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Backtracking General Method

The desired solution is expressible as an n-tuple (x,.....,x,),
where the x; are chosen from some finite set Si

Often the problem to be solved calls for finding one vector
that maximizes ( or minimizes or satisfies ) a criterion function
P(Xq,.e)X,)

Sometimes it seeks all vectors that satisfy P

Suppose m is the size of set S,, then there are m = mym,...m,,
n-tuples that are possible candidates for satisfying the
function P

Its basic idea is to build up the solution vector one component
at a time and to use modified criterion function P(x,, X, ,...,X)
(sometimes called bounding function) to test whether the
vector being formed has any chance to of success

Major advantages of this method is this — if it is realized that
the partial vector (x;, X, ,.......,x)) can in no way lead to an
optimal solution, then m,,,...m_ possible test vectors can be
ignored entirely



Backtracking General Method

 The principle idea is to construct solutions one
component at a time and evaluate such partially
constructed candidates as follows

e If a partially constructed solution can be
developed further without \violating the
problem’s constraints, it is done by taking the first
remaining legitimate option for the next
component

* If there is no legitimate option for the next
component, no alternatives for any remaining
component need to be considered



Backtracking General Method

In this case, the algorithm backtracks to replace the
last component of the partially constructed
solution with its next option

This kind of backtracking is implemented by
constructing a tree called as state-space tree(SST)

In SST, its root represent an initial state before the
search for a solution begins

The nodes of first level in the SST represent the
noices made for the first component of a solution

C
The nodes of the second level represent the
choices for the second component and so on




1  Algorithm Backtrack(k)

2 // This schema describes the backtracking process using
3 / recursion. On entering, the first & — 1 values

4 /[ z[1],z[2],...,z[k — 1] of the solution vector

5 // z[l : n] have been assigned. z[ ] and n are global.

6

7 for (each z[k] € T(z[1],...,z[k —1]) do

8 {

9 if (Bg(z[l],z[2],...,z[k]) #0) then

10

11 if (z[1],2[2],...,z[k] is a path to an answer node)
12 then write (z[1: k]);

13 if (k < n) then Backtrack(k + 1);

14 }

15

16 }

Algorithm 7.1 Recursive backtracking algorithm



n-Queens
Problem



n-Queens Problem

The problem is to place n queens on an n-by-n chessboard so
that no TWO queens attack each other by being in the same
row or in the same column or on the same diagonal.

For n=1, the problem has a trivial solution
For n=2 and n=3, there is no solution

So let us consider, n=4, i.e. four-queens problem and solve it
by the backtracking technique

1T 2 3 4

4+—— qgueen 1

4—— (ueen ?

4+—— queen 3
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FIGURE 12.1 Board for the four-queens problem
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Figure 7.5 Example of a backtrack solution to the 4-queens problem



State-Space Tree for n-Queens Problem
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FIGURE 12.2 State-space tree of scolving the fourqueens problem by backtracking.
« denotes an unsuccessful attempt to place a gueen in the ncicated
column. The numbers above the nodes indicate the order in which the
nodes are generated.




Figure 7.5 shows graphically the steps that the backtracking algorithm goes
through as it tries to find a solution. The dots indicate placements of a
queen which were tried and rejected because another queen was attacking.
[n Figure 7.5(b) the second queen is placed on columns 1 and 2 and finally
settles on column 3. In Figure 7.5(c) the algorithm tries all four columns
and 15 unable to place the next queen on a square. Backtracking now takes
place. In Figure 7.5(d) the second queen is moved to the next possible
column, column 4 and the third queen is placed on column 2. The boards in
Figure 7.5 (e), (f), (), and (h) show the remaining steps that the algorithm
goes through until a solution is found.
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N-Queen Algorithm

Algorithm Place(k, 1)
// Returns true if a queen can be placed in kth row and
// ith column. Otherwise it returns false. z| | is a
// global array whose first (k — 1) values have been set.
// Abs(r) returns the absolute value of .
{
for j.=1tok—-1do
if ((z[5] = 1) // Two in the same column
or (Abs(z[j] —i) = Abs(j — k)))
// or in the same diagonal
then return false;
return true;

}
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Algorithm NQueens(k,n)

/[ Using backtracking, this procedure prints all
/[ possible placements of n queens on an n x n
// chessboard so that they are nonattacking.

{

fori:=1tondo

{
if Place(k, ) then

z[k] := 1
if (k=n) then write (z[1:n]);
else NQueens(k + 1,n);

}
}



Sum of subset
Problem



Example 7.2 [Sum of subsets| Given positive numbers w;, 1 <i <n, and
m, this problem calls for finding all subsets of the w; whose sums are m.
For example, if n =4, (wy,wy, ws,wy) = (11, 13, 24, 7), and m = 31, then
the desired subsets are (11, 13, 7) and (24, 7). Rather than represent the
solution vector by the w; which sum to m, we could represent the solution
vector by giving the indices of these w;. Now the two solutions are described
by the vectors (1, 2, 4) and (3, 4). In general, all solutions are k-tuples
(21,29,...,25), 1 <k <n, and different solutions may have different-sized
tuples. The explicit constraints require z; € {j | j is an integer and 1 <
j <n}. The implicit constraints require that no two be the same and that
the sum of the corresponding w;’s be m. Since we wish to avoid generating
multiple instances of the same subset (e.g., (1, 2, 4) and (1, 4, 2) represent the
same subset), another mplicit constraint that is imposed is that z; < z;41,
1 <1 <k,




In another formulation of the sum of subsets problem, each solution subset
is represented by an n-tuple (z1,2y,...,2,) such that z; € {0,1}, 1 <4 <n.
Then z; = 0 if w; 18 not chosen and 2; = 1 if w; 1 chosen. The solutions
to the above instance are (1, 1, 0, 1) and (0, 0, 1, 1). This formulation
expresses all solutions using a fixed-sized tuple. Thus we conclude that
there may be several ways to formulate a problem so that all solutions are
tuples that satisfy some constraints. One can verify that for both of the
above formulations, the solution space consists of 2" distinct tuples. O



Example 7.4 [Sum of subsets| In Example 7.2 we gave two po

ssible formu-

lations of the solution space for the sum of subsets problem. Figures 7.3 and
7.4 show a possible tree organization for each of these formulations for the
case n = 4. The tree of Figure 7.3 corresponds to the variable tuple size
formulation. The edges are labeled such that an edge from a level i node to
a level ¢ + 1 node represents a value for z;. At each node, the solution space

Is partitioned into subsolution spaces. The solution space 1s ¢
paths from the root node to any node in the tree, since any sucl

efined by all

1 path corre-

sponds to a subset satisfying the explicit constraints. The possi

ble paths are

() (this corresponds to the empty path from the root to itself), (1), (1,2),
1,2,3), (1,2,3,4), (1,2,4), (1,3,4), (2), (2,3), and so on. Thus, the left-
most subtree defines all subsets containing wy, the next subtree defines all

subsets containing wy but not wy, and so on.



Figure 7.3 A possible solution space organization for the sum of subsets
problem. Nodes are numbered as in breadth-first search.



The tree of Figure 7.4 corresponds to the fixed tuple size formulation.
Edges from level ¢ nodes to level i + 1 nodes are labeled with the value of
7;, which is either zero or one. All paths from the root to a leaf node define
the solution space. The left subtree of the root defines all subsets containing
w;, the right subtree defines all subsets not containing w;, and so on. Now
there are 2* leaf nodes which represent 16 possible tuples. i



Figure 7.4 Another possible organization for the sum of subsets problems.
Nodes are numbered as in D-search.



Sum of Subset Problem

Find a subset of a givensetS={s,,s,, ....s, }ofn
positive integers whose sum is equal to a given
positive integer d

For example, forS={1, 2,5, 6,8 } and d=9
Then there are two solutions:-
Subsetl1={1,2,6}=9
Subset2={1,8}=9

Of course, some instances of such problem is not
possible i.e. if d=23

For convenient, all the set elements are sorted in
increasing order as shown below-

5,<5,<.... S



Sum of subset example
$S={3,5,6,7}andd =15
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Sum of Subsets

Suppose we are given n distinct positive numbers (usually called weights)
and we desire to find all combinations ¢f these numbers whose sums are m.

This 1s called the sum of subsets problem. Examples 7.2 and 7.4 showed how

we could formulate this problem using

either fixed- or variable-sized tuples.

We consider a backtracking solution using the fixed tuple size strategy. In

this case the element z; of the solution vector is either one or zero depending
on whether the weight w; is included or not.

The children of any node in Figure

/.4 are easily generated. For a node

at level ¢ the left child corresponds to 2; = 1 and the right to z; = 0.
A simple choice for the bounding functions is By(z1,...,z;) = true iff

k n
Yo+ 3]
1=1 1=k

w; > m
+1




Bk(wla“

k n
., L) = true iff Zwixi+ Z w; > m

1=1 1=k+1

k
and Z WiTi + W1 <M

1=1

(7.1)



1  Algorithm SumOfSub(s, &k, r)

2 // Find all subsets of w[l : n] that sum to m. The values of z[j],
3 // 1< j <k, have already been determined. s = ;“;11 w(j] * z[7]
4 /[ andr=37_, w[j]. The w[j]’s are in nondecreasing order.

5 // It is assumed that w[l] < m and >, w[i] > m.

6 {

7 // Generate left child. Note: s+ w[k] < m since Bjy_ is true.
8 zlk] = 1;

9 if (s +w[k] = m) then write (z[1 : k]); // Subset found

10 / There is no recursive call here as w[j] > 0, 1 < j <n.
11 else if (s +w[k] + wlk + 1] <m)

12 then SumOfSub(s + w[k], k + 1,7 — w[k]);

13 // Generate right child and evaluate By.

14 if ((s+r—wlk] >m) and (s + wlk + 1] <m)) then

15

16 z[k] := 0;

17 SumOfSub(s, k + 1,7 — wlk]);

18 }

19 }

Algorithm 7.6 Recursive backtracking algorithm for sum of subsets prob-
lem



Algorithm SumOfSub avoids computing ¥F_, w;z; and T, ., w; each
time by keeping these values in variables s and r respectively. The a,lgorz'thm
assumes wy <m and Y. w; > m. The initial call is SumOfSub(0, 1, Y7 w;)
[t is interesting to note that the algorithm does not explicitly use the test
k> n to terminate the recursion. This test is not needed as on entry to the
algorithm, s # m and s +r > m. Hence, r # 0 and so k can be no greater
than n. Also note that in the else if statement (line 11), since s + wy, < m
and s +r > m, 1t follows that r # w; and hence k +1 <n. Observe
also that if s+ wy = m (line 9), then zj1q,...,%, must be zero. These
zeros are omitted from the output of line 9. In line 11 we do not test for

Ei-ﬁ:l Wili + Y jepag Wi > M, a5 we already know s +7 > m and 2 = 1.



Example 7.6 Figure 7.10 shows the portion of the state space tree gener-
ated by function SumOfSub while working on the instance n = 6, m = 30,
and wl : 6] = {5,10,12,13,15,18}. The rectangular nodes list the values
of s,k, and r on each of the calls to SumOfSub. Circular nodes represent
points at which subsets with sums m are printed out. At nodes A, B, and
C' the output is respectively (1, 1, 0, 0, 1), (1, 0, 1, 1), and (0, 0, 1, 0, 0,
). Note that the tree of Figure 7.10 contains only 23 rectangular nodes.
The full state space tree for n = 6 contains 2° — 1 = 63 nodes from which
calls could be made (this count excludes the 64 leaf nodes as no call need be
made from a leaf). }




0,1,73

13,5,331

j 0,5,33

'12,6,18 13,6,18l

Figure 7.10 Portion of state space tree generated by SumOfSub



Graph Coloring
Problem



Graph Coloring

Let G be a graph and m be a given positive integer

Then the nodes of graph G can be colored in such a
way that no TWO adjacent nodes have the same color
yet only m colors are used

This is termed the m-colorability decision problem

If d is the degree of graph, then it can be colored with
d+1 colors

The m-colorability optimization problem asks for the
smallest integer m for which the graph G can be
colored

This integer is referred to as the chromatic number of
the graph



The above graph can be colored with three colors 1, 2 and 3
The color of each node is indicated next to it

Three colors are needed to color this graph and hence this
graph’s chromatic numberis 3



Suppose we represent a graph by its adjacency matrix G|L : n,1 : n)
where Gli, 7| = Lif (4, /) is an edge of G, and Gi, j| = 0 otherwise. The colors
are represented by the integers 1,2,...,m and the solutions are given by the
n-tuple (z1,...,2,), where ; is the color of node 1. Using the recursive
backtracking formulation as given in Algorithm 7.1, the resulting algorithm
is mColoring (Algorithm 7.7). The underlying state space tree used is a
tree of degree m and height n 4+ 1. Each node at level 1 has m children
corresponding to the m possible assignments to z;, 1 < ¢ <'n. Nodes at

level n + 1 are leaf nodes. Figure 7.13 shows the state space tree when n =
3 and m = 3.

Function mColoring 15 begun by first assigning the graph to its adja-
cency matrix, setting the array z[ | to zero, and then invoking the statement
mColoring(1);.



Figure 7.13 State space tree for mColoring when n =3 and m =3



1 Algorithm mColoring(k)

2 // This algorithm was formed using the recursive backtracking
3 // schema. The graph is represented by its boolean adjacency
4 // matrix G[1 : n,1:n]. All assignments of 1,2,...,m to the
5 // vertices of the graph such that adjacent vertices are

6 // assigned distinct integers are printed. k is the index

7 // of the next vertex to color.

8 A

9 repeat

10 / Generate all legal assignments for z[k].

11 NextValue(k); // Assign to z[k] a legal color.

12 if (z[k] = 0) then return; // No new color possible
13 if (k =n) then // At most m colors have been
14 // used to color the n vertices.

15 write (z[l : n));

16 else mColoring(k + 1);

17 } until (false);

18 }

Algorithm 7.7 Finding all m-colorings of a graph
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Algorithm NextValue(k)

// z[1],...,z[k — 1] have been assigned integer values in

// the range [1,m] such that adjacent vertices have distinct
/ integers. A value for z[k] is determined in the range

// [0,m]. z[k] is assigned the next highest numbered color

//

// of vertex k. If no such color exists, then z[k] is 0.

while maintaining distinctness from the adJacent vertices

repeat

{

z(k] := (z[k] + 1) mod (m + 1); // Next highest color.
if (z[k] = 0) then return; // All colors have been used.
for 1 to n do

Check if this color is
distinct from adjacent colors.

f ((Glk,j] #0) and (z[k] = z[j]))
If (k,7) is and edge and if adj.
vertices have the same color.

then break;

J =
{ /
/
/
/

\\ \\

}

if (f =n + 1) then return; // New color found
} until (false); // Otherwise try to find another color.

Algorithm 7.8 Generating a next color



For instance, Figure 7.14 shows a simple graph containing four noces. Below
that is the tree that is generated by mColoring, Each path to a leaf repre-
sents a coloring using at most three colors, Note that only 12 solutions exist
with exactly three colors. In this tree, after choosing #; = 2 and 2y = 1,
the possible choices for 3 are 2 and 3. After choosing 27 =2, 29 =1, and
13 = 2, possible values for 4 are 1 and 3. And so on.

An upper bound on the computing time of mColoring can be arrived at by
noticing that the number of internal nodes in the state space tree is a 01 m'
At each internal node, O(mn) time is spent by NextValue to determine the

children cmresponding to legal colorings. Hence the total time 1s bounded
by Y mit =T min = n(m™! ~2)/(m ~ 1) = Ofnm")



1 2
i z
T ) 1/2\
Xo= \3

\

X3= 1
w=2/132 2/133

Figure 7.14 A 4-node graph and all possible 3-colorings
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Hamiltonian Cycle

e lLet G=(V, E) be a connected graph with n
vertices

* A Hamiltonian cycle is a round-trip path along
n edges of G that visits every vertex once and
returns to its starting position

* |n other words if a Hamiltonian cycle begins at
some vertex v, € G and the vertices of G are
visited in the order v,v,,...\V,,,;, then the

edges (v, v,;) arein E, 1 <i<n, and the v, are
distinct except for v, and v, ,, which are equal.

n+1’



The graph G1 of Figure 7.15 contains the Hamiltonian cycle 1, 2, 8, 7,
6, 5, 4, 3, 1. The graph G2 of Figure 7.15 contains no Hamiltonian cycle.
There 15 no known easy way to determine whether a given graph contains a
Hamiltontan cycle. We now look at a backtracking algorithm that finds all
the Hamultonian cycles n a graph. The graph may be directed or undirected.
Only distinct cycles are output,

v 2 34D
Gl1:
@0 &)—

o O N

Figure 7.15 Two graphs, one containing a Hamiltonian cycle



The backtracking solution vector (21,...,x,) is defined so that z; rep-
resents the ith visited vertex of the proposed cycle. Now all we need do 1s
determine how to compute the set of possible vertices for . if x1,..., 2
have already been chosen. If £ = 1, then z; can be any of the n vertices. To
avoid printing the same cycle n times, we require that z; = 1. If 1 <k <n,
then zj, can be any vertex v that is distinct from 1, 29,..., 251 and v i
connected by an edge to z;_;. The vertex z,, can only be the one remaming
vertex and it must be connected to both z,_; and z;. We begin by present-
ing function NextValue(k) (Algorithm 7.9), which determines a possible next

vertex for the proposed cycle.

Using NextValue we can particularize the recursive backtracking schema
to find all Hamiltonian cycles (Algorithm 7.10). This algorithm is started
by first initializing the adjacency matrix G[1: n,1: n}, then setting z[2 : n]
to zero and z[1] to 1, and then executing Hamiltonian(2).



1 Algorithm NextValue(k)

2 /) z[l:k—1]is a path of kK — 1 distinct vertices. If z[k] = 0, then
3 // no vertex has as yet been assigned to z[k]. After execution,

4 [/ z[k] is assigned to the next highest numbered vertex which

5 / does not already appear in z[1 : k — 1] and is connected by

6 // an edge to z[k — 1]. Otherwise z[k] = 0. If kK = n, then

7 // in addition z[k] is connected to z[1].

8

9 repeat

10 {

11 z[k] := (z[k] + 1) mod (n + 1); // Next vertex.

12 if (z[k] = 0) then return;

13 if (G[z[k — 1], z[k]] # 0) then

14 // Is there an edge?

15 for j:=1to k —1 do if (z[j] = z[k]) then break;
16 // Check for distinctness.

17 if (j = k) then // If true, then the vertex is distinct.
18 if ((k <n) or ((k =n) and G|z[n], z[1]] # 0))
19 then return;

20 }

21 } until (false);

22 3}

Algorithm 7.9 Generating a next vertex



1 Algorithm Hamiltonian(k)

2 // This algorithm uses the recursive formulation of
3 // backtracking to find all the Hamiltonian cycles
4 /] of a graph. The graph is stored as an adjacency
5 // matrix G[1:n,1:n]. All cycles begin at node 1.
6 {

7 repeat

8 { // Generate values for z[k].

9 NextValue(k); // Assign a legal next value to z[k].
10 if (z[k] = 0) then return;

11 if (k = n) then write (z[1: n});

12 else Hamiltonian{k + 1);

13 } until (false);

14 }

Algorithm 7.10 Finding all Hamiltonian cycles
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Programme-and-Bound

Branch-and-Bound is similar to backtracking, but
it cut off a branch of the problem’s state-space
tree as soon as we can deduce that it cannot lead
to a solution

This idea is useful to find an optimization
problem, one that seeks to minimize or maximize
an objective function, usually subject to some
constraints.

A feasible solution is a point in the problem’s
search space that satisfies all the problem’s
constraints

While, an optimal solution is a feasible solution
with the best value of the objective function




* Compared to backtracking, branch-and-bound
requires two additional items:

— a way to provide, for every node of a state-space
tree, a bound on the best value of the objective
function1 on any solution that can be obtained by
adding further components to the partially
constructed solution represented by the node

— the value of the best solution seen so far



Branch-and-Bound Algorithm

* Three reasons to terminate a search path at the
current node in a state-space tree of a branch-
and-bound algorithm-

1. The value of the node’s bound is not better than
the value of the best solution seen so far

2. The node represents no feasible solutions
because the constraints of the problem are
already violated

3. The subset of feasible solutions represented by
the node consists of a single point ( and hence
no further choices can be made )



Assignment Problem Statement

* Assignment problem is a problem of assigning n
people to n jobs so that the total cost of the
assignment is as small as possible

* An instance of the assignment problem is specified
by an n-by-n cost matrix C so that we can state the
problem as follows - select one element in each row
of the matrix so that no two selected elements are in
the same column and their sum is the smallest
possible



jobl job2 job3 job4

Y 2 7 8 | persona

C = 6 4 3 7 | person b

S S 1 8 | personc

|7 6 9 4 | persond

0
start
h=2+3+1+4 =10
1 2 3 4
a— | a— 2 a—>3 a— 4

fp=9+34+14+4 =17 h=2+3+1+4=10] |{b=7+4+5+4=20 |b=8+3+1+6=18

FIGURE 125 Levels 0 and 1 of the state-space tree for the instance of the assignment

problem being solved with the best-first branch-and-bound aigorithm. The
aumber above a nade shows the order in which the node was generated,
A node's fields indicate the job number assigned to person « and the
lovver bound value, Ik, Tor this node.



Assignment Problem Solution

aa1 a — 2 a— 3 a — 4
ib=17 b =10 | fh =20 th=18

b > 1 b — 3
b=13 b =14

FIGURE 12.6 Levels0, 1,and 2 of the state-space tree for the instance of the assignment
problem being solved with the best-first branch-and-bound algorithm



Assignment Problem- Optimal(Minimum) Solution
a->2, b->1,¢c->3,d>4=2+6+1+4=13

0

start
b =10 I
1 2 3 4
a — 1 a8 — 2 a — 3 a — 4
b =17 b=10 b =20 =18
X X X
5 6 7
b — 1 h = 3 b > 4
h =13 6 =14 =17
/ \ X X
8 o
c — 3 c — 4
o —» 4 d — 3
cost =13 cost = 25
solution inferior solution

FIGURE 12.7 Complete state-space tree for the instance of the assignment probiem
solved with the best-first branch-and-bound algorithm



BRANCH-AND-BOUND
Knapsack Problem

* Given n items of known weights w; and the values v,
wherei=1, 2, 3, ..., n, and a knapsack of capacity W,
find the most valuable subset of the items that fit in
the knapsack

 For convenient, must arrange items in descending
order by their value-to-weight ratios as shown in
below example-

item weight valme valne

weight
1 4 $40 10
2 7 $42 6
3 35 $25 5 The knapsack’s capacity W is 10,
4 3 $12 4




LC(Least Cost) Branch and Bound Solution

To use branch and bound technique to solve any problem we
need to construct state space tree for given problem

As we know that 0/1 Knapsack problem is maximization

problem(to get maximum profit), here we will solve it using
minimization problem

Clearly, Zp.x; is maximized iff =Zp.x; is minimized
This modified 0/1 knapsack problem is stated as below-

t
minimize — Zpi:ci
=1

n
subject to sz:):@ <m (8.1)

1=1

zi=0orl, 1<1<n



Each node on the ith level of this tree, 0 < i < 1, represents
all the subsets of n items that include a particular selection
made from the first i ordered items.

This particular selection is uniquely determined by the path
from the root to the node: a branch going to the left
indicates the inclusion of the next item, while a branch
going to the right indicates its exclusion.

We record the total weight w and the total value v of this
selection in the node, along with some upper bound ub on
the value of any subset that can be obtained by adding zero
or more items to this selection.

A simple way to compute the upper bound ub is to add to v,
the total value of the items already selected, the product of
the remaining capacity of the knapsack W - w and the best
per unit payoff among the remaining items, which is v,/
Wisp-

ub = v+ (W — w1 /w;,1). (12.1)



valine

item weight value —
weight
- 4 $40 10
2 7 $42 6
3 5 $25 5 The knapsack’s capacity W is 10,
4 3 $12 4
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0
w=0 v=0
ub =100
with 1 wio 1
1 / |
w=4, v=40 w=0 v=0
ub =76 ub =60
with 2 wifo 2 X :
: inferior to i
3 4 node 8 5
Ww=11 Ww=d, v=A40
ub =70
not fexasible with 3 Who 3
5 6
w=0 v=65 w=4, v=40
ub = 69 ub =64 o
:-r. .
with 4 wfo 4 inferior to node 8 !
7 / 8 o
w=12 Ww=9 v=065
ub =65
X
not feasinle eptimal sofution
FIGURE 12.8 State-space tree of the branch-and-bound algorithm for the instance of
the knapsack problem
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For LCBB example - Consider the 0/1 Knapsack instance
n=4;(p11p21p31p4)=(10110;12/18)1 (W11W21W31W4)=(21416;9) and m=15
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For FIFOBB Example - Consider the 0/1 Knapsack instance
n=4;(p11p21p31p4)=(10110;12;18)1 (W11W2;W3;W4)=(214;6;9) and m=15
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Traveling Salesman Problem

We will be able to apply the branch-and-bound technique to
instances of the traveling salesman problem if we come up with a
reasonable lower bound on tour lengths.

One very simple lower bound can be obtained by finding the
smallest element in the intercity distance matrix D and multiplying
it by the number of cities n.

For each city i, 1 <i < n, find the sum s, of the distances from city i
to the two nearest cities; compute the sum s of these n numbers;
divide the result by 2; and, if all the distances are integers, round up
the result to the nearest integer:

lb=s/2 -(12.2)
For example, for the instance in Figure 12.9a, formula (12.2) yields

b=M1+3)+ B+ +1+2)+B+4)+C+3)]2] =14



* Moreover, for any subset of tours that must
include particular edges of a given graph, we can
modify lower bound (12.2) accordingly.

 For example, for all the Hamiltonian circuits of
the graph in Figure 12.9a that must include edge
(a, d), we get the following lower bound by
summing the lengths of the two shortest edges
incident with each of the vertices, with the
required inclusion of edges (a, d) and (d, a):

M+ + G+ 6 +(1+2)+ B+ 5 + (2 +3]/2] = 16.
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FIGURE 12.9 (a} Weighted graph. (b} State-space tres of the the branch-and-bound
algorithm to find the shortest Hamiltonian circuit in this graph, The list of

vertices in a node specifies a beginning part of the Hamiltonian circuits
represented by the node.
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Figure 8.10 State space tree for the traveling salesperson problem with
n=4and =1 =1
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Figure 8.11 An example






(c) Path 1,4; node 4

(b) Path 1,3; node 3

(a) Path 1,2; node 2
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(f) Path 1,4,3; node 7

(e) Path 1,4,2; node 6

(d) Path 1,5; node 5
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(h) Path 1,4,2.3; node 9 (i) Path 1,4,2,5; node 10

(g) Path 1,4,5; node 8

Figure 8.13 Reduced cost matrices corresponding to nodes in Figure 8.12



Let us now trace the progress of the LOBB algorithm on the problem
instance of Figure 8.11(a). We use ¢ and v as above. The initial reduced
matrix is that of Figure 8.11(b) and upper = 00. The portion of the state
space tree that gets generated is shown in Figure 8.12. Starting with the
root node as the F-node, nodes 2, 3, 4, and 5 are generated (in that order).
The reduced matrices corresponding to these nodes are shown in Figure 8.13.
The matrix of Figure 8.13(b) is obtained from that of 8.11(b) by (1) setting
all entries in row 1 and column 3 to oo, (2) setting the element at position
(3, 1) to 0o, and (3) reducing column 1 by subtracting by 11. The ¢ for node
3 is therefore 25 4 17 (the cost of edge (1,3) in the reduced matrix) + 11
= 53. The matrices and ¢ value for nodes 2, 4, and 5 are obtained similarly.
The value of upper is unchanged and node 4 becomes the next E-node. Its
children 6, 7, and 8 are generated. The live nodes at this time are nodes 2,
3, 9,6, 7 and 8 Node 6 has least ¢ value and becomes the next E-node.
Nodes 9 and 10 are generated. Node 10 is the next E-node. The solution
node, node 11, is generated. The tour length for this node is ¢(11) = 28 and
upper is updated to 28. For the next E-node, node 5, ¢(5) = 31 > upper.
Hence, LCBB terminates with 1, 4, 2, 5, 3, 1 as the shortest length tour.



NP Complete and NP Hard Problems

Basic Concept
In this chapter we are concerned with the distinction
between problems that can be solved by a polynomial
time algorithm and problems for which no polynomial
time algorithm is known

For many of the problems we know and study, the best
algorithms for their solutions have computing times
that cluster into two groups

First group consists of problems whose solution times
are bounded by polynomial of small degrees.
Examples- Searching(O(logn)), Sorting(O(nlogn))

Second group made up of problems whose best-known
algorithms are non-polynomials. Examples- Travelling
Salesman Problem(0O(n22")), Knapsack
Problems(0O(2"/2))




NP Complete and NP Hard Problems

Basic Concept
The theory of NP-completeness which we present
here does not provide a method of obtaining
polynomial time algorithms for problems in the
second group

Nor does it say that algorithms of this complexity
do not exist

nstead, what we do is show that many of the
oroblems for which there are no known
nolynomial time algorithms are computationally
related

In fact, we establish two classes of problems
These are given names NP-hard and NP-complete




NP Complete and NP Hard Problems
Basic Concept
* A problem that is NP-complete has the property
that it can be solved in polynomial time if and
only if all other NP-complete problems can also
oe solved in polynomial time

* If an NP-hard problem can be solved in
oolynomial time, then all NP-complete problems
can be solved in polynomial time

* All NP-complete problems are NP-hard, but some
NP-hard problems are not known to be NP-
complete



NP Complete and NP Hard Problems

Non-Deterministic Algorithm
Deterministic algorithm has the property that the
result of every operation is uniquely defined

Deterministic algorithms agrees with the way programs
are executed on a computer

Non-deterministic algorithm remove restriction on the
outcome of every operation

Also non-deterministic algorithm allow to contain
operations whose outcomes are not uniquely defined
but are limited to specified sets of possibilities

Non-deterministic function introduces three new

functions-
1. Choice(S) arbitrarily chooses one of the element of set S
2. Failure() signals an unsuccessful completion
3. Success() signals a successful completion



Non-Deterministic Algorithms




The Classes NP-hard and NP-complete

P is the set of all decision
problems solvable by
deterministic algorithms in
polynomial time

NP is the set of all decision
problems solvable by non-
deterministic algorithms in
polynomial time

7/8/2022

From below figure, its clear that NP-
hard problems that are not NP-
complete

Only a decision problem can be NP-
complete

However, an optimization problem
may be NP-hard

Optimization problems cannot be NP-
complete whereas decision problems
can

There also exist NP-hard decision
problems that are not NP-complete
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