
S. J. P. N. TRUST’S
HIRASUGAR INSTITUTE OF TECHNOLOGY, NIDASOSHI

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME.

Department of Computer Science & Engineering

Course: Design And Analysis of Algorithms (18CS42)

Module 5: Backtracking, Program & Bound, 0/1 Knapsack
Problem, NP-Hard & NP-Complete Problems

Prof. A. A. Daptardar
Asst. Prof. , Dept. of Computer Science & Engg.,

Hirasugar Institute of Technology, Nidasoshi
7/8/2022 1

Module – 5

Backtracking
1. General Method (T2:7.1)

2. n-Queens Problem (T1:12.1)

3. Sum of Subset Problem (T1:12.1)

4. Graph coloring (T2:7.4)

5. Hamiltonian Cycle (T2:7.5)

7/8/2022 2

Backtracking General Method
• The desired solution is expressible as an n-tuple (x1,…..,xn),

where the xi are chosen from some finite set Si
• Often the problem to be solved calls for finding one vector

that maximizes (or minimizes or satisfies) a criterion function
P(x1,…..,xn)

• Sometimes it seeks all vectors that satisfy P
• Suppose m is the size of set Si, then there are m = m1m2….mn,

n-tuples that are possible candidates for satisfying the
function P

• Its basic idea is to build up the solution vector one component
at a time and to use modified criterion function Pi(x1, x2 ,…,xi)
(sometimes called bounding function) to test whether the
vector being formed has any chance to of success

• Major advantages of this method is this – if it is realized that
the partial vector (x1, x2 ,…….,xi) can in no way lead to an
optimal solution, then mi+1….mn possible test vectors can be
ignored entirely

7/8/2022 3

Backtracking General Method

• The principle idea is to construct solutions one
component at a time and evaluate such partially
constructed candidates as follows

• If a partially constructed solution can be
developed further without violating the
problem’s constraints, it is done by taking the first
remaining legitimate option for the next
component

• If there is no legitimate option for the next
component, no alternatives for any remaining
component need to be considered

7/8/2022 4

Backtracking General Method
• In this case, the algorithm backtracks to replace the

last component of the partially constructed
solution with its next option

• This kind of backtracking is implemented by
constructing a tree called as state-space tree(SST)

• In SST, its root represent an initial state before the
search for a solution begins

• The nodes of first level in the SST represent the
choices made for the first component of a solution

• The nodes of the second level represent the
choices for the second component and so on

7/8/2022 5

7/8/2022 6

n-Queens
Problem

7/8/2022 7

n-Queens Problem
• The problem is to place n queens on an n-by-n chessboard so

that no TWO queens attack each other by being in the same
row or in the same column or on the same diagonal.

• For n=1, the problem has a trivial solution

• For n=2 and n=3, there is no solution

• So let us consider, n=4, i.e. four-queens problem and solve it
by the backtracking technique

7/8/2022 8

7/8/2022 9

State-Space Tree for n-Queens Problem

7/8/2022 10

7/8/2022 11

7/8/2022 12

N-Queen Algorithm

7/8/2022 13

Sum of subset
Problem

7/8/2022 14

7/8/2022 15

7/8/2022 16

7/8/2022 17

7/8/2022 18

7/8/2022 19

7/8/2022 20

Sum of Subset Problem
• Find a subset of a given set S = { s1, s2, …. sn } of n

positive integers whose sum is equal to a given
positive integer d

• For example, for S = { 1, 2, 5, 6, 8 } and d=9
• Then there are two solutions:-
• Subset1 = { 1, 2, 6 } = 9
• Subset2 = { 1, 8 } = 9
• Of course, some instances of such problem is not

possible i.e. if d=23
• For convenient, all the set elements are sorted in

increasing order as shown below-
s1 ≤ s2 ≤ ….. ≤ sn

7/8/2022 21

Sum of subset example
S = { 3, 5, 6, 7 } and d = 15

7/8/2022 22

Sum of Subsets

7/8/2022 23

7/8/2022 24

7/8/2022 25

7/8/2022 26

7/8/2022 27

7/8/2022 28

Graph Coloring
Problem

7/8/2022 29

Graph Coloring
• Let G be a graph and m be a given positive integer

• Then the nodes of graph G can be colored in such a
way that no TWO adjacent nodes have the same color
yet only m colors are used

• This is termed the m-colorability decision problem

• If d is the degree of graph, then it can be colored with
d+1 colors

• The m-colorability optimization problem asks for the
smallest integer m for which the graph G can be
colored

• This integer is referred to as the chromatic number of
the graph

7/8/2022 30

7/8/2022 31

• The above graph can be colored with three colors 1, 2 and 3

• The color of each node is indicated next to it

• Three colors are needed to color this graph and hence this
graph’s chromatic number is 3

7/8/2022 32

7/8/2022 33

7/8/2022 34

7/8/2022 35

7/8/2022 36

7/8/2022 37

Hamiltonian Cycle

7/8/2022 38

Hamiltonian Cycle

• Let G = (V, E) be a connected graph with n
vertices

• A Hamiltonian cycle is a round-trip path along
n edges of G that visits every vertex once and
returns to its starting position

• In other words if a Hamiltonian cycle begins at
some vertex v1 ϵ G and the vertices of G are
visited in the order v1,v2,….,Vn+1, then the
edges (vi, vi+1) are in E, 1 ≤ i ≤ n, and the vi are
distinct except for v1 and vn+1, which are equal.

7/8/2022 39

7/8/2022 40

7/8/2022 41

7/8/2022 42

7/8/2022 43

Programme & Bound

7/8/2022 44

Programme-and-Bound
• Branch-and-Bound is similar to backtracking, but

it cut off a branch of the problem’s state-space
tree as soon as we can deduce that it cannot lead
to a solution

• This idea is useful to find an optimization
problem, one that seeks to minimize or maximize
an objective function, usually subject to some
constraints.

• A feasible solution is a point in the problem’s
search space that satisfies all the problem’s
constraints

• While, an optimal solution is a feasible solution
with the best value of the objective function

7/8/2022 45

• Compared to backtracking, branch-and-bound
requires two additional items:

– a way to provide, for every node of a state-space
tree, a bound on the best value of the objective
function1 on any solution that can be obtained by
adding further components to the partially
constructed solution represented by the node

– the value of the best solution seen so far

7/8/2022 46

Branch-and-Bound Algorithm
• Three reasons to terminate a search path at the

current node in a state-space tree of a branch-
and-bound algorithm-

1. The value of the node’s bound is not better than
the value of the best solution seen so far

2. The node represents no feasible solutions
because the constraints of the problem are
already violated

3. The subset of feasible solutions represented by
the node consists of a single point (and hence
no further choices can be made)

7/8/2022 47

Assignment Problem Statement

7/8/2022 48

• Assignment problem is a problem of assigning n
people to n jobs so that the total cost of the
assignment is as small as possible

• An instance of the assignment problem is specified
by an n-by-n cost matrix C so that we can state the
problem as follows - select one element in each row
of the matrix so that no two selected elements are in
the same column and their sum is the smallest
possible

7/8/2022 49

Assignment Problem Solution

7/8/2022 50

Assignment Problem- Optimal(Minimum) Solution

a->2, b->1, c->3, d->4 = 2 + 6 + 1 + 4 = 13

7/8/2022 51

BRANCH-AND-BOUND
Knapsack Problem

7/8/2022 52

• Given n items of known weights wi and the values vi,
where i = 1, 2, 3, …, n, and a knapsack of capacity W,
find the most valuable subset of the items that fit in
the knapsack

• For convenient, must arrange items in descending
order by their value-to-weight ratios as shown in
below example-

LC(Least Cost) Branch and Bound Solution

• To use branch and bound technique to solve any problem we
need to construct state space tree for given problem

• As we know that 0/1 Knapsack problem is maximization
problem(to get maximum profit), here we will solve it using
minimization problem

• Clearly, Ʃpixi is maximized iff –Ʃpixi is minimized

• This modified 0/1 knapsack problem is stated as below-

7/8/2022 53

• Each node on the ith level of this tree, 0 ≤ i ≤ 1, represents
all the subsets of n items that include a particular selection
made from the first i ordered items.

• This particular selection is uniquely determined by the path
from the root to the node: a branch going to the left
indicates the inclusion of the next item, while a branch
going to the right indicates its exclusion.

• We record the total weight w and the total value v of this
selection in the node, along with some upper bound ub on
the value of any subset that can be obtained by adding zero
or more items to this selection.

• A simple way to compute the upper bound ub is to add to v,
the total value of the items already selected, the product of
the remaining capacity of the knapsack W - w and the best
per unit payoff among the remaining items, which is vi+1/
wi+1:

7/8/2022 54

7/8/2022 55

7/8/2022 56

For LCBB example - Consider the 0/1 Knapsack instance
n=4,(p1,p2,p3,p4)=(10,10,12,18), (w1,w2,w3,w4)=(2,4,6,9) and m=15

7/8/2022 57

For FIFOBB Example - Consider the 0/1 Knapsack instance
n=4,(p1,p2,p3,p4)=(10,10,12,18), (w1,w2,w3,w4)=(2,4,6,9) and m=15

7/8/2022 58

Traveling Salesman Problem

• We will be able to apply the branch-and-bound technique to
instances of the traveling salesman problem if we come up with a
reasonable lower bound on tour lengths.

• One very simple lower bound can be obtained by finding the
smallest element in the intercity distance matrix D and multiplying
it by the number of cities n.

• For each city i, 1 ≤ i ≤ n, find the sum si of the distances from city i
to the two nearest cities; compute the sum s of these n numbers;
divide the result by 2; and, if all the distances are integers, round up
the result to the nearest integer:

lb= s/2 - (12.2)
• For example, for the instance in Figure 12.9a, formula (12.2) yields

7/8/2022 59

• Moreover, for any subset of tours that must
include particular edges of a given graph, we can
modify lower bound (12.2) accordingly.

• For example, for all the Hamiltonian circuits of
the graph in Figure 12.9a that must include edge
(a, d), we get the following lower bound by
summing the lengths of the two shortest edges
incident with each of the vertices, with the
required inclusion of edges (a, d) and (d, a):

7/8/2022 60

7/8/2022 61

7/8/2022 62

7/8/2022 63

7/8/2022 64

7/8/2022 65

7/8/2022 66

NP Complete and NP Hard Problems
Basic Concept

• In this chapter we are concerned with the distinction
between problems that can be solved by a polynomial
time algorithm and problems for which no polynomial
time algorithm is known

• For many of the problems we know and study, the best
algorithms for their solutions have computing times
that cluster into two groups

• First group consists of problems whose solution times
are bounded by polynomial of small degrees.
Examples- Searching(O(logn)), Sorting(O(nlogn))

• Second group made up of problems whose best-known
algorithms are non-polynomials. Examples- Travelling
Salesman Problem(O(n22n)), Knapsack
Problems(O(2n/2))

7/8/2022 67

NP Complete and NP Hard Problems
Basic Concept

• The theory of NP-completeness which we present
here does not provide a method of obtaining
polynomial time algorithms for problems in the
second group

• Nor does it say that algorithms of this complexity
do not exist

• Instead, what we do is show that many of the
problems for which there are no known
polynomial time algorithms are computationally
related

• In fact, we establish two classes of problems
• These are given names NP-hard and NP-complete

7/8/2022 68

NP Complete and NP Hard Problems
Basic Concept

• A problem that is NP-complete has the property
that it can be solved in polynomial time if and
only if all other NP-complete problems can also
be solved in polynomial time

• If an NP-hard problem can be solved in
polynomial time, then all NP-complete problems
can be solved in polynomial time

• All NP-complete problems are NP-hard, but some
NP-hard problems are not known to be NP-
complete

7/8/2022 69

NP Complete and NP Hard Problems
Non-Deterministic Algorithm

• Deterministic algorithm has the property that the
result of every operation is uniquely defined

• Deterministic algorithms agrees with the way programs
are executed on a computer

• Non-deterministic algorithm remove restriction on the
outcome of every operation

• Also non-deterministic algorithm allow to contain
operations whose outcomes are not uniquely defined
but are limited to specified sets of possibilities

• Non-deterministic function introduces three new
functions-

1. Choice(S) arbitrarily chooses one of the element of set S
2. Failure() signals an unsuccessful completion
3. Success() signals a successful completion

7/8/2022 70

Non-Deterministic Algorithms

7/8/2022 71

The Classes NP-hard and NP-complete

• From below figure, its clear that NP-
hard problems that are not NP-
complete

• Only a decision problem can be NP-
complete

• However, an optimization problem
may be NP-hard

• Optimization problems cannot be NP-
complete whereas decision problems
can

• There also exist NP-hard decision
problems that are not NP-complete

7/8/2022 72

• P is the set of all decision
problems solvable by
deterministic algorithms in
polynomial time

• NP is the set of all decision
problems solvable by non-
deterministic algorithms in
polynomial time

