
S. J. P. N. TRUST’S
HIRASUGAR INSTITUTE OF TECHNOLOGY, NIDASOSHI

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME.

Department of Computer Science & Engineering

Course: Design And Analysis of Algorithms (18CS42)

Module 4: Dynamic Programming,
Transitive Closure, All Pairs Shortest Path

Prof. A. A. Daptardar
Asst. Prof. , Dept. of Computer Science & Engg.,

Hirasugar Institute of Technology, Nidasoshi
7/8/2022 1

Module – 4
Dynamic Programming

1. General Method
2. Multistage Graphs
3. Transitive Closure – Warshall’s Algorithm
4. All Pairs-Shortest Path – Floyd’s

Algorithm
5. Optimal Binary Search Tree
6. Knapsack Problem
7. Bellman-Ford Algorithm
8. Travelling Sales Person Problem
9. Reliability Design

7/8/2022 2

General Method

 Dynamic programming is an algorithm
design method that can be used when
the solution to a problem can be viewed
as the result of a sequence of decisions

 Dynamic programming is a technique
used to obtain optimal solution to given
real time examples

 Examples:- Knapsack Problem, Shortest
Path

7/8/2022 3

7/8/2022 4

• In Dynamic Programming, an optimal
sequence of decisions is obtained by making
an explicit appeal to the Principle of
Optimality

7/8/2022 5

Principle of Optimality

• It states that an optimal sequence of decisions
has the property that whatever the initial
state and decision are, the remaining
decisions must constitute an optimal decision
sequence with regard to the state resulting
from the first decision.

7/8/2022 6

Multistage Graph

7/8/2022 7

Multistage Graphs
• A multistage graph G=(V, E) is a directed graph in which

the vertices are divided into k ≥ 2 disjoint sets Vi, 1 ≤ i ≤
k.

• In addition, if(u, v) is an edge in E, then u ϵ Vi and v ϵ
Vi+1 for some i, 1 ≤ i ≤ k.

• The sets V1 and Vk are such that |V1|=|Vk|=1.
• Let s and t, respectively, be vertices in the graph V1 and

Vk.
• Let c(i,j) be the cost of the edge <i,j> .
• The Multistage graph problem is to find a minimum

cost path from source vertex s to sink vertex t in given
multistage graph

• The next figure shows a five-stage graph

7/8/2022 8

Five-Stage Graph Example

7/8/2022 9

Formula to find Minimum Cost
from source s to sink t in Multistage Graph

cost(i, j) = min { c(j, l) + cost(i+1, l) }

Where,

1. cost(i, j) is cost of vertex j in stage i

2. c(j, l) is cost of edge from vertex j to vertex l

3. cost(i+1, l) is cost of vertex l in stage i+1

4. l ϵ Vi+1

5. <j, l> ϵ E

7/8/2022 10

Forward Approach

7/8/2022 11

Multistage-Graph Example
1. cost(5,12) = 0
2. cost(4,9)=4 cost(4,10)=2 cost(4,11)=5
3. cost(3,6) = min { c(6,9) + cost(4,9), c(6,10) + cost(4,10) } = min { 6+4, 5+2} = min {10, 7} = 7
4. cost(3,7) = min { c(7,9) + cost(4,9), c(7,10) + cost(4,10) } = min { 4+4, 3+2} = min {8, 5} = 5
5. cost(3,8) = min { c(8,10) + cost(4,10), c(8,11) + cost(4,11) } = min { 5+2, 6+5} = min {7, 11} = 7
6. cost(2,2) = min { c(2,6) + cost(3,6), c(2,7) + cost(3,7), c(2,8) + cost(3,8) }

= min { 4+7, 2+5, 1+7 } = min { 11, 7, 8} = 7
7. cost(2,3) = min { c(3,6) + cost(3,6), c(3,7) + cost(3,7) } = min { 2+7, 7+5 } = min { 9, 12} = 9
8. cost(2,4) = min { c(4,8) + cost(3,8) } = min { 11+7} = min { 18 } = 18
9. cost(2,5) = min { c(5,7) + cost(3,7), c(5,8) + cost(3,8) } = min { 11+5, 8+7} = min {16, 15} = 15
10. cost(1,1) = min { c(1,2) + cost(2,2), c(1,3) + cost(2,3), c(1,4) + cost(2,4), c(1,5) + cost(2,5) }

= min { 9+7, 7+9, 3+18, 2+15} = min { 16, 16, 21, 17} = 16

Two optimal solutions are possible for above given example-

cost(1,1) = 2 cost(1,1) =3
cost(2,2) = 7 cost(2,3) = 6
cost(3,7) = 10 cost(3,6) = 10
cost(4,10) = 12 cost(4,10) = 12
Edges from source to sink 1 -> 2 -> 7 ->10 -> 12 Edges from source to sink 1 -> 3 -> 6 -> 10 -> 12
Cost from source to sink = 9 + 2 + 3 + 2 cost from source to sink = 7 + 2 + 5 + 2

= 16 = 16

7/8/2022 12

• Find the minimum cost path from s to t in the
multistage graph shown below using forward
approach

7/8/2022 13

cost(5,9) = 0

cost(4,7) = 7

cost(4,8) = 3

cost(3,4) = min{c(4,7)+cost(4,7), c(4,8) + cost(4,8)}

= min{ 1+7, 4+3} = min{ 8, 7} = 7

cost(3,5) = min{c(5,7)+cost(4,7), c(5,8) + cost(4,8)}

= min{ 6+7, 2+3} = min{ 13, 5} = 5

cost(3,6) = min{c(6,7)+cost(4,7), c(6,8) + cost(4,8)}

= min{ 6+7, 2+3} = min{ 13, 5} = 5

7/8/2022 14

cost(2,2) = min{c(2,4)+cost(3,4), c(2,6) + cost(3,6)}
= min{ 3+7, 3+5} = min{ 10, 8} = 8

cost(2,3) = min{c(3,4)+cost(3,4), c(3,5)+cost(3,5),c(3,6) + cost(3,6)}
= min{ 6+7, 5+5,8+5} = min{ 13,10,13} = 10

cost(1,1) = min{c(1,2)+cost(2,2), c(1,3) + cost(2,3)}
= min{ 5+8, 2+10} = min{ 13, 12} = 12

One optimal solution is possible for above given example-

cost(1,1) = 3
cost(2,3) = 5
cost(3,5) = 8
cost(4,8) = 9
Edges from source to sink 1 -> 3 -> 5 -> 8 -> 9
Cost from source to sink = 2 + 5 + 2 + 3

= 12

7/8/2022 15

7/8/2022 16

Backward Approach

7/8/2022 17

7/8/2022 18

7/8/2022 19

Five-Stage Graph Example

7/8/2022 20

Multistage-Graph Example
bcost(1,1) = 0

bcost(2,2)=9

bcost(2,3)=7

bcost(2,4) = 3

bcost(2,5) = 2

bcost(3,6) = min { bcost(2,2) + c(2,6), bcost(2,3) + c(3,6)} = min { 9+4, 7+2} = min {13, 9} = 9

bcost(3,7) = min {bcost(2,2) + c(2,7), bcost(2,3) + c(3,7), bcost(2,5) + c(5,7)}

= min { 9+2, 7+7, 2+11} = min {11, 14, 13} = 11

bcost(3,8) = min {bcost(2,2) + c(2,8), bcost(2,4) + c(4,8), bcost(2,5) + c(5,8) }

= min { 9+7, 3+11, 2+8} = min {16, 14, 10} = 10

bcost(4,9) = min { bcost(3,6) + c(6,9), bcost(3,7) + c(7,9)}

= min { 9+6, 11+4} = min { 15, 15} = 15

bcost(4,10) = min { bcost(3,6) + c(6,10), bcost(3,7) + c(7,10), bcost(3,8) + c(8,10)}

= min { 9+5, 11+3, 10 + 5 } = min { 14, 14, 15} = 14

bcost(4,11) = min {bcost(3,8) + c(8,11)}

= min { 10+6} = min { 16} = 16

bcost(5,12) = min {bcost(4,9) + c(9,12), bcost(4,10) + c(10,12), bcost(4,11) + c(11,12) }

= min { 15+4, 14+2, 16 + 5} = min {19, 16, 21} = 16

7/8/2022 21

Two optimal solutions are possible for above given
example-

cost(1,1) = 2 cost(1,1) =3

cost(2,2) = 7 cost(2,3) = 6

cost(3,7) = 10 cost(3,6) = 10

cost(4,10) = 12 cost(4,10) = 12
Edges from source to sink 1 -> 2 -> 7 ->10 -> 12 Edges from source to sink 1 -> 3 -> 6 ->

10 -> 12
Cost from source to sink = 9 + 2 + 3 + 2 cost from source to sink = 7 + 2 + 5 + 2

= 16 = 16

7/8/2022 22

• Find the minimum cost path from s to t in the
multistage graph shown below using
Backward approach

7/8/2022 23

bcost(1,1) = 0

bcost(2,2) = 5

bcost(2,3) = 2

bcost(3,4) = min{ bcost(2,2)+c(2,4), bcost(2,3)+c(3,4)}

= min { 5 + 3, 2+ 6} = min {8,8} = 8

bcost(3,5) = min{ bcost(2,3)+c(3,5)}

= min { 2+ 5} = min {7} = 7

bcost(3,6) = min{ bcost(2,2)+c(2,6), bcost(2,3)+c(3,6)}

= min { 5 + 3, 2+ 8} = min {8,10} = 8

7/8/2022 24

bcost(4,7) = min{ bcost(3,4)+c(4,7), bcost(3,5)+c(5,7), bcost(3,6)+c(6,7)}

= min { 8 + 1, 7+ 6, 8+ 6} = min {9,13,14} = 9
bcost(4,8) = min{ bcost(3,4)+c(4,8), bcost(3,5)+c(5,8), bcost(3,6)+c(6,8)}

= min { 8+4, 7+2 , 8+2 } = min {12,9,10} = 9
bcost(5,9) = min{ bcost(4,7)+c(7,9), bcost(4,8)+c(8,9)}

= min { 9 + 7, 9+ 3} = min {16,12} = 12
One optimal solution is possible for above given example-

cost(1,1) = 3
cost(2,3) = 5
cost(3,5) = 8
cost(4,8) = 9
Edges from source to sink 1 -> 3 -> 5 -> 8 -> 9
Cost from source to sink = 2 + 5 + 2 + 3

= 12

7/8/2022 25

Transitive Closure

Warshall’s Algorithm

7/8/2022 26

Transition Closure Definition
• The Transitive closure of a directed graph with n

vertices can be defined as the n-by-n Boolean matrix
T = {tij}, in which the element in the ith row (1 ≤ i ≤ n)
and the jth column (1 ≤ j ≤ n) is 1 if there exists a
nontrivial directed path from the ith vertex to the jth

vertex otherwise, tij is 0

7/8/2022 27

Warshall’s algorithm

7/8/2022 28

• Warshall's algorithm constructs the transitive closure
of a given digraph with n vertices through a series of n-
by-n boolean matrices:

(8.5)

• Each of these matrices provides certain information
about directed paths in the digraph.

• Specifically, the element rij
k in the ith row and jth column

of matrix R(k) (k = 0, 1, ... , n) is equal to 1 if and only if
there exists a directed path (of a positive length) from
the ith vertex to the jth vertex with each intermediate
vertex, if any, numbered not higher than k.

• we have the following formula for generating the elements
of matrix R(k) from the elements of matrix R(k-1):

• Formula (8.7) is at the heart of Warshall's algorithm.
• This formula implies the following rule for generating

elements of matrix R(k) from elements of matrix R(k-1), which
is particularly convenient for applying Warshall's algorithm
by hand:
– If an element rij is 1 in R(k-1), it remains 1 in R(k)

– If an element rij is 0 in R(k-1), it has to be changed to 1 in R(k) if
and only if the element in its row i and column k and the
element in its column j and row k are both 1's in R(k-1)

7/8/2022 29

• Thus, the series starts with R(0) which does not allow any
intermediate vertices in its paths; hence, R(0) is nothing else
but the adjacency matrix of the digraph.

• R(1) contains the information about paths that can use the
first vertex as intermediate; thus, it may contain more ones
than R(0).

• In general, each subsequent matrix in series (8.5) has one
more vertex to use as intermediate for its paths than its
predecessor and hence may, but does not have to, contain
more ones.

• The last matrix in the series, R(n), reflects paths that can use
all n vertices of the digraph as intermediate and hence is
nothing else but the digraph's transitive closure.

7/8/2022 30

7/8/2022 31

Through vertex a

(d, a) = 1 & (a, b) = 1, Hence (d, b) = 1

R(0) Results into R(1)

Through vertex b

(a, b) = 1 & (b, d) = 1, Hence (a, d) = 1

(d, b) = 1 & (b, d) = 1, Hence (d, d) = 1

R(1) Results into R(2)

Through vertex c

(d, c) = 1 but no path from c to others. Hence, R(3) remains
same as R(2)

Through vertex d

(a, d) = 1 & (d, a) = 1, Hence (a, a) = 1

(a, d) = 1 & (d, b) = 1, Hence (a, b) = 1

(a, d) = 1 & (d, c) = 1, Hence (a, c) = 1

(a, d) = 1 & (d, d) = 1, Hence (a, d) = 1

(b, d) = 1 & (d, a) = 1, Hence (b, a) = 1

(b, d) = 1 & (d, b) = 1, Hence (b, b) = 1

(b, d) = 1 & (d, c) = 1, Hence (b, c) = 1

(b, d) = 1 & (d, d) = 1, Hence (b, d) = 1

R(3) Results into R(4)

Finally R(4) is Transitive Closure of above given Diagraph

Warshall’s Algorithm

7/8/2022 32

Observations

• We can speed up the above implementation
of Warshall's algorithm for some inputs by
restructuring its innermost loop.

• Another way to make the algorithm run faster
is to treat matrix rows as bit strings and
employ the bitwise or operation available in
most modern computer languages.

7/8/2022 33

• Apply Warshall’s algorithm to find the
transitive closure of the digraph defined by
the following adjacency matrix.

7/8/2022 34

7/8/2022 35

7/8/2022 36

Floyd’s Algorithm

7/8/2022 37

Introduction

• Given a weighted connected graph (undirected or
directed), the all-pairs shortest paths problem
asks to find the distances (the lengths of the
shortest paths) from each vertex to all other
vertices.

• It is convenient to record the lengths of shortest
paths in an n-by-n matrix D called the distance
matrix: the element dij in the ith row and the jth

column of this matrix indicates the length of the
shortest path from the ith vertex to the jth vertex
(1 ≤ i, j ≤ n).

7/8/2022 38

• We can generate the distance matrix with an
algorithm that is very similar to Warshall's
algorithm. It is called Floyd's algorithm, after
its inventor R. Floyd [Flo62].

• It is applicable to both undirected and
directed weighted graphs provided that they
do not contain a cycle of a negative length.

7/8/2022 39

• Floyd's algorithm computes the distance matrix of a weighted graph with
n vertices through a series of n-by-n matrices:

(8,8)

• Each of these matrices contains the lengths of shortest paths with certain
constraints on the paths considered for the matrix in question.

• Specifically, the element dij
k in the ith row and the jth column of matrix n<k)

(k = 0, 1, ... , n) is equal to the length of the shortest path among all paths
from the ith vertex to the jth vertex with each intermediate vertex, if any,
numbered not higher thank.

• In particular, the series starts with D(0), which does not allow any
intermediate vertices in its paths; hence, D(0) is nothing but the weight
matrix of the graph.

• The last matrix in the series, D(n), contains the lengths of the shortest
paths among all paths that can use all n vertices as intermediate and
hence is nothing but the distance matrix being sought.

7/8/2022 40

• We can compute all the elements of each matrix D(k) from its
immediate predecessor D(k-1)in series (8.8).

• Let dij
(k) be the element in the ith row and the jth column of matrix

D(k). This means that dij
(k) is equal to the length of the shortest path

among all paths from the ith vertex vi to the jth vertex vj with their
intermediate vertices numbered not higher than k:

• Vi, a list of intermediate vertices each numbered not higher than k,
vj . (8.9)

• Taking into account the lengths of the shortest paths in both
subsets leads to the following recurrence:

• To put it another way, the element in the ith row and the jth column
of the current distance matrix D(k-1) is replaced by the sum of the
elements in the same row i and the kth column and in the same
column j and the kth column if and only if the latter sum is smaller
than its current value.

7/8/2022 41

Floyd’s Algorithm
(All Pairs shortest path problem)

to find distance from each vertex to all other vertices

7/8/2022 42

Floyd’s Algorithm Example

7/8/2022 43

Floyd’s Algorithm Example

Through vertex a
(b, a) = 2 and (a, c) = 3 (b, c) = min { (b, c), (b, a) + (a, c) }

= min , ∞, 2+3- = 5, (b, c) = 5

(d, a) = 6 and (a, c) = 3 (d, c) = min { (d, c), (d, a) + (a, c) }

= min , ∞, 6+3- = 9, (d, c) = 9

D(0) Results into D(1)

Through Vertex b

(c, b) = 7 and (b, a) = 2 (c, a) = min { (c, a), (c, b) + (b, a) }

= min ,∞ , 7+2- = 9, (c, a) = 9

(c, b) = 7 and (b, c) = 5 (c, c) = min { (c, c), (c, b) + (b, c) }

= min { 0, 7+5} = 0, (c, c) = 0

D(1) Results into D(2)

Through Vertex c

(a, c) = 3 & (c, a) = 9 hence, (a, a) = min { 0, 3+9 } = (a, a)= 0

(a, c) = 3 & (c, b) = 7 hence, (a,b) = min , ∞, 3+7 - = (a,b)= 10

(a, c) = 3 & (c, d) = 1 hence, (a, d) = min , ∞, 3+1 - = (a, d)=4

(b, c) = 5 & (c, a) = 9 hence, (b, a) = min { 2, 5+9 } = (b, a)= 2

(b, c) = 5 & (c, b) = 7 hence, (b, b) = min { 0, 5+7 } = (b, b)= 0

(b, c) = 5 & (c, d) = 1 hence, (b, d) = min , ∞, 5+1 - = (b, d)=6

(d, c) = 9 & (c, a) = 9 hence, (d, a) = min { 6, 9+9 } = (d, a)= 6

(d, c) = 9 & (c, b) = 7 hence, (d,b) = min , ∞, 9+7 - = (d,b)= 16

(d, c) = 9 & (c, d) = 1 hence, (d, d) = min { 0, 9+1 } = (d, d)=0

D(2) Results into D(3)

7/8/2022 44

Floyd’s Algorithm Example

Through Vertex d

(a, d) = 4 & (d, a) = 6 hence, (a, a) = min { 0, 4 + 6 } = (a, a)= 0

(a, d) = 4 & (d,b)=16 hence,(a,b)=min{ 10, 4+16 } = (a,b)= 10

(a, d) = 4 & (d, c) = 9 hence, (a, c) = min { 3, 4 + 9 } = (a, c) = 3

(b, d) = 6 & (d, a) = 6 hence, (b, a) = min { 2, 6+6 } = (b, a)= 2

(b, d) = 6 & (d, b)=16 hence,(b, b)=min { 0, 6+16 } = (b, b)= 0

(b, d) = 6 & (d, c) = 9 hence, (b, c) = min { 5, 6+9 } = (b, c)=5

(c, d) = 1 & (d, a) = 6 hence, (c, a) = min { 9, 1+6 } = (c, a)= 7

(c, d) = 1 & (d, b)=16 hence, (c, b) = min { 7, 1+16 } = (c, b)= 7

(c, d) = 1 & (d, c) = 9 hence, (c, c) = min { 0, 1+9 } = (c, c)=0

D(3) Results into D(4)

D(4) is Resultant Distance Matrix for all pair shortest path

7/8/2022 45

• Solve the all-pairs shortest-path problem for
the digraph with the weight matrix

7/8/2022 46

Through vertex a

(b,a)=6 and (a,b) = 2 hence (b,b) = min{0,6+2} = (b,b)=0

(b,a)=6 and (a,d) = 1 hence (b,d) = min{2, 6+1} =(b,d)=2

(b,a) = 6 and (a,e) = 8 hence (b,e)= min,∞, 6+8-=(b,e)=14

(e,a)=3 and (a,b)=2 hence (e,b) = min,∞, 3+2-=(e,b) =5

(e,a)=3 and (a,d)=1 hence (e,d) = min,∞, 3+1-=(e,d) =4

(e,a)=3 and (a,e)=8 hence (e,e) = min{0, 3+8}=(e,e) =0

D(0) results in D(1)

Through vertex b

(a,b) = 2 and (b,a) = 6 hence (a,a)=min{0,2+6}=(a,a)=0

(a,b) = 2 and (b,c) = 3 hence (a,c)=min,∞,2+3-=(a,c)=5

(a,b) = 2 and (b,d) = 3 hence (a,d)=min{1,2+2}=(a,d)=1

(a,b) = 2 and (b,e) = 14 hence (a,e)=min{8,2+14}=(a,e)=8

(e,b) = 5 and (b,a) = 6 hence (e,a)=min{3,5+6}=(e,a)=3

(e,b) = 5 and (b,c) = 3 hence (e,c)=min,∞,5+3-=(e,c)=8

(e,b) = 5 and (b,d) = 2 hence (e,d)=min{4,5+2}=(e,d)=4

(e,b) = 5 and (b,e) = 14 hence (e,e)=min{0,5+14}=(e,e)=0

D(1) results in D(2)

7/8/2022 47

Through the vertex c

(a,c)=5 and (c,d)=4 hence (a,d)=min{1,5+4} = (a,d)=1

(b,c)=3 and (c,d)=4 hence (b,d)=min{2,3+4} = (b,d)=2

(d,c)=2 and (c,d)=4 hence (d,d)=min{0,2+4} = (d,d)=0

(e,c)=8 and (c,d)=4 hence (e,d)=min{4,8+4} = (e,d)=4

D(2) results in D(3)

Through vertex d

(a,d)=1 and (d,c)=2 hence (a,c)=min{5,1+2} = (a,c)=3

(a,d)=1 and (d,e)=3 hence (a,e)=min{8,1+3} = (a,e)=4

(b,d)=2 and (d,c)=2 hence (b,c)=min{3,2+2} = (b,c)=3

(b,d)=2 and (d,e)=3 hence (b,e)=min{4,2+3} = (b,e)=4

(c,d)=4 and (d,c)=2 hence (c,c)=min{0,4+2} = (c,c)=0

(c,d)=4 and (d,e)=3 hence (c,e)=min,∞,4+3- = (c,e)=7

7/8/2022 48

0/1 Knapsack Problem

7/8/2022 49

0/1 Knapsack Problem
 For given n items/objects of known weights w1,

w2,…..wn and values v1, v2,…..vn and a knapsack of
capacity W.

 Find the most valuable subset of the items that fit
into the knapsack.

 We assume here that all the weights and the
knapsack capacity are positive integers

 Also all items are non-divisible i.e. consider full
item(1) or not consider(0)

7/8/2022 50

• To design a dynamic programming algorithm, we need to derive a recurrence
relation that expresses a solution to an instance of the knapsack problem in terms
of solutions to its smaller subinstances.

• Let us consider an instance defined by the first i items, 1 ≤ i ≤ n, with weights w1, ...
, wi, values v1, ... , vi, and knapsack capacity j, 1 ≤ j ≤ n.

• Let V[i, j] be the value of an optimal solution to this instance, i.e., the value of the
most valuable subset of the first i items that fit into the knapsack of capacity j.

• We can divide all the subsets of the first i items that fit the knapsack of capacity j
into two categories: those that do not include the ith item and those that do.

• Note the following:
– Among the subsets that do not include the ith item, the value of an optimal subset is, by

definition, V[i - 1, j].
– Among the subsets that do include the ith item (hence, j – wi ≥ 0), an optimal subset is made

up of this item and an optimal subset of the first i - 1 items that fit into the knapsack of
capacity j - wi . The value of such an optimal subset is vi + V[i - 1, j - wi].

 Recurrence formula for knapsack problem is
V[i,j] = max {V[i-1,j], vi + V[i-1, j-wi]} if j-wi ≥ 0

V[i-1,j] if j-wi ≤ 0
And the Initial Conditions are-

V*0,j+ = 0 for j ≥ 0 and V*i,0+ = 0 for i ≥ 0

7/8/2022 51

0/1 Knapsack with Size W=5

V[i, j] = max {V[i-1, j], vi + V[i-1, j-wi]} if j-wi ≥ 0
V[1,1] = V[1-1,1]=V[0,1]=0 as j-wi ≤ 0 (1-2 ≤ 0)

V[1,2] = max { V[1-1,2], v1+V[1-1,2-2] } = max { V[0,2], v1+V[0,0] }= max { 0, 12+0} = max {0, 12} = 12
V[1,3] = max { V[1-1,3], v1+V[1-1,3-2] } = max { V[0,3], v1+V[0,1] }= max { 0, 12+0} = max {0, 12} = 12
V[1,4] = max { V[1-1,4], v1+V[1-1,4-2] } = max { V[0,4], v1+V[0,2] } = max { 0, 12+0} = max {0, 12} = 12
V[1,5] = max { V[1-1,5], v1+V[1-1,5-2] } = max { V[0,5], v1+V[0,3] } = max { 0, 12+0} = max {0, 12} = 12

V[2,1] = max { V[2-1,1], v2+V[2-1,1-1] } = max { V[1,1], v2+V[1,0] } = max { 0, 10+0} = max {0, 10} = 10
V[2,2] = max { V[2-1,2], v2+V[2-1,2-1] } = max { V[1,2], v2+V[1,1] } = max { 12, 10+0} = max {12, 10} = 12
V[2,3] = max { V[2-1,3], v2+V[2-1,3-1] } = max { V[1,3], v2+V[1,2] } = max { 12, 10+12} = max {12, 22} = 22
V[2,4] = max { V[2-1,4], v2+V[2-1,4-1] } = max { V[1,4], v2+V[1,3] } = max { 12, 10+12} = max {12, 22} = 22

V[2,5] = max { V[2-1,5], v2+V[2-1,5-1] } = max { V[1,5], v2+V[1,4] } = max { 12, 10+12} = max {12, 22} = 22

7/8/2022 52

Item Weight value

1 2 12

2 1 10

3 3 20

4 2 15

V[3,1] = V[3-1,1]=V[2,1]=10
V[3,2] = V[3-1,2]=V[2,2]=12

V[3,3] = max{V[3-1,3], v3+V[3-1,3-3]} = max { V[2,3], 20+V[2,0] } = max { 22, 20+0 } = max {22, 20} = 22
V[3,4] = max{V[3-1,4], v3+V[3-1,4-3]} = max { V[2,4], 20+V[2,1] } = max { 22, 20+10 } = max {22, 30}=30
V[3,5] = max{V[3-1,5], v3+V[3-1,5-3]} = max { V[2,5], 20+V[2,2] } = max { 22, 20+12 } = max {22, 32}=32

V[4,1] = V[4-1,1]=V[3,1]=10
V[4,2] = max {V[4-1,2], v4+V[4-1,2-2]} = max {V[3,2], 15+V[3,0]} = max { 12, 15+0 }=max {12, 15} = 15
V[4,3] = max{V[4-1,3], v4+V[4-1,3-2]} = max {V[3,3], 15+V[3,1]} = max { 22, 15+10 }=max {22, 25} = 25

V[4,4] = max {V[4-1,4], v4+V[4-1,4-2]} = max { V[3,4], 15+V[3,2] } = max { 30, 15+12 }=max {30, 27} = 30
V[4,5] = max {V[4-1,5], v4+V[4-1,5-2]} = max { V[3,5], 15+V[3,3] } = max { 32, 15+22 }=max {32, 37} = 37

Finally subset of items = {1, 2, 3, 4} = { 1, 1, 0, 1}
Weight of Knapsack = {1, 2, 3, 4} = {2, 1, 0, 2} = 2 + 1 + 0 + 2 = 5 also
Maximum Knapsack capacity is, W=5

Maximum Profit Value = {1, 2, 3, 4} = {12, 10, 0, 15} = 12+10+0+15 = 37

7/8/2022 53

• Apply the bottom-up dynamic programming
algorithm to the following instance of the
knapsack problem:

7/8/2022 54

V[1,1] = V[1-1,1] = V[0,1] = 0

V[1,2] = V[1-1,2] = V[0,2] = 0

V[1,3] = max{ V[1-1,3], v1+V[1-1,3-3]} = max{V[0,3], v1+V[0,0]} = max{0, 25+0} = max{0,25} = 25

V[1,4] = max{ V[1-1,4], v1+V[1-1,4-3]} = max{V[0,4], v1+V[0,1]} = max{0, 25+0} = max{0,25} = 25

V[1,5] = max{ V[1-1,5], v1+V[1-1,5-3]} = max{V[0,5], v1+V[0,2]} = max{0, 25+0} = max{0,25} = 25

V[1,6] = max{ V[1-1,6], v1+V[1-1,6-3]} = max{V[0,6], v1+V[0,3]} = max{0, 25+0} = max{0,25} = 25

V[2,1] = V[2-1,1] = V[1,1] = 0

V[2,2] = max{ V[2-1,2], v2+V[2-1,2-2]} = max{V[1,2], v2+V[1,0]} = max{0, 20+0} = max{0,20} = 20

V[2,3] = max{ V[2-1,3], v2+V[2-1,3-2]} = max{V[1,3], v2+V[1,1]} = max{25, 20+0} = max{25,20} = 25

V[2,4] = max{ V[2-1,4], v2+V[2-1,4-2]} = max{V[1,4], v2+V[1,2]} = max{25, 20+0} = max{25,20} = 25

V[2,5] = max{ V[2-1,5], v2+V[2-1,5-2]} = max{V[1,5], v2+V[1,3]} = max{25, 20+25} = max{25,45} = 45

V[2,6] = max{ V[2-1,6], v2+V[2-1,6-2]} = max{V[1,6], v2+V[1,4]} = max{25, 20+25} = max{25,45} = 45

7/8/2022 55

V[3,1] = max{ V[3-1,1], v3+V[3-1,1-1]} = max{V[2,1], v3+V[2,0]} = max{0, 15+0} = max{0,15} = 15

V[3,2] = max{ V[3-1,2], v3+V[3-1,2-1]} = max{V[2,2], v3+V[2,1]} = max{20, 15+0} = max{20,15} = 20

V[3,3] = max{ V[3-1,3], v3+V[3-1,3-1]} = max{V[2,3], v3+V[2,2]} = max{25, 15+20} = max{25,35} = 35

V[3,4] = max{ V[3-1,4], v3+V[3-1,4-1]} = max{V[2,4], v3+V[2,3]} = max{25, 15+25} = max{25,40} = 40

V[3,5] = max{ V[3-1,5], v3+V[3-1,5-1]} = max{V[2,5], v3+V[2,4]} = max{45, 15+25} = max{45,40} = 45

V[3,6] = max{ V[3-1,6], v3+V[3-1,6-1]} = max{V[2,6], v3+V[2,5]} = max{45, 15+45} = max{25,60} = 60

V[4,1] = V[4-1,1] = V[3,1] = 15

V[4,2] = V[4-1,2] = V[3,2] = 20

V[4,3] = V[4-1,3] = V[3,3] = 35

V[4,4] = max{ V[4-1,4], v4+V[4-1,4-4]} = max{V[3,4], v4+V[3,0]} = max{40, 40+0} = max{40,40} = 40

V[4,5] = max{ V[4-1,5], v4+V[4-1,5-4]} = max{V[3,5], v4+V[3,1]} = max{45, 40+15} = max{45,55} = 55

V[4,6] = max{ V[4-1,6], v4+V[4-1,6-4]} = max{V[3,6], v4+V[3,2]} = max{60, 40+20} = max{60,60} = 60

V[5,1] = V[5-1,1] = V[4,1] = 15

V[5,2] = V[5-1,2] = V[4,2] = 20

V[5,3] = V[5-1,3] = V[4,3] = 35

V[5,4] = V[5-1,4] = V[4,4] = 40

V[5,5] = max{ V[5-1,5], v5+V[5-1,5-5]} = max{V[4,5], v5+V[4,0]} = max{55, 50+0} = max{55,50} = 55

V[5,6] = max{ V[5-1,6], v5+V[5-1,6-5]} = max{V[4,6], v5+V[4,1]} = max{60, 50+15} = max{60,65} = 65

7/8/2022 56

Finally subset of items = {1, 2, 3, 4,5} = { 0, 0, 1, 0, 1}

Weight of Knapsack = {1, 2, 3, 4, 5} = {0, 0, 1, 0, 5} =
0 + 0 + 1 + 0 + 5 = 6 also Maximum Knapsack
capacity is, W=6

Maximum Profit Value = {1, 2, 3, 4, 5} = {0, 0, 15, 0,
50} = 0+0+15+0+50 = 65

7/8/2022 57

Single Source Shortest Path

Bellman-Ford Algorithm

7/8/2022 58

Bellman-Ford Algorithm
 Single source shortest path is a problem in which

consider one source vertex in a given weighted
connected graph and find shortest paths to all its
other vertices from source vertex

 Dijkstra’s algorithm do not find the optimal path if
graph having negative edges

 When negative edge lengths are permitted, we
require that the graph have no cycles of negative
lengths.

 When there are no cycles of negative length, there is
a shortest path between any two vertices of an n-
vertex graph that has atmost n-1 edges on it.

7/8/2022 59

7/8/2022 60

These observations results in the following
Recurrence formula of Bellman-Ford algorithm is

distk[u] = min { distk-1[u], mini { distk-1[i] + cost[i, u]}}

Where,

• distk[u] is length of shortest path from source to
vertex u

• k are iterations in Bellman-ford algorithm for k =
2, 3, ………,n-1

• i are the individual vertices in given graph G

• n is the total number of vertices in given graph G

7/8/2022 61

Bellman-Ford Algorithm

7/8/2022 62

• Find the shortest paths from the node 1 to
every other node in the graph given below
using the Bellman and Ford Algorithm.

7/8/2022 63

Formula - distk[u] = min { distk-1[u], mini { distk-1[i] + cost[i, u]}}

When k=1 then
dist1[1]=0, dist1[2]=6, dist1[3]=5, dist1[4]=5, dist1*5+= ∞, dist1*6+=∞, dist1*7+=∞

When k=2 then
dist2[2] = min { dist1[2], mini {dist1[i] + cost[i,2] }} (where i= 1 to 7 except 2

= min {dist1[2], min {dist1[1] + cost[1,2], dist1[3] + cost[3,2], dist1[4] + cost[4,2], dist1[5] + cost[5,2],
dist1[6] + cost[6,2], dist1[7] + cost[7,2]}}

= min { 6, min{0+6, 5+(-2), 5+∞, ∞+∞, ∞+∞, ∞+∞--
= min , 6, min,6, 3, ∞, ∞, ∞, ∞-- = min,6,3- = 3

dist2[3] = min { dist1[3], mini dist1[i] + cost[i,3] } (where i= 1 to 7 except 3)
= min {dist1[3], min {dist1[1] + cost[1,3], dist1[2] + cost[2,3], dist1[4] + cost[4,3], dist1[5] + cost[5,3],

dist1[6] + cost[6,3], dist1[7] + cost[7,3]}}
= min , 5, min,0+5, 6+∞, 5+(-2), ∞+∞, ∞+∞, ∞+∞--
= min , 5, min,5, ∞, 3, ∞, ∞, ∞ -- = min,5,3- = 3

dist2[4] = min { dist1[4], mini dist1[i] + cost[i,3] } (where i= 1 to 7 except 4)
= min {dist1[4], min {dist1[1] + cost[1,4], dist1[2] + cost[2,4], dist1[3] + cost[3,4], dist1[5] + cost[5,4],

dist1[6] + cost[6,4], dist1[7] + cost[7,4]}}
= min , 5, min,0+5, 6+∞, 5+ ∞, ∞+∞, ∞+∞, ∞+∞--
= min , 5, min,5, ∞, ∞, ∞, ∞, ∞ -- = min,5,5- = 5

Similarly when k=6

7/8/2022 64

dist2[5] = min { dist1[5], mini dist1[i] + cost[i,5] } (where i= 1 to 7 except 5)

= min {dist1[5], min {dist1[1] + cost[1,5], dist1[2] + cost[2,5], dist1[3] + cost[3,5], dist1[4] + cost[4,5],

dist1[6] + cost[6,5], dist1[7] + cost[7,5]}}

= min ,∞, min,0+ ∞, 6+(-1), 5+1, 5+∞, ∞+∞, ∞+∞--

= min ,∞ , min, ∞, 5, 6, ∞, ∞, ∞ -- = min,∞,5- = 5

dist2[6] = min { dist1[6], mini dist1[i] + cost[i,6] } (where i= 1 to 7 except 6)

= min {dist1[6], min {dist1[1] + cost[1,6], dist1[2] + cost[2,6], dist1[3] + cost[3,6], dist1[4] + cost[4,6],

dist1[5] + cost[5,6], dist1[7] + cost[7,6]}}

= min ,∞, min,0+ ∞, 6+ ∞, 5+ ∞, 5+(-1), ∞+∞, ∞+∞--

= min ,∞ , min, ∞, ∞, ∞, 4, ∞, ∞ -- = min,∞,4- = 4

7/8/2022 65

7/8/2022 66

Final Single source shortest path

7/8/2022 67

Optimal Binary Search
Tree (OBST)

7/8/2022 68

Optimal Binary Search Tree (OBST)

• A binary search tree is one of the most
important data structures in computer science

• Principal applications is to implement a
dictionary, a set of elements of a set are with
the operations of searching, insertion, and
deletion

• If probabilities of searching for elements of a
set are known, it is natural to pose a question
about an OBST for which the average number
of comparisons in a search is the smallest
possible

7/8/2022 69

• As an example, consider four keys A, B, C, and D
to be searched for with probabilities 0.1, 0.2, 0.4,
and 0.3, respectively.

• Figure 8.8 depicts two out of 14 possible binary
search trees containing these keys.

• The average number of comparisons in a
successful search in the first of these trees is
0.1X1 + 0.2X2 + 0.4X3 + 0.3X4 = 2.9, while for the
second one it is 0.1X2 + 0.2X1 + 0.4X2 + 0.3X3 =
2.1.

• Neither of these two trees is, in fact, optimal.

• The total number of binary search trees with n
keys is equal to the nth Catalan number.

7/8/2022 70

7/8/2022 71

7/8/2022 72

7/8/2022 73

7/8/2022 74

7/8/2022 75

7/8/2022 76

7/8/2022 77

7/8/2022 78

7/8/2022 79

7/8/2022 80

7/8/2022 81

7/8/2022 82

w(0,2) = p(2)+q(2)+w(0,1) = 3+1+8 = 12

c(0,2) = w(0,2) + min {c(0,0)+c(1,2), c(0,1)+c(2,2)} = 12 + min{0+7,8+0}

= 12+min{7,8} = 12+7 = 19

r(0,2) = 1

w(1,3) = p(3)+q(3)+w(1,2) = 1+1+7 = 9

c(1,3) = w(1,3) + min {c(1,1)+c(2,3), c(1,2)+c(3,3)} = 9 + min{0+3, 7+0}

= 9+min{3,7} = 9+3 = 12

r(1,3) = 2

w(2,4) = p(4)+q(4)+w(2,3) = 1+1+3 = 5

c(2,4) = w(2,4) + min {c(2,2)+c(3,4), c(2,3)+c(4,4)} = 5 + min{0+3, 3+0}

= 5+min{3,3} = 5+3 = 8

r(2,4) = 3

7/8/2022 83

w(0,3) = p(3)+q(3)+w(0,2) = 1+1+12 = 14

c(0,3) = w(0,3) + min {c(0,0)+c(1,3), c(0,1)+c(2,3), c(0,2)+c(3,3)}

= 14 + min{0+12,8+3, 19+0} = 14 + min{12,11,19} = 14+11 = 25

r(0,2) = 2

w(1,4) = p(4)+q(4)+w(1,3) = 1+1+9 = 11

c(1,4) = w(1,4) + min {c(1,1)+c(2,4), c(1,2)+c(3,4),c(1,3)+c(4,4)}

= 11 + min{0+8, 7+3, 12+0} = 11 + min{8,10,12} = 11 + 8 = 19

r(1,4) = 2

w(0,4) = p(4)+q(4)+w(0,3) = 1+1+14 = 16

c(0,4) = w(0,4) + min {c(0,0)+c(1,4), c(0,1)+c(2,4), c(0,2)+c(3,4), c(0,3)+c(4,4)}

= 16 + min{0+19,8+8, 19+3, 25+0} = 16 + min{19,16,22,25} = 16+16 = 32

r(0,4) = 2

7/8/2022 84

7/8/2022 85

7/8/2022 86

7/8/2022 87

• Construct the Optimal Binary Search Tree for
the following data.

7/8/2022 88

Key A B C D

Probability 0.1 0.2 0.4 0.3

7/8/2022 89

7/8/2022 90

7/8/2022 91

7/8/2022 92

Travelling Sales Person
Problem

7/8/2022 93

Travelling Sales Person Problem
• Let G = (V, E) be a directed graph with edge costs cij.
• The variable cij is defined such that cij > 0 for all i and j

and cij = ∞ if <i,j> Ɇ E.
• Let |V| = n and assume n > 1.
• A tour of G is a directed simple cycle that includes every

vertex in V.
• The cost of a tour is the sum of the cost of the edges on

the tour.
• The travelling sales person problem is to find a tour of

minimum cost.
• Example:- A postal van to pick up mail from mail boxes

located at n different sites where one vertex represent
the post office from which the postal van starts and to
which it must return

7/8/2022 94

7/8/2022 95

7/8/2022 96

g(i,S) = minjϵS { cij + g(j, S-{j})}

Finally when |S|=4 then
g(1,{2,3,4}) = min{ c12+g(2, {3,4}),

c13+g(3, {2,4}),
c14+g(4, {2,3}) }

= min { 10+25, 15+25, 20+23 }
= min { 35, 40, 43}
= 35

Optimal Path from source vertex 1 as
J(1, {2,3,4}) = 2 tour starts from 1 and goes to 2

J(2, {3,4}) = 4 then from 2 to 4
J(4,{3}) = 3 then from 4 to 3

Hence, the optimal tour is

1, 2, 4, 3, 1

7/8/2022 97

When set |S|=1 then

g(2,ф) = c21 = 5 g(3,ф) = c31 = 6 g(4,ф) = c41 = 8

When set |S|=2 then

g(2,{3}) = c23 + g(3,ф) = 9 + 6 = 15

g(2,{4}) = c24+ g(4,ф) = 10 + 8 = 18

g(3,{2}) = c32 + g(2,ф) = 13 + 5 = 18

g(3,{4}) = c34 + g(4,ф) = 12 + 8 = 20

g(4,{2}) = c42 + g(2,ф) = 8 + 5 = 13

g(4,{3}) = c43 + g(3,ф) = 9 + 6 = 15

When set |S|=3 then

g(2, {3, 4}) = min { c23 + g(3, {4}), c24 + g(4, {3}) }

= min { 9+20, 10+15}

= min { 29, 25} = 25

g(3, {2, 4}) = min { c32 + g(2, {4}), c34 + g(4, {2}) }

= min { 13+18, 12+13}

= min { 31, 25} = 25

g(4, {2, 3}) = min { c42 + g(2, {3}), c43 + g(3, {2}) }

= min { 8+15, 9+18}

= min { 23, 27} = 23

• Solve the following Travelling Salesperson
problem represented as a graph shown in
figure using Dynamic Programming.

7/8/2022 98

When the set |S| = 1,
g(2, ф)= c21 = 30
g(3, ф)= c31 = 4
g(4, ф)= c41 = 6

When the set |S| = 2,
g(2, {3}) = c23 + g(3, ф)= 10+4=14
g(2, {4}) = c24 + g(4, ф)= 5+6=11
g(3, {2}) = c32 + g(2, ф)= 10+30=40
g(3, {4}) = c34 + g(4, ф)= 20+6=26
g(4, {2}) = c42 + g(2, ф)= 5+30=35
g(4, {3}) = c43 + g(3, ф)= 20+4=24

7/8/2022 99

When the set |S| = 3,
g(2, {3,4}) = min { c23 + g(3, {4}), c24 + g(4, {3}) = min{ 10+26, 5+24}= min {36,29} = 29

g(3, {2,4}) = min { c32 + g(2, {4}), c34 + g(4, {2}) = min{ 10+11, 20+35}= min {21,55} = 21

g(4, {2,3}) = min { c42 + g(2, {3}), c43 + g(3, {2}) = min{ 5+14, 20+40}= min {19,60} = 19

When the set |S| = 4,
g(1, {2,3,4}) = min { c12 + g(2, {3,4}), c13 + g(3, {2,4}, c14 + g(4, {2,3})

= min{ 30+29, 4+21, 6+19 }= min {59,25, 25} = 25

Optimal Path from source vertex 1 as
J(1, {2,3,4}) = 3 tour starts from 1 and goes to 3

J(3, {2,4}) = 2 then from 3 to 2

J(2,{4}) = 4 then from 2 to 4

Hence, the optimal tour is

1, 3, 2, 4, 1

7/8/2022 100

