S.J. P. N. TRUST’S

HIRASUGAR INSTITUTE OF TECHNOLOGY, NIDASOSHI
Accredited at 'A’' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME.

Department of Computer Science & Engineering
Course: Design And Analysis of Algorithms (18CS42)

Module 4: Dynamic Programming,
Transitive Closure, All Pairs Shortest Path

Prof. A. A. Daptardar
Asst. Prof. , Dept. of Computer Science & Engg.,
Hirasugar Institute of Technology, Nidasoshi

7/8/2022 1

PWN=

Lo w

7/8/2022

Module — 4
Dynamic Programming

General Method
Multistage Graphs
Transitive Closure — Warshall’s Algorithm

All Pairs-Shortest Path — Floyd’s
Algorithm

Optimal Binary Search Tree
Knapsack Problem
Bellman-Ford Algorithm
Travelling Sales Person Problem
Reliability Design

General Method

Dynamic programming is an algorithm
design method that can be used when
the solution to a problem can be viewed
as the result of a sequence of decisions

Dynamic programming is a technique
used to obtain optimal solution to given
real time examples

Examples:- Knapsack Problem, Shortest
Path

Example 5.1 [Knapsack| The solution to the knapsack problem (Section
4.2) can be viewed as the result of a sequence of decisions. We have to
decide the values of z;,1 <1 <n. First we make a decision on z7, then on
Iy, then on 3, and so on. An optimal sequence of decisions maximizes the
objective function) p;z;. (1t also satisfies the constraints) w;z; < m and
0<g;< 1.) i

Example 5.2 [Optimal merge patterns| This problem was discussed in Sec-
tion 4.7. An optimal merge pattern tells us which pair of files should be
merged at each step. As a decision sequence, the problem calls for us to de-
cide which pair of files should be merged first, which pair second, which pair

third, and so on. An optimal sequence of decisions is a least-cost sequence.
i

Example 5.3 (Shortest path| One way to find a shortest path from vertex
i o vertex jn a directed graph G is to decide which vertex should be the
second vertex, which the third, which the fourth, and so on, until vertex

1s reached. An optimal sequence of decisions is one that results m a path of
least length. 0

* In Dynamic Programming, an optimal
sequence of decisions is obtained by making
an explicit appeal to the Principle of
Optimality

Principle of Optimality

* |t states that an optimal sequence of decisions
has the property that whatever the initial
state and decision are, the remaining
decisions must constitute an optimal decision
sequence with regard to the state resulting
from the first decision.

Multistage Graph

Multistage Graphs

A multistage graph G=(V, E) is a directed graph in which
the vertices are divided into k = 2 disjoint sets V,, 1 <i <
k.

In addition, if(u, v) is an edge in E, then u e V,and v €
V., forsomei, 1 <i<k.

The sets V, and V, are such that |V, |=]|V,|=1.

Let s and t, respectively, be vertices in the graph V,; and
V,.

Let c(i,j) be the cost of the edge <i,j> .

The Multistage graph problem is to find a minimum
cost path from source vertex s to sink vertex t in given
multistage graph

The next figure shows a five-stage graph

Formula to find Minimum Cost
from source s to sink t in Multistage Graph

cost(i, j) = min { c(j,) + cost(i+1, I) }
Where,
1. cost(i, j) is cost of vertex j in stage i
c(j, 1) is cost of edge from vertex j to vertex |
cost(i+1, 1) is cost of vertex | in stage i+1
I € Vi+1
<j,|I>€kE

-l T

Forward Approach

1 Algorithm FGraph(G,k,n,p)

2 // The input is a k-stage graph G = (V, FE) with n vertices
3 // indexed in order of stages. E is a set of edges and c[t, /]
4 // is the cost of (i,7). p[l : k] is a minimum-cost path.

)

6 cost[n] := 0.0;

7 for j:=n—1to 1 step —1do

8 { // Compute cost[j].

9 Let r be a vertex such that (4, r) is an edge

10 of G and clj, r] + cost[r] is minimum;

11 costj] := c[j,r] + cost(r];

12 dlj] := r;

13

14 / Find a minimum-cost path.

15 p[l] := 15 plk] := n;

16 for j:=2 to k —1 do plj] :=d|[p[y — 1]];

[—
-J
=’

Multistage-Graph Example

1. cost(5,12)=0
2. cost(4,9)=4 cost(4,10)=2 cost(4,11)=5
3. cost(3,6) = min { c(6,9) + cost(4,9), c(6,10) + cost(4,10) } = min { 6+4, 5+2} = min {10, 7} =7
4, cost(3,7) = min { c(7,9) + cost(4,9), c(7,10) + cost(4,10) } = min { 4+4, 3+2} =min {8, 5} =5
5. cost(3,8) = min { ¢(8,10) + cost(4,10), c(8,11) + cost(4,11) } = min { 5+2, 645} =min {7, 11} =7
6. cost(2,2) = min { ¢(2,6) + cost(3,6), c(2,7) + cost(3,7), c(2,8) + cost(3,8) }
=min {4+7, 245,1+7 }=min{11,7,8}=7
7. cost(2,3) = min { c¢(3,6) + cost(3,6), c(3,7) + cost(3,7) } =min {2+7, 7+5 }=min {9, 12} =9
8. cost(2,4) = min {c(4,8) + cost(3,8) } =min {1147} =min {18 } =18
9. cost(2,5) = min { ¢(5,7) + cost(3,7), c(5,8) + cost(3,8) } = min { 11+5, 8+7} = min {16, 15} = 15

10. cost(1,1) = min {c(1,2) + cost(2,2), ¢(1,3) + cost(2,3), c(1,4) + cost(2,4), c(1,5) + cost(2,5) }
=min { 9+7, 749, 3+18, 2+15} =min{ 16, 16, 21, 17} = 16

Two optimal solutions are possible for above given example-

cost(1,1) =2 cost(1,1) =3

cost(2,2)=7 cost(2,3)=6

cost(3,7)= 10 cost(3,6) =10

cost(4,10) =12 cost(4,10) =12

Edges from source tosink 1->2 ->7->10->12 Edges from source tosink 1->3->6->10->12
Cost from source tosink =9+2+3+2 cost from source tosink=7+2+5+2

= 16 = 16

* Find the minimum cost path from sto t in the
multistage graph shown below using forward

approach

cost(5,9) =0

cost(4,7) =7

cost(4,8) =3

cost(3,4) = min{c(4,7)+cost(4,7), c(4,8) + cost(4,8)}
=min{1+7, 4+3} =min{8, 7} =7

cost(3,5) = min{c(5,7)+cost(4,7), c(5,8) + cost(4,8)}
= min{ 6+7, 2+3} =min{ 13, 5}=5

cost(3,6) = min{c(6,7)+cost(4,7), c(6,8) + cost(4,8)}
= min{ 6+7, 2+3} =min{ 13, 5}=5

7/8/2022 14

cost(2,2) = min{c(2,4)+cost(3,4), c(2,6) + cost(3,6)}
= min{3+7, 3+5} =min{ 10, 8} = 8

cost(2,3) = min{c(3,4)+cost(3,4), c(3,5)+cost(3,5),c(3,6) + cost(3,6)}
= min{ 6+7, 5+5,845} =min{ 13,10,13}=10

cost(1,1) = min{c(1,2)+cost(2,2), c(1,3) + cost(2,3)}
= min{5+8, 2+10} =min{ 13, 12} =12

One optimal solution is possible for above given example-

cost(1,1) =3
cost(2,3)=5
cost(3,5) = 8
cost(4,8) =9

Edges from source tosink 1->3->5->8->9
Cost from sourcetosink =2+ 5+2+ 3
= 12

7/8/2022

15

Backward Approach

C OO ~JO O odd —

T e T = Y Sy Y
QU o DN =

Algorithm BGraph(G, &, n,p)
// Same function as FGraph
{
beost[1] := 0.0;
for j:=2tondo
{ // Compute bcost|j].
Let r be such that (r,7) is an edge of
G and bcost[r] + ¢[r, 7] is minimum;
beost[j] := beost[r] + c[r, jl;

d[j] :i= r;

/ Find a minimum-cost path.

p(1] := 15 p[k] := n3
for j:=k —1 to 2 do p[j] :=d[p[j + 1]];

The multistage graph problem can also be solved using the backward
approach. Let bp(i, 7) be a minimum-cost path from vertex s to a vertex j

in V;. Let bcost(i, j) be the cost of bp(i,). From the backward approach we
obtain

beost(i, 7) = min {bcost(t — 1,1) + ¢(l,7)} (5.6)

lev, 4
(Li)EE

Since beost(2,7) = ¢(1,5) if (1,5) € E and beost(2,5) = oo if (1,5)€E,
bcost(i,j) can be computed using (5.6) by first computing bcost for ¢ = 3,
then for 1 = 4, and so on. For the graph of Figure 5.2, we obtain

beost(3,6) = min {bcost(2,2) + ¢(2,6),bcost(2,3) + ¢(3,6)}
= min {944,742}
= 9

beost(3,7) = 11

beost(3,8) = 10

bcost(4,9) = 15

beost(4, 1
beost (4, 1

beost(5, 1

(

14
16
16

Multistage-Graph Example

bcost(1,1) =0
bcost(2,2)=9
bcost(2,3)=7
bcost(2,4) = 3
bcost(2,5) = 2
bcost(3,6) = min { bcost(2,2) + ¢(2,6), bcost(2,3) + ¢(3,6)} = min { 9+4, 7+2} = min {13,9} =9
bcost(3,7) = min {bcost(2,2) + c(2,7), bcost(2,3) + ¢(3,7), bcost(2,5) + c(5,7)}
min {9+2, 7+7, 2+11} = min {11, 14, 13} =11
bcost(3,8) = min {bcost(2,2) + c(2,8), bcost(2,4) + c(4,8), bcost(2,5) + ¢(5,8) }
=min {9+7, 3+11, 248} = min {16, 14, 10} = 10
bcost(4,9) = min { bcost(3,6) + ¢(6,9), bcost(3,7) + ¢(7,9)}
= min { 9+6, 11+4} = min { 15, 15} = 15
bcost(4,10) = min { bcost(3,6) + ¢(6,10), bcost(3,7) + c(7,10), bcost(3,8) + c(8,10)}
=min {945, 1143, 10+ 5} =min { 14, 14, 15} =14
bcost(4,11) = min {bcost(3,8) + c(8,11)}
= min { 10+6} = min { 16} = 16
bcost(5,12) = min {bcost(4,9) + ¢(9,12), bcost(4,10) + ¢(10,12), bcost(4,11) + c(11,12) }
= min { 15+4, 14+2, 16 + 5} = min {19, 16, 21} = 16

7/8/2022 21

Two optimal solutions are possible for above given

example-

cost(1,1) =2 cost(1,1) =3
cost(2,2) =7 cost(2,3) =6
cost(3,7) = 10 cost(3,6) =10
cost(4,10) =12 cost(4,10) =12
Edges from source to sink 1->2->7->10->12 Edges from source to sink1->3 ->6 ->

10->12
Cost from source tosink =9+2+3+2 cost from sourcetosink=7+2+5+2

= 16 = 16

* Find the minimum cost path from sto t in the
multistage graph shown below using
Backward approach

bcost(1,1) =0

ocost(2,2) =5

ocost(2,3) =2

bcost(3,4) = min{ bcost(2,2)+c(2,4), bcost(2,3)+c(3,4)}
=min{5+3,2+6}=min {8,8} =8

bcost(3,5) = min{ bcost(2,3)+c(3,5)}
=min{2+5}=min{7}=7

bcost(3,6) = min{ bcost(2,2)+c(2,6), bcost(2,3)+c(3,6)}
=min{5+3,2+8}=min {8,10} =8

bCOSt(4,7) = min{ bcost(3,4)+c(4,7), bcost(3,5)+c(5,7), bcost(3,6)+c(6,7)}
=min{8+1, 7+ 6,8+ 6}=min {9,13,14}=9
bCOSt(4,8) = min{ bcost(3,4)+c(4,8), bcost(3,5)+c(5,8), bcost(3,6)+c(6,8)}
=min {8+4, 7+2, 8+2 } =min {12,9,10} =9
bcost(5,9) = min{ bcost(4,7)+c(7,9), bcost(4,8)+c(8,9)}
=min {9+ 7,9+ 3} =min {16,12} =12
One optimal solution is possible for above given example-

cost(1,1)=3
cost(2,3) =5
cost(3,5)= 8
cost(4,8) =9
Edges from source tosink 1->3->5->8->9
Cost from sourcetosink =2+ 5+2+3
= 12

Transitive Closure
Warshall’s Algorithm

Transition Closure Definition

 The Transitive closure of a directed graph with n
vertices can be defined as the n-by-n Boolean matrix
T = {t;}, in which the element in the ith row (1 <i<n)
and the jt column (1 £ j € n) is 1 if there exists a
nontrivial directed path from the it" vertex to the jt
vertex otherwise, t;;is 0

KT |

(p——2)
(a) (b) (c)

FIGURE 8.2 (a) Digraph. {b} Its adjacency matrix. {c} Its transitive closure,

a
0
0
0
1

o O Q = r

C
0
0
0
1

— 3 s ey

| I |

Qo T oo

Warshall’s algorithm

 Warshall's algorithm constructs the transitive closure
of a given digraph with n vertices through a series of n-
by-n boolean matrices:

,,,,, RU=D pky g, (8.5)

e Each of these matrices provides certain information
about directed paths in the digraph.

* Specifically, the element r;* in the i" row and j* column
of matrix R®(k =0, 1, ..., n) is equal to 1 if and only if
there exists a directed path (of a positive length) from
the it vertex to the j vertex with each intermediate
vertex, if any, numbered not higher than k.

* we have the following formula for generating the elements

of matrix Rk from the elements of matrix R{k-1):

k -1 E—1 E-1
r{gjzr}j) or (":'{k Jand réj]). (8.7)

Formula (8.7) is at the heart of Warshall's algorithm.

 This formula implies the following rule for generating

elements of matrix Rk from elements of matrix R1) which
is particularly convenient for applying Warshall's algorithm

by hand:
— If an element r; is 1 in R, it remains 1 in R

— If an element r; is 0 in R, it has to be changed to 1 in R if
and only if the element in its row i and column k and the
element in its column j and row k are both 1's in Rlk-1)

Thus, the series starts with R© which does not allow any
intermediate vertices in its paths; hence, R is nothing else
but the adjacency matrix of the digraph.

R contains the information about paths that can use the
first vertex as intermediate; thus, it may contain more ones
than R,

In general, each subsequent matrix in series (8.5) has one
more vertex to use as intermediate for its paths than its
predecessor and hence may, but does not have to, contain
more ones.

The last matrix in the series, R, reflects paths that can use
all n vertices of the digraph as intermediate and hence is
nothing else but the digraph's transitive closure.

- @ b ¢ d_
aff{oj|1m o 0] Through vertex a
RO - o0 O 1 (d,a)=1&(a,b)=1,Hence(d,b)=1
cflo10 0 0 RO Results into R
all1!o0 1 0
a‘g ? E (E;- Through vertex b
sl To o T—! (a,b)=1&(b,d)=1,Hence(a,d)=1
Rl = (d,b)=1&(b,d)=1,Hence(d,d)=1
¢r 91oto o R Results into R(2)
dl 11111 {]J
o a b ¢ d_
al 0 1/011 Through vertex c
bi 0 0olaol (d, c) =1 but no path from c to others. Hence, R® remains
Rzt = o | 0 0lorlo f same as R(?)
dl 1T 1] 1)1
N a b ¢ d - Through vertex d
a“ 0 1 of7]l (a,d)=1&(d,a)=1,Hence(a,a)=1
sl o o ol (a,d)=1&(d,b)=1,Hence(a,b)=1
A= cl 0 0o 0lo (a,d)=1&(d,c)=1,Hence(a,c)=1
d I.I TEEE (a,d)=1&(d,d)=1,Hence(a,d)=1
a b ¢ d_ (b,d)=1&(d,a)=1,Hence(b,a)=1
al 1 1 1 1 (b,d)=1&(d,b)=1,Hence (b,b)=1
R4 _ bl 1 1 1 1 (b,d)=1&(d,c)=1,Hence(b,c)=1
el 00 0 0O (b,d)=1&(d,d)=1,Hence(b,d)=1
gl o1 1 1 R®) Results into R™
- - Finally R® is Transitive Closure of above given Diagraph

7/8/2022 31

Warshall’s Algorithm

ALGORITHM Warshall(A[1..n, 1.n])

/lmplements Warshall’s algorithm for computing the transitive closure
[/Input: The adjacency matrix A of a digraph with n vertices
IfDutput The transitive closure of the digraph
A
fnrk «1tondo
fori < 1tondo
forj < 1tondo

RYfi, i1« RV, 7] or (R%-D[;, k] and RE- [k i
return R

7/8/2022

32

Observations

* We can speed up the above implementation
of Warshall's algorithm for some inputs by
restructuring its innermost loop.

* Another way to make the algorithm run faster
is to treat matrix rows as bit strings and
employ the bitwise or operation available in
most modern computer languages.

 Apply Warshall’'s algorithm to find the
transitive closure of the digraph defined by
the following adjacency matrix.

— iy

o e O O

Lo, I e [i o e
= = o =
o o s O3

7/8/2022

35

7/8/2022

36

Floyd’s Algorithm

Introduction

* Given a weighted connected graph (undirected or
directed), the all-pairs shortest paths problem
asks to find the distances (the lengths of the
shortest paths) from each vertex to all other
vertices.

* |t is convenient to record the lengths of shortest
paths in an n-by-n matrix D called the distance
matrix: the element d; in the i*" row and the j*
column of this matrix indicates the length of the
shortest path from the it" vertex to the jt" vertex
(1<i,j<n).

* We can generate the distance matrix with an
algorithm that is very similar to Warshall's
algorithm. It is called Floyd's algorithm, after
its inventor R. Floyd [Flo62].

* [t is applicable to both undirected and
directed weighted graphs provided that they
do not contain a cycle of a negative length.

o

§ N © § T
5 O 8 wo
o = 8 § o
o PRI U R T
ﬁq::‘a‘
Do T Wwo
o - O B o

O o oW
—
&

(b) (c)

FIGURE 8.5 {a) Digraph. {b) Its weight matrix. (¢} Its distance matrix.

Floyd's algorithm computes the distance matrix of a weighted graph with
n vertices through a series of n-by-n matrices:

DO, .. pklh p® pw (88)

Each of these matrices contains the lengths of shortest paths with certain
constraints on the paths considered for the matrix in question.

Specifically, the element d;* in the i row and the j* column of matrix n<k)
(k=0,1, ..., n)is equal to the length of the shortest path among all paths
from the ith vertex to the jth vertex with each intermediate vertex, if any,
numbered not higher thank.

In particular, the series starts with D, which does not allow any
intermediate vertices in its paths; hence, DI is nothing but the weight
matrix of the graph.

The last matrix in the series, D", contains the lengths of the shortest
paths among all paths that can use all n vertices as intermediate and
hence is nothing but the distance matrix being sought.

We can compute all the elements of each matrix D* from its
immediate predecessor D1in series (8.8).

Let d. %) be the element in the i" row and the jt column of matrix
DX, This means that d;is equal to the length of the shortest path
among all paths from the ith vertex vi to the jth vertex vj with their
intermediate vertices numbered not higher than k:

Vi, a list of intermediate vertices each numbered not higher than k,
vj . (8.9)

Taking into account the lengths of the shortest paths in both
subsets leads to the following recurrence:

dP =minid|s ", dif U +dy Uy fork>1, d=w; (810)

To put it another way, the element in the ith row and the jt" column
of the current distance matrix D1 is replaced by the sum of the
elements in the same row i and the k" column and in the same
column j and the k" column if and only if the latter sum is smaller
than its current value.

Floyd’s Algorithm

(All Pairs shortest path problem)
to find distance from each vertex to all other vertices

ALGORITHM Floyd(W[Ln, La])

[implements Floyd’s algorithm for the all-pairs shortest-paths problem
[Mnput; The weight matrix W of a graph with no negative-length cycle
{{Output: The distance matrix of the shortest paths’ lﬂngths
D + W /fis not necessary if W can be overwritten
for k < 1ton do
fori < 1tondo
for j « 1tondo
D[i, j] + min(D[i, j} D[k] + Dl j)
return D

Floyd’s Algorithm Example

FIGURE 8.5 {a) Digraph. (b} lts weight matrix. (¢} Its distance matrix.

_abcd__ _abc
alld o 3 o afo 10 3
Bl2 0 o bl2 0 5
W=lw 7 0 1 D=2177 o
d|B o w 0| d|6 16 9
(b) (c)

o — ;B oo

D =

D=

D) =

13 =

Q0T o T T & ST T -

Lo o B s o 1V

Floyd’s Algorithm Example

a b o o _
0 o 3 oo
210 o e
w7 0 1
G [o O
a b ¢ d
0 oo | 3 s
21015 ee
ot 710 1
6 |=i{8 O
a b ¢ d
D e| 3| eo
2 0| 5 |en
g 710|1
G o| 9|0
a b ¢ d
0 10 3| 4
2 0 5|6
9 7 011
6 16 910

Through vertex a
(b,a)=2and(a,c)=3(b,c)=min{(b,c),(b,a)+(a,c)}
=min {oo,243}=5,(b,c)=5
(d,a)=6and(a,c)=3(d,c)=min{(d,c),(d,a)+(a,c)}
=min{o, 6+3}=9,(d,c)=9
D Results into D)
Through Vertex b
(c,b)=7and(b,a)=2(c,a)=min{(c,a),(c,b)+(b,a)}
=min{ee,7+2}=9,(c,a)=9
(c,b)=7and(b,c)=5(c,c)=min{(c,c),(c,b)+(b,c)}
=min{0,7+5}=0,(c,c)=0
D Results into D@

Through Vertex ¢

(a,c)=3&(c,a)=9hence, (a,a)=min{0,3+9}=(a,a)=0

(a,c)=3&(c, b)=7hence, (a,b) =min { o, 3+7 } = (a,b)= 10
(a,c)=3&(c,d)=1hence, (a,d)=min{eo, 3+1 }=(a, d)=4

(b,c)=5&(c,a)=9 hence, (b,a)=min{2,5+9 }=(b,a)=2
(b,c)=5&(c,b)=7hence, (b,b)=min{0,5+7 }= (b, b)=0
(b,c)=5&(c,d)=1hence, (b, d) =min{e, 5+1 } = (b, d)=6

(d,c)=9&(c,a)=9hence, (d,a)=min{6,9+9}=(d, a)=6

(d,c)=9&(c, b)=7hence, (d,b) =min {e,9+7 } = (d,b)= 16

(d,c)=9&(c,d)=1hence, (d,d)=min{0,9+1}=(d, d)=0
D@ Results into D)

Did) =

O o O oo

(90 B S I A B v

—
o

e e

Floyd’s Algorithm Example

Do mMm W o

D == 1

Through Vertex d

(a,d)=4&(d,a)=6hence, (a,a)=min{0,4+6}=(a,a)=0
(a,d)=4&(db)=16 hence,(a,b)=min{ 10, 4+16 } = (a,b)= 10
(a,d)=4&(d,c)=9hence, (a,c)=min{3,4+9}=(a,c)=3

(b,d)=6&(d,a)=6hence, (b,a)=min{2,6+6}=(b,a)=2
(b,d)=6&(d, b)=16 hence,(b, b)=min {0, 6+16 } = (b, b)=0
(b,d)=6&(d,c)=9hence, (b, c)=min {5, 6+9 } = (b, c)=5

(c,d)=1&(d,a)=6hence, (c,a)=min{9, 1+6 } =(c,a)=7

(c,d)=1&(d, b)=16 hence, (c, b)=min {7, 1+16 } = (¢, b)=7

(c,d)=1&(d,c)=9hence, (c,c)=min{0, 1+9 } = (c, c)=0
DB) Results into D)

D@ is Resultant Distance Matrix for all pair shortest path

e Solve the all-pairs shortest-path problem for
the digraph with the weight matrix

oo w ¥
P == S oS I

.
o0
o0
3
0-.-

2 &8 @

"0
6
o
00
|3

Through vertex a

(b,a)=6 and (a,b) = 2 hence (b,b) = min{0,6+2} = (b,b)=0
(b,a)=6 and (a,d) = 1 hence (b,d) = min{2, 6+1} =(b,d)=2
(b,a) =6 and (a,e) = 8 hence (b,e)= min{eo, 6+8}=(b,e)=14
(e,a)=3 and (a,b)=2 hence (e,b) = min{ee, 3+2}=(e,b) =5

(e,a)=3 and (a,d)=1 hence (e,d) = min{eo, 3+1}=(e,d) =4

(e,a)=3 and (a,e)=8 hence (e,e) = min{0, 3+8}=(e,e) =0

D results in D)

Through vertex b

(a,b) =2 and (b,a) = 6 hence (a,a)=min{0,2+6}=(a,a)=0
(a,b) =2 and (b,c) = 3 hence (a,c)=min{e=,2+3}=(a,c)=5
(a,b) =2 and (b,d) = 3 hence (a,d)=min{1,2+2}=(a,d)=1
(a,b) =2 and (b,e) = 14 hence (a,e)=min{8,2+14}=(a,e)=8

(e,b) =5 and (b,a) = 6 hence (e,a)=min{3,5+6}=(e,a)=3
(e,b) =5 and (b,c) = 3 hence (e,c)=min{ee,5+3}=(e,c)=8
(e,b) =5 and (b,d) = 2 hence (e,d)=min{4,5+2}=(e,d)=4
(e,b) =5 and (b,e) = 14 hence (e,e)=min{0,5+14}=(e,e)=0
D) results in D)

Through the vertex c

(a,c)=5 and (c,d)=4 hence (a,d)=min{1,5+4} = (a,d)=1
(b,c)=3 and (c,d)=4 hence (b,d)=min{2,3+4} = (b,d)=2
(d,c)=2 and (c,d)=4 hence (d,d)=min{0,2+4} = (d,d)=0
(e,c)=8 and (c,d)=4 hence (e,d)=min{4,8+4} = (e,d)=4
D results in D)

Through vertex d
(a,d)=1 and (d,c)=2 hence (a,c)=min{5,1+2} = (a,c)=3
(a,d)=1 and (d,e)=3 hence (a,e)=min{8,1+3} = (a,e)=4

(b,d)=2 and (d,c)=2 hence (b,c)=min{3,2+2} = (b,c)=3
(b,d)=2 and (d,e)=3 hence (b,e)=min{4,2+3} = (b,e)=4

(c,d)=4 and (d,c)=2 hence (c,c)=min{0,4+2} = (c,c)=0
(c,d)=4 and (d,e)=3 hence (c,e)=min{ee,4+3} = (c,e)=7

0/1 Knapsack Problem

0/1 Knapsack Problem

For given n items/objects of known weights w,,
W,,.....w,, and values v,, v,,....v, and a knapsack of
capacity W.

Find the most valuable subset of the items that fit
into the knapsack.

We assume here that all the weights and the
knapsack capacity are positive integers

Also all items are non-divisible i.e. consider full
item(1) or not consider(0)

To design a dynamic programming algorithm, we need to derive a recurrence
relation that expresses a solution to an instance of the knapsack problem in terms
of solutions to its smaller subinstances.

Let us consider an instance defined by the first i items, 1 <i < n, with weights wy, ...
, W;, values vy, ..., v, and knapsack capacity j, 1 <j<n.

Let V[i, j] be the value of an optimal solution to this instance, i.e., the value of the
most valuable subset of the first i items that fit into the knapsack of capacity j.

We can divide all the subsets of the first i items that fit the knapsack of capacity j
into two categories: those that do not include the it item and those that do.

Note the following:

— Among the subsets that do not include the it item, the value of an optimal subset is, by
definition, V[i- 1, j].

— Among the subsets that do include the it" item (hence, j — w, 2 0), an optimal subset is made
up of this item and an optimal subset of the first i - 1 items that fit into the knapsack of
capacity j - w, . The value of such an optimal subsetis v, + V[i- 1, j - w].

Recurrence formula for knapsack problem is
VI[i,j] = max {V[i-1,j], vi + V[i-1, j-wi]} ifj-w,20
VI[i-1,j] if j-w, <0
And the Initial Conditions are-
V[0,j]=0forj>0and V[i,0]=0fori>0

7/8/2022

0/1 Knapsack with Size W=5

2 3 4 B

i
: 1 2

Cc ¢ o0 o 0

Co12 12 12 92 - 2 1

0092 22 22 22

10 12 220 30 32.% 3 3 20

10 15 25 30 .37

WIZE_ vy =12
wig =1, v5 = 10
WSP—S*\.@:Z{}
wy=2,vy=15

10

RN P N . =]
o0 Do oo

VIi, jI = max {VI[i-1, j], v, + V[i-1, j-w,]} if j-w;, 20
V[1,1] = V[1-1,1]=V[0,1]=0 asj-w;<0(1-2<0)
V[1,2] = max{V[1-1,2], v,+V[1-1,2-2] } = max { V[0,2], v,+V[0,0] }= max { 0, 12+0} = max {0, 12} = 12
V[1,3] = max{V[1-1,3], v,;+V[1-1,3-2] } = max { V[0,3], v,+V[0,1] }= max { 0, 12+0} = max {0, 12} = 12
V[1,4] = max {V[1-1,4], v;+V[1-1,4-2] } = max { V[0,4], v,+V[0,2] } = max { 0, 12+0} = max {0, 12} = 12
V[1,5] = max { V[1-1,5], v,;+V[1-1,5-2] } = max { V[O,5], v,+V[0,3] } = max { 0, 12+0} = max {0, 12} = 12

V[2,1] = max { V[2-1,1], v,+V[2-1,1-1] } = max { V[1,1], v,+V[1,0] } = max { O, 10+0} = max {0, 10} = 10
V[2,2] = max {V[2-1,2], v,+V[2-1,2-1] } = max { V[1,2], v,+V[1,1] } = max { 12, 10+0} = max {12, 10} = 12
V[2,3] = max { V[2-1,3], v,+V[2-1,3-1] } = max { V[1,3], v,+V[1,2] } = max { 12, 10+12} = max {12, 22} = 22
V[2,4] = max { V[2-1,4], v,#V[2-1,4-1] } = max { V[1,4], v,+V[1,3] } = max { 12, 10+12} = max {12, 22} = 22
V[2,5] = max { V[2-1,5], v,+V[2-1,5-1] } = max { V[1,5], v,+V[1,4] } = max { 12, 10+12} = max {12, 22} =22

52

V[3,1] = V[3-1,1]=V[2,1]=10

V[3,2] = V[3-1,2]=V[2,2]=12
V[3,3] = max{V[3-1,3], v5+V[3-1,3-3]} = max { V[2,3], 20+V[2,0] } = max { 22, 20+0 } = max {22, 20} = 22
V[3,4] = max{V[3-1,4], v;+V[3-1,4-3]} = max { V[2,4], 20+V[2,1] } = max { 22, 20+10 } = max {22, 30}=30
V[3,5] = max{V[3-1,5], v3+V[3-1,5-3]} = max { V[2,5], 20+V[2,2] } = max { 22, 20+12 } = max {22, 32}=32

V[4,1] = V[4-1,1]=V[3,1]=10
V[4,2] = max {V[4-1,2], v,+V[4-1,2-2]} = max {V[3,2], 15+V[3,0]} = max { 12, 15+0 }=max {12, 15} = 15
V[4,3] = max{V[4-1,3], v,+V[4-1,3-2]} = max {V[3,3], 15+V[3,1]} = max { 22, 15+10 }=max {22, 25} = 25
V[4,4] = max {V[4-1,4], v,+V[4-1,4-2]} = max { V[3,4], 15+V[3,2] } = max { 30, 15+12 }=max {30, 27} = 30
V[4,5] = max {V[4-1,5], v,+V[4-1,5-2]} = max { V[3,5], 15+V([3,3] } = max { 32, 15+22 }=max {32, 37} = 37

Finally subset of items={1, 2, 3,4}={1,1,0, 1}
Weight of Knapsack=1{1, 2,3,4}={2,1,0,2}=2+1+0+2=5 also
Maximum Knapsack capacity is, W=5

Maximum Profit Value = {1, 2, 3, 4} ={12, 10, 0, 15} = 12+10+0+15 = 37

* Apply the bottom-up dynamic programming
algorithm to the following instance of the
knapsack problem:

item weight value
i 3 $25
2 2 $20
3 1 HES
4 4 $40
5 5 $50

7/8/2022

capacity W =0,

54

V[1,1]1=V[1-1,1]1=V[0,1]=0

V[1,2]=V[1-1,2]=V[0,2] =0
V[1,3] = max{ V[1-1,3], v,+V[1-1,3-3]} = max{V[0,3], v,+V[0,0]} = max{0, 25+0} = max{0,25} = 25
V[1,4] = max{ V[1-1,4], v;+V[1-1,4-3]} = max{V[0,4], v;+V[0,1]} = max{0, 25+0} = max{0,25} = 25
V[1,5] = max{ V[1-1,5], v,+V[1-1,5-3]} = max{V[0,5], v,+V[0,2]} = max{0, 25+0} = max{0,25} = 25
V[1,6] = max{ V[1-1,6], v,+V[1-1,6-3]} = max{V[0,6], v,+V[0,3]} = max{0, 25+0} = max{0,25} = 25

V[2,1]=V[2-1,1]1=V[1,1]=0
V[2,2] = max{ V[2-1,2], v,+V[2-1,2-2]} = max{V[1,2], v,+V[1,0]} = max{0, 20+0} = max{0,20} = 20
V[2,3] = max{ V[2-1,3], v,+V[2-1,3-2]} = max{V[1,3], v,+V[1,1]} = max{25, 20+0} = max{25,20} = 25
V[2,4] = max{ V[2-1,4], v,+V[2-1,4-2]} = max{V[1,4], v,+V[1,2]} = max{25, 20+0} = max{25,20} = 25
V[2,5] = max{ V[2-1,5], v,+V[2-1,5-2]} = max{V[1,5], v,+V[1,3]} = max{25, 20+25} = max{25,45} = 45
V[2,6] = max{ V[2-1,6], v,+V[2-1,6-2]} = max{V[1,6], v,+V[1,4]} = max{25, 20+25} = max{25,45} = 45

V[3,1] = max{ V[3-1,1], v3+V[3-1,1-1]} = max{V[2,1], v5+V[2,0]} = max{0, 15+0} = max{0,15} = 15
V[3,2] = max{ V[3-1,2], v3+V[3-1,2-1]} = max{V[2,2], v5+V[2,1]} = max{20, 15+0} = max{20,15} = 20
V[3,3] = max{ V[3-1,3], v53+V[3-1,3-1]} = max{V[2,3], v5+V[2,2]} = max{25, 15+20} = max{25,35} = 35
V[3,4] = max{ V[3-1,4], v;+V[3-1,4-1]} = max{V[2,4], v3+V[2,3]} = max{25, 15+25} = max{25,40} = 40
V[3,5] = max{ V[3-1,5], v3+V[3-1,5-1]} = max{V[2,5], v5+V[2,4]} = max{45, 15+25} = max{45,40} = 45
V[3,6] = max{ V[3-1,6], v;+V[3-1,6-1]} = max{V[2,6], v3+V[2,5]} = max{45, 15+45} = max{25,60} = 60

V[4,11=V[4-1,1]1=V][3,1] =15

V[4,2]1=V[4-1,2]1=V][3,2] =20

V[4,3]1=V[4-1,3]=V][3,3] =35

V[4,4] = max{ V[4-1,4], v,+V[4-1,4-4]} = max{V[3,4], v,+V[3,0]} = max{40, 40+0} = max{40,40} = 40
V[4,5] = max{ V[4-1,5], v,+V[4-1,5-4]} = max{V[3,5], v,+V[3,1]} = max{45, 40+15} = max{45,55} = 55
V[4,6] = max{ V[4-1,6], v,+V[4-1,6-4]} = max{V([3,6], v,+V[3,2]} = max{60, 40+20} = max{60,60} = 60

V[5,1]1 =V[5-1,1] =V[4,1] = 15

V[5,2] =V[5-1,2] =V[4,2] =20

V[5,3] =V[5-1,3] =V[4,3] =35

V[5,4] = V[5-1,4] =V[4,4] =40

V[5,5] = max{ V[5-1,5], vs+V[5-1,5-5]} = max{V[4,5], vs+V[4,0]} = max{55, 50+0} = max{55,50} = 55
V[5,6] = max{ V[5-1,6], vs+V[5-1,6-5]} = max{V[4,6], vs+V[4,1]} = max{60, 50+15} = max{60,65} = 65

Finally subset of items ={1, 2, 3,4,5}={0,0, 1,0, 1}

Weight of Knapsack ={1, 2, 3,4, 5}={0,0, 1, O, 5} =
O+0+1+0+5=6 also Maximum Knapsack
capacity is, W=6

Maximum Profit Value = {1, 2, 3, 4, 5} = {0, O, 15, O,
50} = 0+0+15+0+50 = 65

Single Source Shortest Path
Bellman-Ford Algorithm

Bellman-Ford Algorithm

Single source shortest path is a problem in which
consider one source vertex in a given weighted
connected graph and find shortest paths to all its
other vertices from source vertex

Dijkstra’s algorithm do not find the optimal path if
graph having negative edges

When negative edge lengths are permitted, we
require that the graph have no cycles of negative
lengths.

When there are no cycles of negative length, there is
a shortest path between any two vertices of an n-
vertex graph that has atmost n-1 edges on it.

Let dist'[u] be the length of a shortest path from the source vertex v
to vertex u under the constraint that the shortest path contains at most /
edges. Then, dist![u] = cost[v,u], 1 <u < n. As noted earlier, when there
are no cycles of negative length, we can limit our search for shortest paths
to paths with at most n — 1 edges. Hence, dist" ![u] is the length of an
unrestricted shortest path from v to u.

Our goal then is to compute dist™ ![u] for all u. This can be done us-
ing the dynamic programnming methodology. First, we make the following
observations:

1. If the shortest path from v to u with at most k£, £ > 1, edges has no
more than k — 1 edges, then distf[u] = dist*![u).

2. If the shortest path from v to « with at most k&, & > 1, edges has
exactly k edges, then it is made up of a shortest path from v to some
vertex j followed by the edge (j,u). The path from v to j has k£ — 1
edges, and its length is dist*~1[j]. All vertices ¢ such that the edge
(i,u) is in the graph are candidates for j. Since we are interested in a
shortest path, the ¢ that minimizes dist*~1[i] + cost[i, u] is the correct
value for 3.

These observations results in the following
Recurrence formula of Bellman-Ford algorithm is

dist[u] = min { dist<[u], min, { dist<![i] + cost[i, u]}}
Where,

 dist‘[u] is length of shortest path from source to
vertex u

e k are iterations in Bellman-ford algorithm for k =

* | arethe individual vertices in given graph G

® N is the total number of vertices in given graph G

EC OO0 =1 O O W= QO DN

—_— =
o DN — O

Bellman-Ford Algorithm

Algorithm BellmanFord(v, cost, dist, n)
// Single-source/all-destinations shortest
// paths with negative edge costs
1
fori:=1tondo / / Initialize dist.
dist[i] := cost|v,1];
for k:==2ton—1do
for each u such that v # v and u has
at least one incoming edge do
for each (1,u) in the graph do
if dist[u] > dist[i] + costli,u] then
distlu] := dist[i] + cost[i, u];

* Find the shortest paths from the node 1 to
every other node in the graph given below
using the Bellman and Ford Algorithm.

(a) A directed graph

Formula - dist“[u] = min { dist**[u], min, { dist*[i] + cost[i, u]}}

When k=1 then
dist![1]=0, dist![2]=6, dist![3]=5, dist'[4]=5, dist![5]= oo, dist![6]=0°, distl[7]=c=

When k=2 then
dist?[2] = min { dist}[2], min, {dist![i] + cost[i,2] }} (where i=1to 7 except 2
= min {dist1[2], min {dist[1] + cost[1,2], dist[3] + cost[3,2], dist1[4] + cost[4,2], dist![5] + cost[5,2],
dist![6] + cost[6,2], dist![7] + cost[7,2]}}
=min {6, Min{0+6, 5+(-2), 5+°0, cotoo, coto0, cotoo}l
=min {6, min{6, 3, oo, oo, o0, o}} = min{6,3} =3
dist?[3] = min { dist![3], min, dist![i] + cost[i,3]} (where i=1to 7 except 3)
= min {dist![3], min {dist[1] + cost[1,3], dist}[2] + cost[2,3], dist1[4] + cost[4,3], distl[5] + cost[5,3],
distl[6] + cost[6,3], disti[7] + cost[7,3]}}
=min {5, min{0+5, 6+o°, 5+(-2), oo+0o0, 00400, cotoo}}
=min {5, min{5, oo, 3, o0, o0, o }} = min{5,3} =3
dist?[4] = min { dist'[4], min, dist![i] + cost[i,3]} (where i=1to 7 except 4)
= min {dist1[4], min {dist[1] + cost[1,4], dist}[2] + cost[2,4], dist![3] + cost[3,4], distl[5] + cost[5,4],
dist![6] + cost[6,4], dist}[7] + cost[7,4]}}
=min {5, min{0+5, 6+o°, 5+ oo, cotoo, coto0, cotoo}}
=min {5, Mmin{5, oo, 00, 00, 00, o0 }} = Min{5,5} =5

Cimilarlvi when k=—(&

dist?[5] = min { dist![5], min, dist![i] + cost[i,5]} (where i=1to 7 except 5)
= min {dist[5], min {dist[1] + cost[1,5], dist}[2] + cost[2,5], dist[3] + cost[3,5], distl[4] + cost[4,5],
dist[6] + cost[6,5], distl[7] + cost[7,5]}}
= min {o°, Min{0+ oo, 6+(-1), 5+1, 5+00, co+c0, cotoo}}
=min {e, min{ e, 5, 6, o0, 00, o0 }} = min{ee,5} =5
dist?[6] = min { dist![6], min, dist![i] + cost[i,6]} (where i=1to 7 except 6)
= min {dist![6], min {dist1[1] + cost[1,6], dist![2] + cost[2,6], dist![3] + cost[3,6], distl[4] + cost[4,6],
dist![5] + cost[5,6], dist[7] + cost[7,6]}}
=min {o°, Min{0+ oo, 6+ o0, 5+ oo, 5+(-1), co+o0, cotco}}

=min {o°, min{ oo, 0, 00, 4, oo, co }} = min{e,4} = 4

dist*[1..7]

3 5 0 4 3

1

0

k|1l 2 3 4 5 6 7

10 6 5 5 o0 o0 oo

2110 3 3 5 5 4 o

310 1 3 5 2 4 7
410 1 3 5 0 4 5
500 1 3 5 0 4 3

6

Final Single source shortest path

N
1234567
165 5anua
133554
0135247
0135045

} S

] S

01330473
01350473

7/8/2022 67

Optimal Binary Search
Tree (OBST)

Optimal Binary Search Tree (OBST)

* A binary search tree is one of the most
important data structures in computer science

* Principal applications is to implement a
dictionary, a set of elements of a set are with
the operations of searching, insertion, and
deletion

* |f probabilities of searching for elements of a
set are known, it is natural to pose a question
about an OBST for which the average number
of comparisons in a search is the smallest
possible

As an example, consider four keys A, B, C, and D
to be searched for with probabilities 0.1, 0.2, 0.4,
and 0.3, respectively.

Figure 8.8 depicts two out of 14 possible binary
search trees containing these keys.

The average number of comparisons in a
successful search in the first of these trees is
0.1X1 + 0.2X2 + 0.4X3 + 0.3X4 = 2.9, while for the
second one it is 0.1X2 + 0.2X1 + 0.4X2 + 0.3X3 =
2.1.

Neither of these two trees is, in fact, optimal.

The total number of binary search trees with n
keys is equal to the nt" Catalan number.

c{n) = (T) » 1 1 f{}r n > 0, ecM=1,

FIGURE 8.8 Two out of 14 possible binary search trees with keys A, B, C,
and D

7/8/2022

71

(for
[do) ;whﬂ@
(int
(i)
(a)

In a general situation, we can expect different identifiers to be searched
for with different frequencies (or probabilities). In addition, we can expect
unsuccessful searches also to be made. Let us assume that the given set
of identifiers 18 {a;,ay....,a,} with a; <ay <+ <ap. Let p(i) be the
probability with which we search for a;. Let (2) be the probablhty that
the identifier z being searched for is such that a; < 1 < ;41,0 <1<
(assume ag = —00 and a,21 = +00). Then,)¢, g(i) is the probability of

an unsuccessful search. Clearly,)i, p(i) + Yocip gli) = 1. Given this

data, we wish to construct an optlmal binary search tree for {ar, ag, .., a, .
Flrst of course, we must be precise about what we mean by an optlmal
binary search tree.

[n obtaining a cost function for binary search trees, it is useful to add a
fictitious node in place of every empty subtree in the search tree. Such nodes,
called external nodes, are drawn square in Figure 5.13. All other nodes are
internal nodes. If a bmary search tree represents n identifiers, then there
will be exactly n internal nodes and n + 1 (fictitious) external nodes. Every
internal node represents a point where a successful search may terminate.
Every external node represents a point where an unsuccessful search may
terminate.

fork }for
?hile do inti{

f}}t N kif?
=

(a)

(b)

Figure 5.13 Binary search trees of Figure 5.12 with external nodes added

If & successful search terminates at an internal node at level [, then [iter-
ations of the while loop of Algorithm 2.5 are needed. Hence, the expected
cost contribution from the internal node for ; is p(i) * level(a;).

Unsuccessful searches terminate with £ = 0 (i.¢., at an external node) in
algorithm [Search (Algorithm 2.5). The identifiers not in the binary search
tree can be partitioned into n + 1 equivalence classes E;,0 < ¢ < n. The
class Ey contains all identifiers z such that z < a;. The class E; contains
all 1dentifiers & such that a; <z <a;,1, 1 <1 <n. The class E;, contains
all identifiers z, £ > a,. It 15 easy to see that for all identifiers in the same
class E;, the search termiates at the same external node. For identifiers in
different E; the search terminates at different external nodes. If the failure

CANQUAWNM

10
11
12

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

HEONNO TR N~

Algorithm OBST (p,q,n)

// Given n distinct identifiers a1 << as << --- < a,, and probabilities
// pli]l, 1 <2 < n, and g[Z], O << 2 << 7, this algorithm computes

/ the cost ¢[Z, 7] of optimal binary search trees ¢,; for identifiers
S/ Qivi,-...a;. 1t also computes 7[7, 7], the root of #;;.

// wli, 7] 1s the weight of ¢;;.

~

-

for 2 :— 0O to 7+ — 1 do

{

// Initialize.

wlz,2] := qlz]; r[2,2] := O3 ¢[Zz,2] := 0.0;3
// Optimal trees with one node
wlz, 2 + 1] := q[7] + gz + 1] + p[z + 1];
2,72 + 1] := 2 + 13
3 cle, 2 + 1] := q[z2] + gz + 1] + p[¢ + 1];
wre, 12] := qg[n]s; rrn,n] := 0; c[rn,n] :=
for m = 2 to n do // Find optimal trees with 77 nodes.
for 2 :— 0 to n — 1 do
t _
g = 1+ 771;
wlz, 7] = wli, 5 — 1] + pld] + al7];
// Solve 5.12 us1ng Knuth’s result.
k:= Find(e,r,%2, 7)3
/S /A va,lue of I in the range r[z,7 — 1] < {
E [z + 1, 7] that minimizes ¢[Z2,{ — 1] + <¢[{, 7]3
cli, 7] = w2z, j] + ¢z, &k — 1] + c[k, F]3
o A

write ([0, 2], w[O0, 2], [0, 72])3

¥
Algorithm Find(c, 7,7, 7)

i _
TTETYE 1= OO}
for m = rfz,7 — 1] to r[z + 1, 7] do
if (c¢li,m — 1] + e[, 7]) << min then

rriire 1= cli, e — 1] + ¢[rre, j]3 L = 17123

return /;

To apply dynamic programming to the problem of obtaining an optimal
binary search tree, we need to view the construction of such a tree as the
result of a sequence of decisions and then observe that the principle of op-
timality holds when applied to the problem state resulting from a decision,
A possible approach to this would be to make a decision as to which of the
a;'s should be assigned to the root node of the tree. If we choose ag, then
it is clear that the internal nodes for a1, a9,...,a5_1 as well as the external
nodes for the classes Ey, Ey, ..., Ex_ will lie in the left subtree [of the root.
The remaining nodes will be in the right subtree r. Define

cost(!) Z p(t) « level(a;) + Z q(i) * (level(E;) - 1)
1<i<k 0<i<k

and
cost(r) = Z p(7) * level(a;) + Z q(2) * (level(E;) — 1)
k<i<n k<i<n

In both cases the level is measured by regarding the root of the respective
subtree to be at level 1.

AN

Figure 5.15 An optimal binary search tree with root ag

Using w(4,j) to represent the sum ¢(i) + Zl 1(q(l) + (1)), we obtain
the following as the expected cost of the search tree (Figure 5.15):

p(k) + cost(l) + cost(r) + w(0,k — 1) + w(k, n) (5.10)

If the tree is optimal, then (5.10) must be minimum. Hence, cost(!)
must be minimum over all binary search trees containing a1, a2, ...,ar_1 and
Fo,Eq,..., Ex_q. Similarly cost(r) must be minimum. If we use ¢(i,j) to
represent the cost of an optimal binary search tree ¢;; containing a,,1,. .., a;
and E;,...,E;, then for the tree to be optimal, we must have cost(l) =
c(0,k — 1) and cost(r) = ¢(k.n). In addition, ¥ must be chosen such that

p(k) +¢c(0,k — 1) +c(k,n) + w(0,k — 1) + w(k,n)

is minimum. Hence, for ¢(0.n) we obtain

c(0,n) = min {c(0,k —1) +c(k,n) +p(k) +w(0,k = 1) +w(k,n)} (5.11)

We can generalize (5.11) to obtain for any ¢(3,)

clivg) = min {eliik = 1) +e(k.d) +p(k) + (i k= 1) +u (k)

c(iyj) = iI(I}ciélj{C(i,k—1)'|'C(k,j)}'|"w(i,j) (5.12)

Equation 5.12 can be solved for ¢(0,n) by first computing all ¢(1, 7) such
that j -4 = 1 (note ¢(i,7) = 0 and w(i,i) = ¢(i), 0 <i <n). Next we
can compute all ¢(i, j) such that j —i =2, then all ¢(1,) with j -1 =3,
and so on. If during this computation we record the root r(s, 7) of each tree

tis, then an optimal binary search tree can be constructed from these r(i,)
Note that r(s, §) is the value of k that minimizes (5.12).

Example 5.18 Let n = 4 and (a1,a9,a3,a4) = (do, if, int, while). Let
p(l:4)=(3,3,1,1) and ¢(0:4) = (2,3,1,1,1). The p’s and ¢’s have been
multiplied by 16 for convenience. Initially, we have w(i,¢) = ¢(7),¢(i,4) = 0
and r(i,7) = 0,0 <4 < 4. Using Equation 5.12 and the observation w(i,j) =
p(7) +4q(7) +w(i,j — 1), we get

w(0,1) = p(1)+q(1) +w(0,0) =8

c(0,1) = w(0,1) + min{c(0,0) +¢(1,1)} = 8
r(0,1) = 1

w(1,2) = p(2)+¢(2) +w(1,1) = 7

¢(1,2) = w(l,2)+min {c(1,1) +¢(2,2)} =
r(0,2) = 2

w(2,3) = p3)+4q(3)+w(2,2) = 3

¢(2,3) = w(2,3) +min {c(2,2) +¢(3,3)} =
r(2,3) = 3

w(3,4) = p(4)+q(4) +w(3,3) = 3

¢(3,4) = w(3,4) + min {¢(3,3) +c(4,4)} =
r(3,4) = 4

w(0,2) = p(2)+q(2)+w(0,1) =3+1+8 = 12

c(0,2) =w(0,2) + min {c(0,0)+c(1,2), c(0,1)+c(2,2)} = 12 + min{0+7,8+0}
=12+min{7,8} =12+7 = 19

r(0,2) = 1

w(1,3) = p(3)+q(3)+w(1,2) =1+1+7 = 9

c(1,3) =w(1,3) + min {c(1,1)+c(2,3), c(1,2)+c(3,3)} = 9 + min{0+3, 7+0}
=9+min{3,7}=9+3 = 12

r(1,3) = 2

w(2,4) = p(4)+q(4)+w(2,3) =1+1+3=5

c(2,4) = w(2,4) + min {c(2,2)+c(3,4), c(2,3)+c(4,4)} = 5 + min{0+3, 3+0}
=5+min{3,3}=5+3 = 8

r(2,4)= 3

w(0,3) = p(3)+q(3)+w(0,2) = 1+1+12 = 14
c(0,3) =w(0,3) + min {c(0,0)+c(1,3), c(0,1)+c(2,3), c(0,2)+c(3,3)}

=14 + min{0+12,8+3, 1940} =14 + min{12,11,19}=14+11 = 25
r(0,2)= 2

w(1,4) = p(4)+q(4)+w(1,3)=1+1+9 = 11
c(1,4) =w(1,4) + min {c(1,1)+c(2,4), c(1,2)+c(3,4),c(1,3)+c(4,4)}

=11 + min{0+8, 743, 12+0} =11 + min{8,10,12}=11+8 = 19
r(1,4) = 2

w(0,4) = p(4)+q(4)+w(0,3) = 1+1+14 = 16

c(0,4) = w(0,4) + min {c(0,0)+c(1,4), c(0,1)+c(2,4), c(0,2)+c(3,4), c(0,3)+c(4,4)}
=16 + min{0+19,8+8, 1943, 25+0} =16 + min{19,16,22,25} = 16+16 = 32

r(0,4) = 2

Knowing w(i,i + 1) and ¢(i,i + 1), 0 <1 < 4, we can again use Equation
5.12 to compute w(1,1+2), c(i,1+2), and r(i,i+2), 0 <i < 3. This process
can be repeated until w(0,4), ¢(0,4), and r(0,4) are obtained. The table
of Figure .16 shows the results of this computation. The box in row ¢ and
column § shows the values of w(j, 7 +1), ¢(j, 7 +1) and r(4, j+1) respectively.
The computation is carried out by row from row 0 to row 4. From the table
we see that ¢(0,4) = 32 is the minimum cost of a binary search tree for
(a1,a9,a3,a4). The root of tree tos is ag. Hence, the left subtree is £y; and
the right subtree to4. Tree ¢5; has root a; and subtrees tyy and ¢11. Tree o4
has root ag; its left subtree is ty9 and its right subtree t34. Thus, with the
data in the table it is possible to reconstruct fys. Figure 5.17 shows fp4. O

O 1 2 3
Woo =2 | Wy =3 | wp = wiz =1 | wy =1
0 COO=O C11=0 C22=O C33=O C44=O
Yoo = g = Vo2 = rsz =0 Vaqg =
wor =8 | wip =7 | wyz =3 | way =3
1| cor =8| ci2=7 | c3=3 | caa =
ror =1 | rio=2 | ro3=3 | ryy=4
W02=12 W]3— 9 W24=5
21 cpp=19¢c13=12 | coq =
roo= 1| riz= 2| ry=3
W03=14 W14=ll
3 C03 =25 C14=19
Yoy = 2 r14= 2
4 C04=32
Yod4 = 2

S
(do) (”iilt“{

(’Erhi@

* Construct the Optimal Binary Search Tree for
the following data.

Key A B C D
Probability 0.1 0.2 0.4 0.3

20 OPTIMAL BarmAey SEARCH TRES

Frobabi r‘"j o-\ O~ O-ex O~ =
Recuvarnce Prouden as — o
CE3D = yin ?CC"‘D—“CL“+',_)3‘§+Z— Ps R A
IRwey L=3
Medp Tetle Rost Table
vl & 3 . - | s
> [o) . S T
. T .
= S, = = [&] &
2 \ o \o-a\G o = =
as | | Yo <)
VUV Tel E
5 el =
@'—>CET}7—3 = T=1 -)--:_7__ T o
=11 4 W= 2
% — \
& EgaE) = e SRS T ELe)= P;-\ '*‘P\g O A O-24 O o2 = 0-G

e

o= L

-_—

iR":— l

CTAV,\D 4 CTX,2D P

+P13 =3 O~ YO onrt+0-2—

—To-4

C_C\)’Lj = w»ivm (©-c, o-q-)': o~ 4 Rost TJerde kej—.; 2

—_—

S@DCTAD = =2 =2 1=
: 2 A= 2 5)4:.‘_‘3,
C L2232 = viale T 2

cCCz2,2)N¥yY<CcrCa,2) Py P

ake T 24D = i oy (0, 0-8) =

o5

n L Tl

(<3 2

4_

|

h?’?\
& TR ;00 € T, 25 “4= G”C—g-i’

\4’*4—

CC R € ;a0 -5 Pay-¥p

CCS:‘)—D—: v iy (1m0, 1) = |- & ﬂﬂov‘-Tc‘b\e ,
@96':"33 = . Te=y [ke 2 i
Ry s e ;‘
- 3 L= 1
— T3 J— vl CL‘;OD—\-CE2r33+ “’ﬂ—&-?‘gﬂ" Pg e }0'3—\- 0~\+O-2+0-ﬁ-{

S N
: CC')Q:)"\" gc3}33+9n+?ﬂ —Pc

—_—

—

e ~+®n+ fa

el L 2 ENEFAEC INC 10

=

< =3

j N CT 2,2 P& ~ P — oxo-ayo-ao-2

—

Uil

O~2 N O O~2+40-4

6’. |<—e:j

—
—

=5

—

O+O°3+o q——1—o -2

t-o |

O-4 N O N O-¢g +oO-T.
(B Y

—_—

i
o~\Ht o-4 o1t FToOo 4 |
-2

+P< = o-++<>f'r° Vo 1’*° “"E

SRS EaR s A

B X S s T S

CTIHRIDN= valvn (\~5/-ap|om,\’\) = V="

Reot Tai) o l=ey = =
B> CT2,9)= " §=2 B Yy & B2
C— S
< T2,40) 2 C—CZ)D’*CCXJ’*D*\— Pg.—\- Pc—\-" — O} 1\~ 0-2 4 0-5-}0-3
b —_ M — "‘s
| |
<cC=2> 2':)+CE4')L8’_ Pﬂ+P(+PD —_ O0-2 X} 0~2—+% o-2 4o 402
R =4 -_—.[\-crg
o - 3:)'\-<C5,q5—\-?3+9<—‘»f’p_—_ 0~-8 }Y O o2 4+0 45+ 0-3
== W7
Sy AT (Ve Nl) = Yt Root Taple lvey — =2
®—3CC\,4_’) V= 2= AT AL o -
A=) e W=7 W = 4
KR=1

1R =2_

—

CTHr, o)y C‘C?—,LE)—\- PA+PR—\—?<’\“>D_ C>'-\- l—-q~+o V4024 & gy
= i)

< — Ol F ~oF a1 xozr0-4y
=2

|

Ay -F ct4~,4—3 q—?h+?\?,,_ PCWD - Q_q_+ bz 4°

P
: - 4
AL = SX ' P : t:
C.E IS S5) P,,+PJ?+P§+PD —

-l 546 4 & \t+o 2y

<
> S 3

;

——

=) 2e e i) 2 39
—
) _—
SV Tetle Jeey
Ros
— ‘°—7'
2),)-7,2~1)
q.-,

——\rh?n(
o W D
i

'g i
[N) |
Fos Cﬁ\/e‘/). <0 .

i 7

a

Oprm

t o " - C
ﬂw
QDD

~

S~
e F‘_A
o' d SR
+ .
Oy

[=57°

Travelling Sales Person
Problem

Travelling Sales Person Problem

Let G = (V, E) be a directed graph with edge costs c;.

The variable c; is defined such that ¢; > 0 for aII i and j
and ¢; = o= if <|,J>E E.

Let |V| =nand assumen > 1.

A tour of G is a directed simple cycle that includes every
vertex in V.

The cost of a tour is the sum of the cost of the edges on
the tour.

The travelling sales person problem is to find a tour of
minimum cost.

Example:- A postal van to pick up mail from mail boxes
located at n different sites where one vertex represent
the post office from which the postal van starts and to
which it must return

In the following discussion we shall, without loss of generality, regard
a tour to be a simple path that starts and ends at vertex 1. Every tour
consists of an edge (1,k) for some k € V — {1} and a path from vertex k to
vertex 1. The path from vertex k to vertex 1 goes through each vertex in
V —{1,k} exactly once. It is easy to see that if the tour is optimal, then the
path from k to 1 must be a shortest k to 1 path going through all vertices
in V - {1,k}. Hence, the principle of optimality holds. Let g(i,S) be the
length of a shortest path starting at vertex 1, going through all vertices in
S, and terminating at vertex 1. The function ¢(1,V — {1}) is the length of
an optimal salesperson tour. From the principal of optimality it follows that

g(L,V —{1}) = min {c;x +g(k,V - {L,k})} (5.20)

2<k<n

Generalizing (5.20), we obtain (for i € S)

g(i,8) = glgig{cm +9(5,5 - {5})} (5.21)

Equation 5.20 can be solved for g1,V - {1}) if we know g(k,V - {L,k})
for all choices of k. The g values can be obtained by using (5.21). Clearly,

9(1,0) = cir, 1 <i <n. Hence, we can use (5.21) to obtain g(i, 3) for all §
of size 1. Then we can obtain g(i,) for S with |S| = 2, and so on. When
S| < n -1, the values of ¢ and S for which (1, S) is needed are such that
1#1,1¢5 andi ¢S

C

-

1'<;7-/“"’> [0o 10 15 20
I >\ s o o 10
7 s - 6 :
S 3 5
(ad -

When set |S[=1 then g(i,S) = minjes { C; t+ g(j, S-{i})}
8(2,0)=c,;=5 g(3,d)=c3,=6 g(4,9)=c4 =8

When set |S|=2 then

8(2,{3}) =cy3+8(3,¢) =9+6=15 Finally when |S|=4 then

8(2,{4)) = oyt 8(4,0) =10+8=18 g(1,{2,3,4}) = min{ c,,*+g(2, {3,4}),
8(342)) = c;,+g(2.¢) =13+5=18 c+8(3, {2,4}),
8(3,{4}) = C34+ g(4,¢) =12+ 8 = 20 C14+g(4’ {2’3}) }

8(4,{2}) = C42+ g(2,¢) = 8 +5= 13

g(4,3) = c,;s+8(3,4) =9+6=15 = min { 10+25, 15+25, 20+23 }

= min { 35, 40, 43}

When set |S|=3 then =35
g(2, {3, 4}) = min { ¢, + 8(3, {4)), ¢,u + (4, 31) } Optimal Path from source vertex 1 as
= min { 9+20, 10+15} J(1, {2,3,4}) = 2 tour starts from 1 and goes to 2
= min {29, 25} = 25 J(2, {3,4}) = 4 then from 2 to 4
8(3, {2, 4}) = min {c3, + 8(2, {4}), c3, + 8(4,{2}) } J(4,{3}) =3 thenfrom 4 to 3
=min { 13+18, 12+13}
= min { 31, 25} = 25 Hence, the optimal tour is
g(4, {2, 3}) = min { Cqp t g(2, {3}), Ca3 + g(3, {2} } 1 2 4 3 1

= min { 8+15, 9+18}
=min{23,27}=23

* Solve the following Travelling Salesperson
problem represented as a graph shown in
figure using Dynamic Programming.

When the set |S| =1,
g8(2, d)=c,; =30

g(3,)= C;; =4

g(4,)= Cs1=6

When the set S| =2,

g(2,{3}) =c,5+8(3, ¢)=10+4=14
g(2, {4}) = c,, + 8(4, ¢)= 5+6=11
g(3, {2}) = c3, + 8(2, ¢)= 10+30=40
g(3, {4}) = 5, + 8(4, ¢)= 20+6=26
g(4, {2}) = c,, + 8(2, ¢)= 5+30=35
g(4, {3}) = c,5 + 8(3, ¢)= 20+4=24

When the set |S| = 3,

g(2, {3,4}) = min { c,5 + g(3, {4}), c,, + 8(4, {3}) = min{ 10+26, 5+24}= min {36,29} = 29
g(3,{2,4}) = min { c5, + g(2, {4}), ¢34 + 8(4, {2}) = min{ 10+11, 20+35}= min {21,55} = 21
g(4, {2,3}) = min {c,, + 8(2, {3}), c45 + 8(3, {2}) = min{ 5+14, 20+40}= min {19,60} = 19

When the set |S| =4,

g(1, {2,3,4}) = min{c,, +8(2, {3,4}), c;5 +8(3, {2,4}, ¢, + 8(4, {2,3})
= min{ 30+29, 4421, 6+19 }= min {59,25, 25} =25

Optimal Path from source vertex 1 as

J(1, {2,3,4}) = 3 tour starts from 1 and goes to 3

J(3, {2,4}) = 2 then from 3 to 2

J(2,{4}) =4 thenfrom 2to 4

Hence, the optimal tour is
1,3,2,4,1

