalAccessException e)
{

System.out.println("Caught " + e);

}

}

}

Here is the output generated by running this example program:

inside throwOne

caught java.lang.IllegalAccessException: demo

finally

 finally creates a block of code that will be executed after a try/catch block has

completed and before the code following the try/catch block.

 The finally block will execute whether or not an exception is thrown.

 If an exception is thrown, the finally block will execute even if no catch statement
matches the exception

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

 Here is the output generated by the preceding program:

inside procA

procA’s finally

Exception caught

inside procB

procB’s finally

inside procC

procC’s finally

Java’s Built-in Exceptions

 Inside the standard package java.lang, Java defines several exception classes.

 The most general of these exceptions are subclasses of the standard type

RuntimeException

 if the method can generate one of these exceptions and does not handle it itself. These are
called checked exceptions.

Java’s Unchecked RuntimeException Subclasses Defined in java.lang

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

Sem: IV Subject: Object Oriented Concepts Module: 3 Author: Prof. S V Manjaragi

Creating Your Own Exception Subclasses

 It is possible to create to create our own exception types to handle situations specific to

your applications.

 just define a subclass of Exception

 Your subclasses don’t need to actually implement anything—it is their existence in the
type system that allows you to use them as exceptions.

 The Exception class does not define any methods of its own. It does, of course, inherit
those methods provided by Throwable.

 Thus, all exceptions, including those that we create, have the methods defined by

Throwable available to them.

Output:

