
Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 1

Syllabus: Introduction to Java: Java’s magic: the Byte code; Java Development Kit (JDK); the

Java Buzzwords, Object-oriented programming; Simple Java programs. Data types, variables and

arrays, Operators, Control Statements.

Java is an object-oriented programming language developed by Sun Microsystems, a company
best known for its high-end Unix workstations.

 Java is modeled after C++

 Java language was designed to be small, simple, and portable across platforms and
operating systems, both at the source and at the binary level

 Java also provides for portable programming with applets. Applets appear in a
 Web page much in the same way as images do, but unlike images,

applets are dynamic and interactive.

1. The C# Connection

 Java’s innovative features, constructs, and concepts have become baseline for any new
language.

 C# is closely related to Java. Created by Microsoft to support the .NET Framework.

 Both languages share the same general syntax, support distributed programming,
and utilize the same object model.

 There are differences between Java and C#, but the overall ―look and feel‖ of these

languages is very similar.

2. How Java Changed the Internet

 Applet changed the way the content can be rendered online.

 Java also addressed issues associated with the Internet: portability and security

Java Applets
 An applet is a special kind of Java program that is designed to be transmitted

over Internet and automatically executed by a Java-compatible web browser.

 If the user clicks a link that contains an applet, the applet will be
automatically downloaded and run in the browser.

 Applets are typically used to display data provided by the server, handle user input, or

provide simple functions, such as a loan calculator, that can execute locally, rather
than on the server.

 The applet allows some functionality to be moved from the server to the client.

 In a web page majorly two types of content is rendered.
 1

st
 passive information (reading e-mail,is viewing passive data)

 dynamic, active program(the program’s code execution)

 Applet is a dynamic, self-executing program on the client computer, yet it is initiated
by the server.

 Dynamic, networked programs are serious problems in the areas of security and

portability. As program that downloads and executes automatically on the client
computer must be prevented from doing harm.

 It must also be able to run in a variety of different environments and under

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 2

different operating systems.
 Java solved these problems in an effective and elegant way.

Security

 The code we download might contain virus, Trojan horse, or other harmful code that
can gain unauthorized access to system resources.

 For example, a virus program might gather private information, such as credit card
numbers, bank account balances, and passwords, by searching the contents of computer.

 Java achieved protection by confining an applet to the Java execution environment

and not allowing it access to other parts of the computer.

Portability

 Different types of computers and operating systems connected to internet

 Java program must be able to run on any computer connected to the Internet,

 The same applet must be able to be downloaded and executed by the wide variety of
CPUs, operating systems, and browsers connected to the Internet.

 It is not practical to have different versions of the applet for different computers.

The same code must work on all computers.

 Therefore, some means of generating portable executable code was needed. The
same mechanism which ensure security also helps in portability.

Java’s Magic: the Bytecode

 The key that allows Java to solve both the security and the portability problems is that the
output of a Java compiler is not executable code. Rather, it is bytecode.

 Bytecode is a highly optimized set of instructions designed to be executed by the

Java run-time system, which is called the Java Virtual Machine (JVM).

 modern programming languages are designed to be compiled into executable
code because of performance concerns

 Translating a Java program into bytecode makes it much easier to run a program in a
wide variety of environments because only the JVM needs to be implemented for
each platform.

 Once the run-time package exists for a given system, any Java program can run on it.

 the JVM will differ from platform to platform, all understand the same Java bytecode.

 If a Java program were compiled to native code, then different versions of the same
program would have to exist for each type of CPU connected to the Internet. This is,
of course, not a feasible solution.

 Thus, the execution of bytecode by the JVM is the easiest way to create truly portable

programs.

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 3

 The fact that a Java program is executed by the JVM also helps to make it secure.

 Because the JVM is in control, it can contain the program and prevent it from
generating side effects outside of the system.

 bytecode has been highly optimized, the use of bytecode enables the JVM to

execute programs much faster

3. Servlets: Java on the Server Side

 A servlet is a small program that executes on the server.

 Just as applets dynamically extend the functionality of a web browser,
servlets dynamically extend the functionality of a web server.

 Servlets are used to create dynamically generated content that is then served to the client.

 For example, an online store might use a servlet to look up the price for an item in a
database. The price information is then used to dynamically generate a web page that
is sent to the browser.

 Servlets increases performance.

 Because servlets (like all Java programs) are compiled into bytecode and executed by the
JVM, they are highly portable. Thus, the same servlet can be used in a variety of different
server environments.

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 4

4. The Java Buzzwords

Simple

 Java was designed to be easy for the professional programmer to learn and use

effectively.

 As Java inherits the C/C++ syntax and many of the object-oriented features of C++, its
easy to learn.

Object-Oriented

 The object model in Java is simple and easy to extend, while primitive types, such as
integers, are kept as high-performance non-objects.

Robust

 The program must execute reliably in a variety of systems. To gain reliability, Java
restricts us to find mistakes early in program development.

 As Java is a strictly typed language, it checks code at compile time. also checks code at

run time.

 Java programmes behave in a predictable way under diverse conditions is a key feature
of Java.

 Programs fail in 2 conditions, memory management mistakes and mishandled

exceptional conditio.

 Java virtually eliminates memory management problems by managing memory allocation
and deallocation automatically.

 Exceptional conditions(run time errors) in Java is handled well by providing object-

oriented exception handling

Multithreaded

 Java programs can do many things simultaneously.

 The Java run-time system supports multiprocess synchronization that enables to
construct smoothly running interactive systems.

 Java’s easy-to-use approach to multithreading allows to work on specific behavior of the

program, not the multitasking subsystem.

Architecture-Neutral

 A central issue for the Java design was that of code longevity and portability.

 As Operating system upgrades, processor upgrades, and changes in core system resources
can all combine to make a program malfunction. (same program will not execute in
different platforms)

 Java Virtual Machine in an attempt to alter this situation. The goal is ―write once; run

anywhere, any time, forever.‖

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 5

Interpreted and High Performance

 Java enables the creation of cross-platform programs by compiling into an intermediate
representation called Java bytecode. This code can be executed on any system that
implements the Java Virtual Machine.

 The Java bytecode was carefully designed so that it would be easy to translate directly into

native machine code for very high performance by using a just-in-time compiler.

Distributed

 Java is designed for the distributed environment of the Internet because it handles TCP/IP
protocols.

 Java supports Remote Method Invocation (RMI). This feature enables a program to

invoke methods across a network.

Dynamic

 Java programs carry run-time type information that is used to verify and resolve
accesses to objects at run time.

 This makes it possible to dynamically link code in a safe manner.

 This is crucial to the robustness of the Java environment, in which small fragments of
bytecode may be dynamically updated on a running system.

5. A First Simple Program
/* "Example.java".
*/ class Example
{

public static void main(String args[])
{
System.out.println("This is a simple Java program.");

}
}

Compiling the Program in jdk

 The name of the source file should be Example.java.

 To compile the Example program, execute the compiler, javac, specifying the name of
the source file on the command line, as shown here:
C:\>javac Example.java

 The javac compiler creates a file called Example.class that contains the bytecode

version of the program.

 The Java bytecode is the intermediate representation of program that contains
instructions the Java Virtual Machine will execute.

 Thus, the output of javac is not code that can be directly executed.

 To run the program, you must use the Java application launcher, called java.
C:\>java Example

 When the program is run, the following output is displayed:
This is a simple Java program.

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 6

Explaination

 class Example {

This line uses the keyword class to declare that a new class is being defined.
 Example is an identifier that is the name of the class.

 The entire class definition, including all of its members, will be between the opening

curly brace ({) and the closing curly brace (}).

 public static void main(String args[]) {

 This line begins the main() method. This is the line at which the program will begin
executing. All Java applications begin execution by calling main().

 The public keyword is an access specifier, which allows the programmer to control the

visibility of class members.
 When a class member is preceded by public, then that member may be accessed by code

outside the class in which it is declared.

 main() must be declared as public, since it must be called by code outside of its class
when the program is started.

 The keyword static allows main() to be called without having to instantiate a particular
instance of the class. This is necessary since main() is called by the Java Virtual
Machine before any objects are made.

 The keyword void tells the compiler that main() does not return a value.

 String args[] declares a parameter named args, which is an array of instances of
the class String.

 args receives any command-line arguments present when the program is executed.

 System.out.println("This is a simple Java program.");

 Output is actually accomplished by the built-in println() method, println() displays
the string which is passed to it.

 System is a predefined class that provides access to the system, and out is the

output stream that is connected to the console.

6. Variables and Data Types

 Variables are locations in memory in which values can be stored. They have a name, a

type, and a value.
o Java has three kinds of variables: instance variables, class variables, and local variables.
 Instance variables, are used to define attributes or the state for a particular object.

 Class variables are similar to instance variables, except their values apply
to all that class's instances (and to the class itself) rather than having different values for
each object.

 Local variables are declared and used inside method(function) definitions,

 Variable declarations consist of a type and a variable name:

Examples :int myAge; String myName; boolean value;

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 7

7. The Primitive Types
Java defines eight primitive types of data: byte, short, int, long, char, float, double,
and boolean.

7.1 Integer types.

T y pe Si z e R a ng e

byte 8 bits —128 to 127

short 16 bits —32,768 to 32,767

int 32 bits —2,147,483,648 to 2,147,483,647

long 64bits —9223372036854775808 to 9223372036854775807

// Compute distance light travels using long variables.

Class Light
{

public static void main(String args[])

{
int lightspeed;
long days;
long seconds;
long distance;
lightspeed = 186000;
days = 1000; // specify number of days here
seconds = days * 24 * 60 * 60; // convert to seconds
distance = lightspeed * seconds; // compute
distance System.out.print(―In ― + days);
System.out.print(― days light will travel about ―);
System.out.println(distance + ― miles.‖);

}
}
output:

In 1000 days light will travel about 16070400000000 miles.
Clearly, the result could not have been held in an int variable.

7.2 Floating-point

 This is used for numbers with a decimal part.

 There are two floating-point types:
float (32 bits, single-precision) and double (64bits, double-precision).

Class Area

{
public static void main(String args[])

{
double pi, r, a;

r = 10.8; // radius of circle
pi = 3.1416; // pi, approximately

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 8

a = pi * r * r; // compute area
System.out.println(―Area of circle is ― + a);

}

}
Output:

Area of circle is 366.24

7.3 Char

 The char type is used for individual characters. Because Java uses the
Unicode character set, the char type has 16 bits of precision, unsigned.

class CharDemo

{
public static void main(String args[])
{

char ch1, ch2;
ch1 = 88; // code for X
ch2 = 'Y';
System.out.print("ch1 and ch2: ");
System.out.println(ch1 + " " + ch2);

}

}
output:

ch1 and ch2: X Y

// char variables behave like
integers. class CharDemo2

{
public static void main(String args[])
{

char ch1;
ch1 = 'X';

System.out.println("ch1 contains " +
ch1); ch1++; // increment ch1
System.out.println("ch1 is now " + ch1);

}
}
output:

ch1 contains X
ch1 is now Y

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 9

7.4 Boolean

 The boolean type can have one of two values, true or false.

class BoolTest

{
public static void main(String args[])
{

boolean b;
b = false;

System.out.println("b is " + b);

b = true; System.out.println("b

is " + b); if(b)

System.out.println("This is executed.");
b = false;
if(b)

{
System.out.println("This is not executed.");
System.out.println("10 > 9 is " + (10 > 9));

}

}

8. Literals

 Literals are used to indicate simple values in Java programs.
 Number Literals

 There are several integer literals.Ex: 4, is a decimal integer literal of type int

 Floating-point literals usually have two parts: the integer part and the
decimal part— Ex: 5.677777.

 Boolean Literals:Boolean literals consist of the keywords true and false.

 These keywords can be used anywhere needed a test or as the only possible
values for Boolean variables.

Character Literals

 Character literals are expressed by a single character surrounded by single

quotes: 'a', '#', '3', and so on. Characters are stored as 16-bit Unicode characters.

The Java Class Libraries

 println() and print(). these methods are members of the System class, which
is a class predefined by Java that is automatically included in your programs.

 the Java environment relies on several built-in class libraries that contain many

built-in methods that provide support for such things as I/O, string handling,
networking, and graphics.

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 10

Dynamic Initialization of variables.

 Java allows variables to be initialized dynamically, using any expression valid at
the time the variable is declared.

 For example, here is a short program that computes the length of the

hypotenuse of a right triangle given the lengths of its two opposing sides:
class DynInit

{
public static void main(String args[])

{
double a = 3.0, b = 4.0;
// c is dynamically initialized
double c = Math.sqrt(a * a + b * b);
System.out.println("Hypotenuse is " + c);

}
}

 sqrt(), is a built in method of the Math class.

9. The Scope and Lifetime of Variables

 Java allows variables to be declared within any block.

 A block is begun with an opening curly brace and ended by a closing curly brace.

 A block defines a scope. Thus, each time we start a new block, we are creating a
new scope.

 A scope determines what objects are visible to other parts of program.

 It also determines the lifetime of those objects.

 In Java, the two major scopes are those defined by a class and those defined by a method.

 In nested scopes objects declared in the outer scope will be visible to code within the
inner scope. However, the reverse is not true. Objects declared within the inner scope
will not be visible outside it.

 To understand the effect of nested scopes, consider the following program:
// Demonstrate block scope.

class Scope
{
public static void main(String args[])
{

int x; // known to all code within main
x = 10;
if(x == 10)
{

int y = 20; // known only to this block
System.out.println("x and y: " + x + " " + y); // x and y both known here.
x = y * 2;

}
// y = 100; // Error! y not known here
System.out.println("x is " + x); //x is still known here.

}
}

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 11

 A variable declared within a block will lose its value when the block is left. Thus,
the lifetime of a variable is confined to its scope.

 If a variable declaration includes an initializer, then that variable will be reinitialized

each time the block in which it is declared is entered.

class LifeTime
{

public static void main(String args[])

{

int x;
for(x = 0; x < 3; x++)
{

int y = -1; // y is initialized each time block is entered
System.out.println("y is: " + y); // this always prints -1
y = 100;
System.out.println("y is now: " + y);

}
}

}
output:

y is: -1

y is now:
100 y is: -1
y is now:
100 y is: -1
y is now: 100

10. Type Conversion and Casting

 To assign a value of one type to a variable of another type. If the two types are
compatible, then Java will perform the conversion automatically.

 For example, it is always possible to assign an int value to a long variable.

 However, not all types are compatible, and thus, not all type conversions are implicitly
allowed.

 There is no automatic conversion defined from double to byte.

 It is still possible to obtain a conversion between incompatible types. We must use a
cast, which performs an explicit conversion between incompatible types.

Java’s Automatic Conversions

 When one type of data is assigned to another type of variable, an automatic type
conversion will take place if the following two conditions are met:
• The two types are compatible.
• The destination type is larger than the source type.

 When these two conditions are met, a widening conversion takes place.

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 12

 Ex, the int type is always large enough to hold all valid byte values, so no explicit cast
statement is required.

 the numeric types, including integer and floating-point types, are compatible with each

other.

 there are no automatic conversions from the numeric types to char or boolean. Also,
char and boolean are not compatible with each other.

Casting Incompatible Types

 if we want to assign an int value to a byte variable, This conversion will not be
performed automatically, because a byte is smaller than an int(narrowing conversion).

 To create a conversion between two incompatible types, we must use a cast.

 A cast is simply an explicit type conversion.

 It has this general form:

(target-type) value

 int a;
byte b;
// ...
b = (byte) a;

 A different type of conversion will occur when a floating-point value is assigned to an

integer type: truncation.

 Integers do not have fractional components. Thus, when a floating-point value is
assigned to an integer type, the fractional component is lost.

 Ex: if the value 1.23 is assigned to an integer, the resulting value will be 1.

// Demonstrate casts.
class Conversion

{
public static void main(String args[])

{
byte b;

int i = 257;
double d = 323.142;

System.out.println("\nConversion of int to byte.");

b = (byte) i;
System.out.println("i and b " + i + " " + b);
System.out.println("\nConversion of double to int.");
i = (int) d;
System.out.println("d and i " + d + " " + i);
System.out.println("\nConversion of double to byte.");
b = (byte) d;
System.out.println("d and b " + d + " " + b);

}

}

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 13

Output:
Conversion of int to byte.
i and b 257 1
Conversion of double to int.
d and i 323.142 323
Conversion of double to byte.

d and b 323.142 67

11. Automatic Type Promotion in Expressions

 In the following expression:
byte a = 40;
byte b = 50;
byte c = 100;
int d = a * b / c;

 The result of the intermediate term a * b easily exceeds the range of either of its byte

operands. To handle this kind of problem, Java automatically promotes each byte, short,
or char operand to int when evaluating an expression. This means that the
subexpression a * b is performed using integers—not bytes.

 For example, this seemingly correct code causes a

problem: byte b = 50;
b = b * 2; // Error! Cannot assign an int to a byte!

 In such cases we should use an explicit cast, such as
byte b = 50;

b = (byte)(b * 2);
which yields the correct value of 100.

The Type Promotion Rules

 First,all byte, short, and char values are promoted to int, as just described. Then, if one
operand is a long, the whole expression is promoted to long. If one operand is a float, the
entire expression is promoted to float. If any of the operands is double, the result is
double.

 The following program demonstrates how each value in the expression gets promoted to

match the second argument to each binary operator:
class Promote
{

public static void main(String args[])
{

byte b = 42;
char c = 'a';
short s = 1024;
int i = 50000;
float f = 5.67f;
double d = .1234;
double result = (f * b) + (i / c) - (d * s);
System.out.println((f * b) + " + " + (i / c) + " - " + (d * s));
System.out.println("result = " + result);

}

}

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 14

Here,double result = (f * b) + (i / c) - (d * s);

 In the first subexpression, f * b, b is promoted to a float and the result of the

subexpression is float. Next, in the subexpression i / c, c is promoted to int, and the result
is of type int.

 Then, in d * s, the value of s is promoted to double, and the type of the subexpression

is double.

 Three intermediate values, float, int, and double, are considered. The outcome of float
plus an int is a float. Then the resultant float minus the last double is promoted to
double, which is the type for the final result of the expression.

12. Arrays

 An array is a group of like-typed variables that are referred to by a common name.

 Aspecific element in an array is accessed by its index.

 Arrays offer a convenient means of grouping related information.

One-Dimensional Arrays

 A one-dimensional array is, essentially, a list of like-typed variables.

 The general form of a one-dimensional array declaration
is type array-var = new type[size];

 Here, type specifies the type of data being allocated, size specifies the number of
elements in the array,

 array-var is the array variable that is linked to the array.

 The elements in the array allocated by new will automatically be initialized to zero.

 using new ,allocate the memory that will hold the array
 This example allocates a 12-element array of integers and links them to month_days.

int month_days = new nnt[12]; // Demonstrate a one-dimensional array.
class Array
{
public static void main(String args[])

{
int month_days[];

month_days = new
int[12]; month_days[0] =

31; month_days[1] = 28;
month_days[2] = 31;

month_days[3] = 30;
month_days[4] = 31;

month_days[5] = 30;

month_days[6] = 31;
month_days[7] = 31;

month_days[8] = 30;
month_days[9] = 31;

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 15

month_days[10] = 30;

month_days[11] = 31;
System.out.println("April has " + month_days[3] + " days.");
}

}

// An improved version of the previous
program. class AutoArray

{
public static void main(String args[])

{
int month_days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31,30, 31 };
System.out.println("April has " + month_days[3] + " days.");

}
}
Output: April has 30 days.

Example prog that uses a one-dimensional array to find the average of a set of numbers.

class Average
{

public static void main(String args[]) {
double nums[] = {10.1, 11.2, 12.3, 13.4, 14.5}; double result = 0;
int i;

 for(i=0; i<5; i++)
result = result + nums[i];
System.out.println("Average is " + result / 5);

}
}
Multidimensional Arrays

 To declare a multidimensional array variable, specify each additional index using another
set of square brackets.

 For example, the following declares a twodimensional array variable called twoD.

int twoD[][] = new int[4][5]; // Demonstrate a two-dimensional array.

class TwoDArray
{

public static void main(String args[])

{

int twoD[][]= new int[4][5];

int i, j, k = 0;
for(i=0; i<4; i++)
for(j=0; j<5; j++)
{

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 16

twoD[i][j] = k;
k++;

}

for(i=0; i<4; i++)
{

for(j=0; j<5; j++)
System.out.print(twoD[i][j] + " ");
System.out.println();

}

}
}

This program generates the following output:
0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

 The following code allocates memory for the first dimension of twoD when it is
declared. It allocates the second dimension manually.

// Manually allocate differing size second dimensions.

class TwoDAgain

{
public static void main(String args[])

{
int twoD[][] = new int[4][];

twoD[0] = new int[1];

twoD[1] = new int[2];

twoD[2] = new int[3];

twoD[3] = new int[4];
int i, j, k = 0;

for(i=0; i<4; i++)
for(j=0; j<i+1; j++)

{
twoD[i][j] = k; k++;

 }

for(i=0; i<4; i++)

for(j=0; j<i+1; j++)
{
System.out.print(twoD[i][j] + " ");
System.out.println();

}
}

}

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 17

13.Operators

Arithmetic Operators

Arithmetic operators are used in mathematical expressions in the same way that they are used in
algebra. The following table lists the arithmetic operators:
Operator Result
+ Addition
– Subtraction (also unary minus)
* Multiplication
/ Division

% Modulus
++ Increment
+= Addition assignment
– = Subtraction assignment

*= Multiplication assignment
/= Division assignment

%= Modulus assignment
– – Decrement

The operands of the arithmetic operators must be of a numeric type. we cannot use them on

boolean types, but we can use them on char types, since the char type in Java is, essentially, a

subset of int.

// Demonstrate the basic arithmetic operators.

class BasicMath
{

public static void main(String args[])
{

// arithmetic using integers
System.out.println("Integer Arithmetic");
int a = 1 + 1;
int b = a * 3;
int c = b / 4;
int d = c - a;
int e = -d;
System.out.println("a = " + a);

System.out.println("b = " + b);

System.out.println("c = " + c);

System.out.println("d = " + d);

System.out.println("e = " + e);
}

}
When you run this program, you will see the following output:
Integer Arithmetic

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 18

a = 2
b = 6
c = 1
d = -1

e = 1

The Modulus Operator

The modulus operator(%), returns the remainder of a division operation. It can be applied to
floating-point types as well as integer types. The following example program demonstrates the
%:
// Demonstrate the % operator.

class Modulus
{

public static void main(String args[])
{

int x = 42;
double y = 42.25;
System.out.println("x mod 10 = " + x % 10);
System.out.println("y mod 10 = " + y % 10);

}
}
Output:
x mod 10 = 2
y mod 10 = 2.25

Arithmetic Compound Assignment Operators

Operation Equivalent Operation
a = a + 4; a += 4;
a = a % 2; a %= 2;

 The %= obtains the remainder of a/2 and puts that result back into a.

class OpEquals

{
public static void main(String args[])
{

int a = 1;
int b = 2;
int c = 3;

a += 5;
b *= 4;

c += a * b;
c %= 6;
System.out.println("a = " + a);

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 19

System.out.println("b = " + b);
System.out.println("c = " + c);

}
}
The output of this program is shown
here: a = 6
b = 8
c = 3

Increment and Decrement

 The ++ and the – – are Java’s increment and decrement operators.

 The statement: x = x + 1; can be written as x++;

 The statement x = x - 1; is equivalent to x--;

 These operators are unique where they can appear both in postfix form and prefix form.

 In the prefix form, the operand is incremented or decremented before the value
is obtained for use in the expression.

 In postfix form, the previous value is obtained for use in the expression, and then

the operand is modified.
 For example:

x = 42;
y = ++x;

In this case, y is set to 43 because the increment occurs before x is assigned to y.
 Thus, the line y = ++x; is the equivalent of these two statements:

x = x + 1;
y = x;

 Here,

x = 42;
y = x++;

 the value of x is obtained before the increment operator is executed, so the value of y

is 42.
 Here, the line y = x++; is the equivalent of these two statements:

y = x;

x = x + 1;

class IncDec
{

public static void main(String args[])
{

int a = 1;
int b = 2;
int c;
int d;

c = ++b;
d = a++;

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 20

c++;
System.out.println("a = " + a);

System.out.println("b = " + b);
System.out.println("c = " + c);

System.out.println("d = " + d);
}

}

The output of this program
follows: a = 2
b = 3
c = 4
d = 1

The Bitwise Operators
Java defines several bitwise operators that can be applied to the integer types, long, int,
short, char, and byte.

Operator Result
~ Bitwise unary NOT
& Bitwise AND
| Bitwise OR
^ Bitwise exclusive OR

>> Shift right
>>> Shift right zero fill
<< Shift left
&= Bitwise AND assignment
|= Bitwise OR assignment
^= Bitwise exclusive OR assignment
>>= Shift right assignment
>>>= Shift right zero fill assignment
<<= Shift left assignment

 Since the bitwise operators manipulate the bits within an integer,

 Ex:, the byte value for 42 in binary is 00101010,

 All of the integer types (except char) are signed integers. This means that they
can represent negative values as well as positive ones.

 Java uses an encoding known as two’s complement, which means that negative numbers

are represented by inverting (changing 1’s to 0’s and vice versa) all of the bits in a
value, then adding 1 to the result.

 For example, –42 is represented as
00101010

11010101, then adding 1, which results

in 11010110, or –42.

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 21

 a byte value, zero is represented by 00000000.
Inverting, its 11111111 adding 1 results in
100000000. where –0 is the same as 0,

 11111111 is the encoding for –1.

The Bitwise Logical Operators

 The bitwise logical operators are &, |, ^, and ~.

 the bitwise operators are applied to each individual bit within each operand.

 A B A | B A & B A ^ B ~A

0 0 0 0 0 1

1 0 1 0 1 0

0 1 1 0 1 1

1 1 1 1 0 0
The Bitwise NOT

 Also called the bitwise complement, the unary NOT operator, ~, inverts all of the bits
of its operand.

 For example:

00101010 (42)
11010101 after the NOT operator is applied.

The Bitwise AND

 The AND operator, &, produces a 1 bit if both operands are also 1. A zero is produced
in all other cases.

 Ex:

00101010 42

& 00001111 15

00001010 10

The Bitwise OR

The OR operator, |, combines bits such that if either of the bits in the operands is a 1,
then the resultant bit is a 1, as shown here:

00101010 42

| 00001111 15

00101111 47

The Bitwise XOR

The XOR operator, ^, combines bits such that if exactly one operand is 1, then the result is
1. Otherwise, the result is zero.

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 22

00101010 42
^ 00001111 15

00100101 37

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 23

Using the Bitwise Logical Operators

The following program demonstrates the bitwise logical operators:

class BitLogic
{

public static void main(String args[])
{
String binary[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110",
"0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};

int a = 3; // 0011 in binary
int b = 6; // 0110 in binary

int c = a | b;
int d = a &
b; int e = a ^
b;
int f = (~a & b) | (a & ~b);
int g = ~a & 0x0f;
System.out.println(" a = " + binary[a]);

System.out.println(" b = " + binary[b]);

System.out.println(" a|b = " + binary[c]);
System.out.println(" a&b = " + binary[d]);
System.out.println(" a^b = " + binary[e]);
System.out.println("~a&b|a&~b = " + binary[f]);
System.out.println(" ~a = " + binary[g]);

}

}

Here is the output from this

program: a = 0011
b = 0110

a|b = 0111
a&b = 0010

a^b = 0101
~a&b|a&~b = 0101

~a = 1100

The Left Shift

 The left shift operator, <<, shifts all of the bits in a value to the left a specified number of
times.

 It has this general form: value << num

 Here, num specifies the number of positions to left-shift the value in value.

 That is, the <<moves all of the bits in the specified value to the left by the number of
bit positions specified by num.

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 24

 For each shift left, the high-order bit is shifted out (and lost), and a zero is brought in on
the right.

 This means that when a left shift is applied to an int operand, bits are lost once they

are shifted past bit position 31.
 If the operand is a long, then bits are lost after bit position 63.

 Java’s automatic type promotions produce unexpected results when you are shifting byte

and short values.

 byte and short values are promoted to int when an expression is evaluated. The result of
such an expression is also an int. This means that the outcome of a left shift on a byte or
short value will be an int,

class ByteShift
{

public static void main(String args[])
{

byte a = 64,
b; int i;
i = a << 2;
b = (byte) (a << 2);
System.out.println("Original value of a: " + a);
System.out.println("i and b: " + i + " " + b);

}
}
The output generated by this program is shown
here: Original value of a: 64
i and b: 256 0

 Since a is promoted to int for the purposes of evaluation, left-shifting the value 64
(0100 0000) twice results in i containing the value 256 (1 0000 0000). However, the value
in b contains 0 because after the shift, the low-order byte is now zero. Its only 1 bit has
been shifted out.

// Left shifting as a quick way to multiply by
2. class MultByTwo

{
public static void main(String args[])

{

int i;
int num = 0xFFFFFFE;
for(i=0; i<4; i++)
{

num = num << 1;
System.out.println(num);
}

}
}

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 25

The program generates the following output:

536870908 1073741816 2147483632 -32

The starting value was carefully chosen so that after being shifted left 4 bit positions, it would

produce –32. As you can see, when a 1 bit is shifted into bit 31, the number is interpreted as

negative.

The Right Shift

 The right shift operator, >>, shifts all of the bits in a value to the right a specified
number of times.

 Its general form is shown here: value >> num

 Here, num specifies the number of positions to right-shift the value in value. That is, the
>> moves all of the bits in the specified value to the right the number of bit positions
specified by num.

 int a = 32;

a = a >> 2; // a now contains 8
 When a value has bits that are ―shifted off,‖ those bits are lost.

 For example, the value 35 is shifted to the right two positions, which causes the two

low-order bits to be lost, resulting again in a being set to 8.
int a = 35;
a = a >> 2; // a still contains 8

 Looking at the same operation in binary shows more clearly how this happens:

00100011 35

>> 2

00001000 8

 When we are shifting right, the top (leftmost) bits exposed by the right shift are filled
in with the previous contents of the top bit. This is called sign extension and serves to preserve
the sign of negative numbers when we shift them right.

 For example,
11111000 –8
>>1
11111100 –4

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 26

class HexByte

{
Public static void main(String args[])
{

byte a=-8;
byte b = (byte) (a>>1);
System.out.println("Right shift value is‖ +b);
}

}

Here is the output of this program:
b = -4

The Unsigned Right Shift

 the >> operator automatically fills the high-order bit with its previous contents each
time a shift occurs. This preserves the sign of the value.

 Java’s unsigned, shift-right operator, >>>, which always shifts zeros into the high-order

bit.
 The following code fragment demonstrates the >>>.

 Here, a is set to –1, which sets all 32 bits to 1 in binary. This value is then shifted right

24 bits, filling the top 24 bits with zeros, ignoring normal sign extension. This sets a to
255. int a = -1;
a = a >>> 24;

Here is the same operation in binary form :

11111111 11111111 11111111 11111111 –1

>>>24

00000000 00000000 00000000 11111111 255

Bitwise Operator Compound Assignments

 All of the binary bitwise operators have a compound form similar to that of the
algebraic operators, which combines the assignment with the bitwise operation.

a = a >> 4;
a >>= 4;

 Likewise, the following two statements are equivalent:
a = a | b;
a |= b;

class OpBitEquals
{

public static void main(String args[])
{

int a = 1;
int b = 2;
int c = 3;

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 27

a |= 4;
b >>= 1;
c <<= 1;
a ^= c;
System.out.println("a = " + a);
System.out.println("b = " + b);
System.out.println("c = " + c);

}
}
The output of this program is shown
here:
a = 3
b = 1
c = 6

Relational Operators

 The relational operators determine the relationship that one operand has to the other.

Operator Result
== Equal to
!= Not equal to
> Greater than

< Less than
>= Greater than or equal to

<= Less than or equal to
 The outcome of these operations is a boolean value.

 only integer, floating-point, and character operands may be compared to see which

is greater or less than the other.

 int a =
4; int b
= 1;
boolean c = a < b;
In this case, the result of a<b (which is false) is stored in c.

Boolean Logical Operators

 The Boolean logical operators operate only on boolean operands. All of the
binary logical operators combine two boolean values to form a resultant boolean
value.

Operator Result

& Logical AND

| Logical OR

^ Logical XOR (exclusive OR)

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 28

|| Short-circuit OR

&& Short-circuit AND

! Logical unary NOT

&= AND assignment

|= OR assignment

^= XOR assignment

== Equal to

!= Not equal to

?: Ternary if-then-else

A B A | B A & B A ^ B !A
False False False False False True

True False True False True False

False True True False True True

True True True True False False

class BoolLogic
{

public static void main(String args[])
{

boolean a = true;
boolean b = false;
boolean c = a | b;
boolean d = a & b;
boolean e = a ^ b;

boolean f = (!a & b) | (a & !b);

boolean g = !a;

System.out.println(" a = " + a);

System.out.println(" b = " + b);

System.out.println(" a|b = " + c);

System.out.println(" a&b = " + d);

System.out.println(" a^b = " + e);
System.out.println("!a&b|a&!b = " +
f); System.out.println(" !a = " + g);

}
}

a = true b = false
a|b = true

a&b = false
a^b = true
a&b|a&!b =
true !a = false

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 29

Short-Circuit Logical Operators

 There are secondary versions of the Boolean AND and OR operators, and are known
as short-circuit logical operators.

 The OR operator results in true when A is true, no matter what B is.

 Similarly, the AND operator results in false when A is false, no matter what
B is.(therefore there is no need to evaluate the second operand.)

 Short circuit logical operators are the || and && f

The Assignment Operator

 The assignment operator is the single equal sign, =.
 It has this general form:

var = expression;

 Here, the type of var must be compatible with the type of expression.

 int x, y, z;
x = y = z = 100; // set x, y, and z to 100

 This fragment sets the variables x, y, and z to 100 using a single statement.
.
The ? Operator

 Java provides ternary (three-way) operator that can replace certain types of if-then-
else statements.

 The ? has this general form:
expression1 ? expression2 : expression3

 Here, expression1 can be any expression that evaluates to a boolean value. If

expression1 is true, then expression2 is evaluated; otherwise, expression3 is evaluated.
.
class Ternary

{
public static void main(String args[])

{
int a=5,b=10;
int c= a>b? a:
b;
System.out.println(―bigger number is ― +c);

}
}

output :
bigger number is 10.

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 30

14. Control Statements

 A programming language uses control statements to cause the flow of execution to
advance and branch into different part of a program.

 Java’s program control statements can be put into the following categories:
 selection,

 iteration, and

 jump.

 Selection statements allow program to choose different paths of execution
based upon the outcome of an expression or the state of a variable.

 Iteration statements enable program execution to repeat one or more statements.

 Jump statements allow program to execute in a nonlinear fashion.

Java’s Selection Statements

 Java supports two selection statements: if and switch.

 These statements allow us to control the flow of program’s execution based upon
conditions known only during run time.

if

 if statement is Java’s conditional branch statement.

 General form of if statement:

if (condition) statement1;
else statement2;

 Here, each statement may be a single statement or a compound statement enclosed

in curly braces (that is, a block).

 The condition is any expression that returns a boolean value.

 The else clause is optional.

 If the condition is true, then statement1 is executed. Otherwise, statement2 (if it exists) is
executed. In no case will both statements be executed.

 For example, :

int a, b; // ...
if(a < b)

a = 0;
else

b = 0;

Nested ifs

 A nested if is an if statement that is the target of another if or else.

 An else statement always refers to the nearest if statement that is within the same block
as the else and that is not already associated with an else.

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 31

 Here is an example:
if(i == 10)
{

if(j < 20)

 a = b;
if(k > 100) // this if is
c = d;

else

a = c; // associated with this else
}

else
a = d; // this else refers to if(i == 10)

 As the comments indicate, the final else is not associated with if(j<20) because it is not
in the same block (even though it is the nearest if without an else)

 The inner else refers to if(k>100) because it is the closest if within the same block.

The if-else-if Ladder

 A common programming construct that is based upon a sequence of nested ifs is the if-
else-if ladder.

 General form:
if(condition)
statement;
else if(condition)
statement;
else if(condition)
statement;

...
else
statement;

 The if statements are executed from the top down.

 As soon as one of the conditions controlling the if is true, the statement associated
with that if is executed, and the rest of the ladder is bypassed.

 If none of the conditions is true, then the final else statement will be executed.

 The final else acts as a default condition; that is, if all other conditional tests fail, then
the last else statement is performed.

 If there is no final else and all other conditions are false, then no action will take place.

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 32

class IfElse

{
public static void main(String args[])

{
int month = 4; // April String season;
if(month == 12 || month == 1 || month == 2)

season = "Winter";
else if(month == 3 || month == 4 || month == 5)

season = "Spring";
else if(month == 6 || month == 7 || month == 8)

season = "Summer";
else if(month == 9 || month == 10 || month == 11)

season = "Autumn";
else

season = "Bogus Month";

System.out.println("April is in the " + season + ".");
}

}
output:

April is in the Spring.

switch

 The switch statement is Java’s multiway branch statement.

 It provides an easy way to dispatch execution to different parts of code based on the
value of an expression.

 It provides a better alternative than a large series of if-else-if statements.

 Here is the general form of a switch statement:
switch (expression) {
case value1:
// statement sequence
break;
case value2:
// statement sequence
break;
...
case valueN:
// statement sequence
break;
default:
// default statement sequence

}

 The expression must be of type byte, short, int, or char; each of the values specified
in the case statements must be of a type compatible with the expression.

 Each case value must be a unique literal (that is, it must be a constant, not a variable).

 Duplicate case values are not allowed.

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 33

 The value of the expression is compared with each of the literal values in the case
statements. If a match is found, the code sequence following that case statement is
executed.

 If none of the constants matches the value of the expression, then the default statement is

executed.

 However, the default statement is optional. If no case matches and no default is
present, then no further action is taken.

 The break statement is used inside the switch to terminate a statement sequence.

class SampleSwitch

{
public static void main(String args[])
{

for(int i=0; i<6;
i++) switch(i)
{

case 0:
System.out.println("i is zero.");
break;
case 1:
System.out.println("i is one.");
break;
case 2:
System.out.println("i is two.");
break;
case 3:
System.out.println("i is three.");
break;
default:

System.out.println("i is greater than 3.");
}

}
}

output:
i is zero. i is one.

i is two.
i is three.

i is greater than 3.
i is greater than 3.

 The break statement is optional. If we omit the break, execution will continue on into
the next case. It is sometimes desirable to have multiple cases without break statements
between them.

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 34

class MissingBreak

{
public static void main(String args[])

{
for(int i=0; i<12; i++)
switch(i)
{

case 0:
case 1:
case 2:
case 3:
case 4:

System.out.println("i is less than 5");
break;
case 5:
case 6:

case 7:

case 8:

case 9:

System.out.println("i is less than 10");
break;

default:
System.out.println("i is 10 or more");
}

}
}
output:
i is less than 5 i

is less than 5 i

is less than 5 i

is less than 5 i

is less than 5 i

is less than 10 i

is less than 10 i

is less than 10 i

is less than 10 i

is less than 10 i

is 10 or more i

is 10 or more

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 35

class Switch

{
public static void main(String args[])

{
int month = 4;
String season;
switch (month)

{

case 12:
case 1:
case 2:
season = "Winter";
break;
case 3:
case 4:
case 5:

season = "Spring";
break;
case 6:
case 7:
case 8:

season = "Summer";
break;
case 9:
case 10:
case 11:

season = "Autumn";
break;
default:
season = "Bogus Month";
}

System.out.println("April is in the " + season + ".");
}

}

Nested switch Statements

 switch can be used as part of an outer switch. This is called a nested switch.

 Since a switch statement defines its own block, no conflicts arise between the case
constants in the inner switch and those in the outer switch.

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 36

switch(count)

{
case 1:

switch(target)
{ // nested switch case 0:

System.out.println("target is zero");
break;
case 1: // no conflicts with outer switch
System.out.println("target is one"); break;
}
break;

case 2: // ...

 Here, the case 1: statement in the inner switch does not conflict with the case 1:
statement in the outer switch.

 The count variable is only compared with the list of cases at the outer level.

 If count is 1, then target is compared with the inner list cases.

In summary, there are three important features of the switch statement to note:

 The switch differs from the if in that switch can only test for equality, whereas if can
evaluate any type of Boolean expression.

 No two case constants in the same switch can have identical values. Of course,
a switch statement and an enclosing outer switch can have case constants in
common.

 A switch statement is usually more efficient than a set of nested ifs.

Iteration Statements

 Java’s iteration statements are for, while, and do-while. These statements create what we
commonly call loops.

 A loop repeatedly executes the same set of instructions until a termination condition

is met.
while

 The while loop is Java’s most fundamental loop statement. It repeats a statement or
block while its controlling expression is true.

 Here is its general form:
while(condition) {
// body of loop

}

 The condition can be any Boolean expression. The body of the loop will be executed as
long as the conditional expression is true.

 When condition becomes false, control passes to the next line of code immediately

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 37

following the loop.

class While
{

public static void main(String args[])
{

int n = 5;
while(n > 0)

{
System.out.println("tick " + n);
n--;

}

}
}
When you run this program, it will ―tick‖ five times:
tick 5
tick 4
tick 3

tick 2
tick 1

 Since the while loop evaluates its conditional expression at the top of the loop, the

body of the loop will not execute even once if the condition is false to begin with.
 For example, in the following fragment, the call to println() is never executed:

int a = 10, b = 20;
while(a > b)
System.out.println("This will not be displayed");

 The body of the while (or any other of Java’s loops) can be empty. This is because a null

Statement is syntactically valid in Java.
 For example,

class NoBody

{
public static void main(String args[])

{
int i, j; i
= 100;
j = 200;

// find midpoint between i and j
while(++i < --j) ; // no body in this loop

System.out.println("Midpoint is " + i);
}

}
This program finds the midpoint between i and j.

output: Midpoint is 150

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 38

do-while

 if the conditional expression controlling a while loop is initially false, then the body

of the loop will not be executed at all.

 sometimes it is desirable to execute the body of a loop at least once, even if
the conditional expression is false to begin with.

 In other words, there are times when you would like to test the termination expression

at the end of the loop rather than at the beginning.
 Java supplies a loop that does just that: the do-while.

 The do-while loop always executes its body at least once, because its conditional

expression is at the bottom of the loop. Its general form is
do {
// body of loop
} while (condition);

 Each iteration of the do-while loop first executes the body of the loop and then evaluates

the conditional expression.
 If this expression is true, the loop will repeat. Otherwise, the loop terminates.

class DoWhile
{

public static void main(String args[])
{

int n = 5;

do {
System.out.println("tick " + n);
n--;

} while(n > 0);
}

}

for

 there are two forms of the for loop.
 The first is the traditional form that has been in use since the original version of Java.

 The second is the new ―for-each‖ form.

 general form of the traditional for statement:
for(initialization; condition; iteration) {
// body
}

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 39

class ForTick
{

public static void main(String args[])
{

int n;

for(n=10; n>0; n--)
System.out.println("tick " + n);

}
}

Declaring Loop Control Variables Inside the for Loop

 Often the variable that controls a for loop is only needed for the purposes of the loop
and is not used elsewhere.

 When this is the case, it is possible to declare the variable inside the initialization

portion of the for.
 For example,the loop control variable n is declared as an int inside the for:

class ForTick
{

public static void main(String args[])
{

for(int n=10; n>0; n--)
System.out.println("tick " + n);

}
}

class FindPrime
{

public static void main(String args[])
{

int num;
boolean isPrime =
true; num = 14;

for(int i=2; i <= num/i; i++)
{

if((num % i) == 0)
{

isPrime = false;

break;

}
}

if(isPrime)
System.out.println("Prime");

else
System.out.println("Not Prime");

}
}

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 40

Using the Comma

 There will be times when you will want to include more than one statement in

the initialization and iteration portions of the for loop.
 For example, consider the loop in the following program:

class Comma
{

public static void main(String args[])
{

int a, b;
for(a=1, b=4; a<b; a++, b--)

{

System.out.println("a = " + a);
System.out.println("b = " + b);

}

}
}

 the initialization portion sets the values of both a and b. The two comma separated
statements in the iteration portion are executed each time the loop repeats.

 output:
a = 1
b = 4
a = 2
b = 3

Some for Loop Variations

 The for loop supports a number of variations that increase its power and
applicability. class ForVar
{

public static void main(String args[])
{

int i;
boolean done = false;

i = 0;
for(; !done;)

{
System.out.println("i is " + i);
if(i == 10) done = true;
i++;

}
}

}

 Here, the initialization and iteration expressions have been moved out of the for.
Thus, parts of the for are empty.

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 41

The For-Each Version of the for Loop

 The advantage of this approach is that no new keyword is required, and no

preexisting code is broken.
 The for-each style of for is also referred to as the enhanced for loop.

 The general form for-each version of the for is shown here:

for(type itr-var : collection) statement-block

 Here, type specifies the type

 itr-var specifies the name of an iteration variable that will receive the elements from a
collection, one at a time, from beginning to end.

 The collection being cycled through is specified by collection.

 There are various types of collections that can be used with the for, but the only
type used here is the array.

class ForEach
{

public static void main(String args[])
{

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 int sum = 0;
for(int x : nums)

{

System.out.println("Value is: " + x);
sum += x;

}
System.out.println("Summation: " + sum);
}

}

The output from the program is shown here.
Value is: 1

Value is: 2
Value is: 3

Value is: 4

Value is: 5
Value is: 6

Value is: 7
Value is: 8
Value is: 9

Value is: 10
Summation: 55

 The for-each for loop iterates until all elements in an array have been examined, it
is possible to terminate the loop early by using a break statement.

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 42

class ForEach2
{

public static void main(String args[])
{

int sum = 0;
int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

for(int x : nums)
{

System.out.println("Value is: " + x);
sum += x;
if(x == 5) break; // stop the loop when 5 is obtained

}

System.out.println("Summation of first 5 elements: " + sum);
}

}

output :

Value is: 1

Value is: 2

Value is: 3

Value is: 4

Value is: 5
Summation of first 5 elements: 15

Nested Loops

 Java allows loops to be nested. That is, one loop may be inside another.

class Nested
{

public static void main(String args[])
{

int i, j;
for(i=0; i<10; i++)

{
for(j=i; j<10; j++)

{

System.out.print(".");

System.out.println();
}

}
}

}

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 43

The output produced by this program is shown here:

..........

.........

........

.......

......

.....

....

...

..

.
Jump Statements

 Java supports three jump statements: break, continue, and return.

 These statements transfer control to another part of your program..

Using break

 In Java, the break statement has three uses.

 First, as you have seen, it terminates a statement sequence in a switch statement.

 Second, it can be used to exit a loop.

 Third, it can be used as a ―civilized‖ form of goto.

Using break to Exit a Loop
 By using break, we can force immediate termination of a loop, bypassing the

conditional expression and any remaining code in the body of the loop.

 When a break statement is encountered inside a loop, the loop is terminated and
program control resumes at the next statement following the loop.

class BreakLoop
{

public static void main(String args[])
{

for(int i=0; i<100; i++)
{

if(i == 10) break; // terminate loop if i is 10
System.out.println("i: " + i);

}

System.out.println("Loop complete.");
}

}

This program generates the following output:
i: 0
i: 1
i: 2

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 44

i: 3
i: 4
i: 5
i: 6
i: 7
i: 8
i: 9
Loop complete.

 We can Use break to exit a while loop.

 When used inside a set of nested loops, the break statement will only break out of
the innermost loop.

class BreakLoop3

{
public static void main(String args[])

{
for(int i=0; i<3; i++)

{

System.out.print("Pass " + i + ": ");
for(int j=0; j<100; j++)
{

if(j == 10) break; // terminate loop if j is 10
System.out.print(j + " ");

}
System.out.println();

}
System.out.println("Loops complete.");

}
}

This program generates the following output:

Pass 0: 0 1 2 3 4 5 6 7 8 9

Pass 1: 0 1 2 3 4 5 6 7 8 9
Pass 2: 0 1 2 3 4 5 6 7 8 9

Loops complete.

Using break as a Form of Goto

 The break statement can also be employed by itself to provide a ―civilized‖ form of
the goto statement.

 Java does not have a goto statement because it provides a way to branch in an

arbitrary and unstructured manner.
 The general form of the labeled break statement is shown here:

break label;

 Most often, label is the name of a label that identifies a block of code. When this form
of break executes, control is transferred out of the named block.

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 45

class Break
{

public static void main(String args[])
{

boolean t =
true; first: {

second: {
third: {

System.out.println("Before the break.");

if(t) break second; // break out of second block
System.out.println("This won't execute");

}

System.out.println("This won't execute");
}

System.out.println("This is after second block.");
}

}
}

output:
Before the break.

This is after second block.

 One of the most common uses for a labeled break statement is to exit from nested loops.

class BreakLoop4

{
public static void main(String args[])

{
outer: for(int i=0; i<3; i++)

{
System.out.print("Pass " + i + ": ");
for(int j=0; j<100; j++)
{

if(j == 10) break outer; // exit both loops
System.out.print(j + " ");

}
System.out.println("This will not print");

}
System.out.println("Loops complete.");
}

}
This program generates the following output:
Pass 0: 0 1 2 3 4 5 6 7 8 9 Loops complete.

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 46

Using continue

 Here the loop will skip the execution of a particular iteration upen certain condition
and continue to execute further iteration.

class Continue

{
public static void main(String args[])

{
for(int i=0; i<10; i++)

{

if (i == 2) continue;
System.out.print(i + " ");

}
}

}
output :

0 1 3 4 5 6 7 8 9

class ContinueLabel
{

public static void main(String args[])
{

outer: for (int i=0; i<10; i++)
{

for(int j=0; j<10; j++)
{

if(j > i)
{

System.out.println();
continue outer;

}
System.out.print(" " + (i * j));

}
}

System.out.println();
}

}
The continue statement in this example terminates the loop counting j and continues with

the next iteration of the loop counting i. Here is the output of this

program: 0 0 1

0 2 4
0 3 6 9
0 4 8 12 16

Sem: IV Subject: Object Oriented Concepts Module: 2 Author: Prof. S V Manjaragi

__

Department of CSE, HSIT, Nidasoshi 47

0 5 10 15 20 25

0 6 12 18 24 30 36
0 7 14 21 28 35 42 49

0 8 16 24 32 40 48 56 64
0 9 18 27 36 45 54 63 72 81

return

 The last control statement is return. The return statement is used to explicitly return
from a method. That is, it causes program control to transfer back to the caller of the
method.

 Here, return causes execution to return to the Java run-time system, since it is the

run-time system that calls main().

class Return
{

public static void main(String args[])
{

boolean t = true;
System.out.println("Before the return.");
if(t) return; // return to caller
System.out.println("This won't execute.");

}
}
output:

Before the return.

 As you can see, the final println() statement is not executed. As soon as return
is executed, control passes back to the caller.

