S.J. P. N. TRUST’S

HIRASUGAR INSTITUTE OF TECHNOLOGY, NIDASOSHI
Accredited at 'A’' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME.

Department of Computer Science & Engineering

Course: Design And Analysis of Algorithms (18CS42)

Module 3: Greedy Method, Minimum Cost Spanning Tree,
Single Source Shortest Path, Optimal Tree Problem,
Transform And Conquer Approach

Prof. A. A. Daptardar
Asst. Prof. , Dept. of Computer Science & Engg.,
Hirasugar Institute of Technology, Nidasoshi

7/8/2022 1

7/8/2022

Module — 3
Greedy Method

Introduction

. Coin Change Problem
. Knapsack problem
. Job Sequencing with deadlines

Spanning Tree

. Minimum Cost Spanning Tree

7/8/2022

Module — 3
Greedy Method

7. Prim’s Agorithm

8. Kruskal’s Algorithm

9. Single Source Shortest Path
10. Dijkstra’s Algorithm

11. Huffman Trees & Codes
12. Heaps and Heap Sort

Introduction

* Greedy method 1Is an optimization
technique used to solve many real time
examples

* Greedy method has a constraint that must
be followed

» Greedy method has a objective to achieve

* Objective of greedy method is to find
either minimum or maximum value by
choosing feasible solution

7/8/2022

* A greedy algorithm is an algorithm that always
tries to find the best solution for each sub-
problem with the hopes that this will yield a good
solution for the problem as a whole.

* A greedy algorithm always makes the choice that
looks best at that moment.

 While solving the problems using this technique
at each step the choice made must be :
— Feasible : Satisfying problem's constraints

— Locally optimal : It has to be best local choice among
all feasible choices available.

— Irrevocable : Once the choice is made, it should not be
changed in subsequent steps of the algorithm.

The greedy method suggests that one can devise an algorithm that works
in stages, considering one input at a time, At each stage, a decigion is made
regarding whether a particular input is in an optimal solution. This is done
by considering the inputs in an order determined by some selection proce-
dure. If the mclusion of the next mput into the partially constructed optimal
solution will result in an infeasible solution, then this input is not added to
the partial solution. Otherwise, 1t is added. The selection procedure 1itself
15 based on some optimization measure. This measure may be the objective
function. In fact, several different optimization measures may be plausible
for a given problem. Most of these, however, will result in algorithms that
generate suboptimal solutions. This version of the greedy technique 1s called
the subsct paradigm.

Greedy Method Algorithm

,1. THE GENERAL METHOD 211

/
Algorithm Greedy(a, n)

o
9 //all: n] contains the n inputs.
3
4 solution := 03 // Initialize the solution.
5 for i:=1tondo
6 {
7 - g := Select(a);
8 if Feasible(solution, z) then
9 solution := Union(solution,);
10
11 return solution;
12 } -

7/8/2022

Coin change problem Statement

A customer buys items valued less than 50

rupees and gives a 50 rupees note to the
cashier (shopkeeper)

Now, cashier wish to return remaining change
to the customer with minimum number of
coins available

The cashier constructs the change In stages
using greedy method

In each stage Increase the total amount of
change constructed by as much as possible

Coin Change Problem Example

Suppose customer buys items valued 39 rupees and
gives 50 rupees note to cashier

Then cashier needs to return 11 rupees change back to
customer

Also assume unlimited denominations of 1, 2, 5 and
10 rupees are available with cashier

Then possible solutions to return remaining change
l.e. 11 rupees back to customer will be-

Solutionl - 10 + 1 = 11 and it takes 2 coins
Solution2 -5+ 5+ 1 =11 and it takes 3 coins
Solution3-5+2+2+1+1=11and it takes 5 coins

Coin Change Problem Example

 Similarly N solutions are possible to
solve above example

e Among N solutions, Solutionl will be
optimal solution because it takes only 2
coins

* Also Solutionl achieved the objective of
coin change problem i. e. to return 11
rupees change back to customer

Knapsack
Problem

KNAPSACK PROBLEM STATEMENT
. 4.3 KNAPSACK PROBLEM

Let us try to apply the greedy method to solve the knapsack problem. We
are given n objects and a knapsack or bag. Object 7 has a weight w; and the
knapsack has a capacity m. If a fraction ;, 0 < z; < 1, of object 7 is placed
into the knapsack, then a profit of p;x; is earned. The objective is to obtain

a filling of the knapsack that maximizes the total profit earned. Since the |

knapsack capacity is m, we require the total weight of all chosen objects to
be at most m. Formally, the problem can be stated as

maximize Z DiT; T
1<i<n _ S | \
subject to Z Wik; <M, » (4.2)
1<i<n - 2 i
and 0<z; <1, 1<i<n i (4.3)
i iti bers. ' i

r ofits and weights are positive num | | gt
s pi‘o‘ sible solution. (or filling) is any set (1, ...,z,) satisfying (4.2) and
‘3\ ({;L\e An optimal solution is a feasible solution for which (4.1) 15

4.3) above.

111&xi111ized.

rjo)evec ’ S . . B N P N L Tosash

T R TN T T e

Scanned.with CamScanner. e

- e

Knapsack Problem

Objective:-

filling of knapsack(bag) that
maximizes the total profit earned

Constraint:-

1. Total weight of all chosen object must
be less than or equal to knapsack
capacity m

2. Profits(Pi) and Weights(Wi) are
positive integers

Example 4.1 Consider the following mstance of the knapsack problem:
n=3,m =20, (p,pa,p3) = (25,24, 1), and (wy, w,ws) = (18,15,10).
Four feasible solutions are;

(21,29, 13) VUi) DT
L2103, 1/4) 165 2425
2 (L215,0) 20 28.2
3 (0,2/3, 1) il 31
4 (0,1,1/2) 20 319

Of these four feasible solutions, solution 4 yields the maximum profit. As
we shall soon see, this solution is optimal for the given problem instance, O

7/8/2022

16

e v.;uvo,’-,-.._..

2inpel e e b v e f e
INPEPAIL;
LN e e e
e TR

WA ISIIR A Y..”.‘t. P e r T R

T I

..‘-<~L»-..

7/8/2022

18

Knapsack Problem Example

Consider the following instance of the
knapsack problem:

Number of Objects(n) =7

Knapsack Capacity(m) = 15
Profits(p1,p2,p3,p4,p5,p6,p7) = (10,5,15,7,6,18,3)
Weights(w1l,w2,w3,w4,w5,wé6,w7) =(2,3,5,7,1,4,1)

Find the optimal solution. i.e. maximum profit

KNAPSACK PROBLEM EXAMPLE SOLUTION

Lxc\h/\,ﬂe__ 2 =

Brd dhe ophimal colion

o4 e \¢~Yz>p51;¢; e : .
_‘)Wff“‘j VN ethol — . ' 2 Npshod- W= 5 itk

Ob;)cu_w‘— \ '\—\ 3 \ e p \ = \ jf
8" Yo | es| 1s|o7| o6l 12 | oz . 2
p— ""k} o'),\ 02\ os\ o7\ 01| oa | o) :

Plwi V5 | -6l 2\ L 6,\%5\]3*“;‘ 7

®Nvw, Reovdex Obyedts T descending oxder of P1)L0] Wit i
Fery Corvrespondin o &Y cunel woel e get vipaesdimunn - S |
R T oo Sy oot ke SR ¥
BRI B s e T pitcalis e L= (TE A i
Okyecrs, | Fu®Y [egur | g T :
5 / 3 : s c - ; st 5 ol) [N G s oo e) e SR
(P .) C"\J‘) .\)mlpsli'o - e §~ AEd of R&ha)ln\)ﬂﬂ Mo\,,,‘,mw: ;
h Bl velen” | Dbyed Chootens oz psaads Py Y
— iy LMy S rine
5 06 : Dl ! 6 i B : 7 e
\ 1G-0l = \ 4 S e]
2 | O o2 - 5 \ : W |
P 5 : ’ (A—Oor = V- lox\ = YO
é i Of ciL-Aeb .51 2L pTY o] |i—°‘\;’:=,02 \ex\ — ' gﬁ
0‘1 Ol . ——— i — lb &
g _7 . 3 : { : OR — o6l = 02 oIX — o= 2
] 2 65 . D8 |"6 s .\ 2[2 ¢ 02-o2L = O B X %3. By 03'.&%
- L\/ 07 o’/ £ [O ¢ | le) ‘ o6 %
=

ARGy, (PR BT = 064 1OV |8+ |5+ 8X 2.3 = 5533)] i

7/8/2022 20

7/8/2022

21

JOB SEQUENCING WITH
DEADLINES

Problem Statement

We are given a set of n jobs.

Each job is associated with an integer deadline di 20 &
a profit pi > 0.

For any job i the profit pi is earned iff the job is
completed by its deadline.

To complete a job, one has to process the job on a
machine for one unit of time.

Only one machine is available for processing jobs.

The objective is to find the subset J of jobs such that
each job in this subset can be completed by its
deadline & maximum profit will be earned.

What is the deadline of a Job?

Jobs J1 12 1= J4

P rofits 100 S0 25 =

Deadlimnes 2 1 A =

e Assume all jobs takes 1 hour to complete its
processing

 Suppose machine starts processing a jobs at 8am
then job(J1) needs to complete its processing within
10am because job(J1) has a deadline of 2 hour

* job(J2) needs to complete its processing within 9am
because job(J2) has a deadline of 1 hour

7/8/2022

25

JOB SEQUENCING WITH DEADLINES

OBJECTIVES:

To obtain feasible solution with
maximum profit value

CONSTRAINTS:

1. Only one machine is available for
processing all jobs

2. Only one unit of time is assignhed to
complete a job on a machine

High Level Description Algorithm

e Algorithm GreedylJob (d, J, n)
// Jis a set of Jobs that can be completed by their deadlines
J={1}
fori=2tondo
{
if (all Jobs in J U {i} can be completed by their deadlines)
J=J U {i}
}
}

Algorithm Js(d, J, n)

S/diI] = 1, 1= i= n are the deadlines.

S/ The jobs are ordered such that p[1] = p[2] =......... =pln].
JS/SIN] is the ith job in the optimal solution, 1= i= k.

S/ Also at termination A[J[Li]] = d[J[i+1]], 1= i= k.

begin

dfoj] - J[oj] — 0O

Jf1] «— 1

pf — p[1]

k — 1

fori — 2 to nNn do

begin
r — k
while ((A[J[r]] = d[i]) and (d[J[r]] = r)) do
r — r -1
end while
if ((d[IJ[r]] = dlil) and (d[i] = r)) then
ol
forq -— k to (r+1) step -1 do
J[g+1] — J[g]l
end for
J[r+1] — i
pf — pf + p[i]
k — k +1
>

aend for

returnmn k

The Method

Step 1 : Arrange the profit's of jobs & its
concerned deadlines in non-increasing order.

Step 2 : Apply the algorithm steps one after the
other.

JOB SEQUENCING WITH DEADLINES EXAMPLE-1

2 , = 1.
f;,yr..v\/-‘ -3 — Colve \eolooon (“'\.{/47-’ “ o f “Jesrs (r-"l o v’»vu/'\wxrj L AT Yo IV vy e ——
Llﬁ‘;v)(] (jl‘h*" (’clgl ‘v‘ a,’)‘(v\l)(l, ~

Jaws o R T P (4 foes
S St ant - St RO Shuldad 3 = e -
Pmﬁ'\-s 20 i = LO ¥ i
l)ead\“"cs\ = | ;)’ /“;‘V\V’w z :] LS

<Loleeds e -, Pt Byl eady e ?4\/:/./\ P Z —Hémtr;" ' Vr‘//;,/_,muwf,

T _)O‘f’s =3\ L e ¢°\~rle)—e,l Ou_'f o”r 5_)0# e 1

rJowo R’COY’&’W YA e _Jovrs. fv‘) ofc’sre,«nej_a.nj Oyed —
o \c*wﬁ"“,s\ T hoo A=atle el/\.oc,am balowD —— .
b 2 il s Rl = i - o TN '
Jobc ProfSic, | Daxd)ineg] <ctien Ulﬂ—rslg : ‘ = el f
’l__ A ‘ 3 :—;1 : '. b= il o ; RS o --_‘—, v - e ;
) % 1.5 D e, i g e) | S :
e satith-—-25 ' —t; @ T = oz =]
= =S 2— Ak‘_,__, [Royectel |
e 2l Il B SR e TS s —
- 5 bt 3 :r,,‘ =, = p 2% s
e , NE=SgPn P Cycetedl 1
~laoa<cirm cannn Pre Y — 2o A+ 1 54 oo } J

Scanned with CamScanner

7/8/2022

JOB SEQUENCING WITH DEADLINES EXAMPLE-2

rru\) \JCLJ[A{’,

\')DBS\ LIihn Hheir MFDwO(Aﬂj
4') \<IDO \0 15 7—7) 6 cH
il T pxOF Lalie |

Pﬂgkfdch‘lne&
;/O’L 0’\(dfq_) (’Z_ , 5) ﬁ\‘)z/{

(b‘u}j on —
Jobe _\ | o TIT' - b
Profsis oo | o e : |
IPeadVineg | O 1% 7—* 1
%;O"df’é A‘°°V{3—°‘°S\ Rased - o o\esce/ndmnj ‘ovdey
P> t ecrmed — = headns 3 Vv o
" Seonple VS 2 - —Hez\nu:’ S M;\N::mm ’)‘iao 1°n";&£::/}2‘°w’?[):’tq <3~
30w T ProfSi (
=1 ?’woR“'g\ _ ‘Deo\c{)\w\es\ -Sa\eAuJ}V\j < Ezvrmel e ‘,
| LBES - g g J1 lo0 ;
4 BE]" o < T e
S b Yo' g 3 % : - _’. | : J y — & = 1
52 ECE L 0 S i O R 1 e OB o
2 | o | v BR[| w b e
Rﬂ ____J.f

Ook< CC\’VY]Q”‘ﬁd :Tob‘ J':roblﬁ— jol,_(%e&&(\J')_)

: Tz
TVotel Profit = loot+z7 = 1272/

LA KAKTS

Steps

e Step — 01 : Sort all the given jobs in decreasing
order of their profit.

* Step-02:
— Check the value of maximum deadline.

— Draw a Gantt Chart where the maximum time on the
Gantt chart is the value of maximum deadline.

* Step-03:
— Pick up the jobs one by one.

— Put the job on Gantt chart as far as possible from O
ensuring that the job gets completed before the
deadline.

Job Sequencing with Deadlines

Let n =6,

Problem

(01,p2,p3,p4,p5,p6)=(200,180,190,300,120,100)
and (d1,d2,d3,d4,d5,d6)=(5,3,3,2,4,2)

e Answert

— Write t
profit.

ne following questions:

ne optimal schedule that gives maximum

— Are all the jobs completed in the optimal
schedule?

— What is the maximum earned profit?

7/8/2022

34

7/8/2022

35

7/8/2022

36

Spanning Tree

Minimum Cost Spanning
Tree

Spanning Tree

* Definition: Spanning tree is a connected
acyclic sub-graph (tree) of the given graph (G)
that includes all of G’s vertices.

Example : Consider the following graph

Weight (T2)=8 Weight (T3) =6

Weight (T,) =9

Minimum Spanning Tree (MST)

* Definition: MST of a weighted, connected
graph G is defined as: A spanning tree of G
with minimum total weight.

Example : Consider the following graph

Weight (T2)=8 Weight (T3) =6

Weight (T,) =9

* Two algorithms are used to generate
minimum Cost Spanning Tree :

— Prim’s Algorithm
— Kruskal’s Algorithm

Prim’s Algorithm

* Fringe edge: An edge which has one vertex is
in partially constructed tree Ti and the other is
not.

* Unseen edge: An edge with both vertices not
in Ti.

Algorithm

Algorithm Prim (G)

//Prim’s algorithm for constructing a MST

//Input: A weighted connected graph G={V, E }
//Output: ET the set of edges composing a MST of G

// the set of tree vertices can be initialized with any vertex
Vi< {vy}

E;,< O

fori¢~1to|V]|-1do

Find a minimum-weight edge e* = (v*, u*) among all the edges (v, u) such
thatvisinVyanduisinV-V;

V; & Vo U {u*}

E; < E;U{e*}

return E;

The Method:

* Step 1 : Start with a tree, T, , consisting of one
vertex

» Step 2 : “Grow” tree one vertex/edge at a time
— Construct a series of expanding sub-trees T1, T2, ...
Tn-1
— At each stage construct Ti + 1 from Ti by adding the
minimum weight edge connecting a vertex in tree (Ti)

to one vertex not yet in tree, choose from “fringe”
edges (this is the “greedy” step!)

— Algorithm stops when all vertices are included

Example:

* Apply Prim’s algorithm for the following graph
to find MST.

Tree
vertices

Remaining
vertices

Graph

a(-,-)

b(a 3)

el 1)

7/8/2022

48

f(b,4) ?afztt;; o
2
1
Oren©
3 4
e (f,2) d¢t, 5) c 5@
2
Algorithm stops since all vertices
d(f. 5) are included.

The weight of the minimum spanning
tree is 15

7/8/2022

49

Example:

* Apply Prim’s algorithm for the following graph
to find MST.

FEINS <

[

| Beenple 2t My Prive s Moo £for belowo e peepts & e

PRIM’S ALGORITHM EXAMPLE-2

ast oF iy i éyam?nj Pee

Lo\l Aa4Son -« -

25 fe

vetex B

Sr*?\—’—‘\

s PR S NA Y P & L,O?M") &

b

= -

Lhap 2

- -
el ¥ g 3 YD e

L AN g

1

Scanned with CamScanner

7/8/2022

ISR AT AN GO AR S EBEF)T el 0 Al PR T i

by ” J . ¢/
i B
- .
e 33

Kruskal’s
Algorithm

Algorithm

Algorithm Kruskal (G)

//Kruskal’s algorithm for constructing a MST

//Input: A weighted connected graph G={V, E }
//Output: E; the set of edges composing a MST of G

Sort E in ascending order of the edge weights

E; <@

ecounter & 0 //initialize the set of tree edges and its size
k<O //initialize the number of processed edges
while ecounter< |V| -1

k<& k+1

if E; U {e, } is acyclic

E; < E-U{ey}

ecounter < ecounter + 1

return E;

The Method

Step 1 : Sort the edges by increasing weight
Step 2 : Start with a forest having |V| number of trees.

Step 3 : Number of trees are reduced by ONE at every
inclusion of an edge
e At each stage:

— Among the edges which are not yet included, select the one
with minimum weight AND which does not form a cycle.

— The edge will reduce the number of trees by one by combining
two trees of the forest.

— Algorithm stops when |V| -1 edges are included in the MST i.e :
when the number of trees in the forest is reduced to ONE.

Example:

* Apply Kruskal’s algorithm for the following
graph to find MST.

* The list of edges :

Edge ab af ae bc bf cf cd df de ef

Weight | 3 S 6 I - B 6 S 8

(R

* Sort the edges in ascending order :

Edge bc ef ab bf cf af df ae cd de
Weight | 1 - 5 6 6 8

o
fbod
=
4
N

7/8/2022 56

bc 1
OO
Weight ‘ @ @
Insertion YES
status
Insertion @
]
order
: 1
.
OO
Insertion YES
status 2
Insertion R é
order -

7/8/2022

57

Weight 3 g
Insertion VES
status
Insertion
3
order
Edge bl 3 (b @
Weight 4 g 4
Insertion YVES
status
Insertion
4
order

7/8/2022

58

Edge cf

Weight 4

Insertion NO

status

Insertion i

order

Edge af

Weight 5

Insertion NO

status

Insertion i

order

Edge dft 1
Weight . Gj a
Insertion f
status YES S
Insertion s e
order

Algorithm stops as IVI -1 edges are included in the MST

* Apply Kruskal’s algorithm for the following
graph to find MST.

7/8/2022 60

* The list of edges :

Edge 1,2 1,6 2,3 2,7 3,4 6,5 7,4 7,5 4,5
Weight | 28 10 16 14 12 25 18 24 22
e Sort the edges in ascending order :
Edge 1,6 3,4 2,7 2,3 7,4 4,5 7,5 6,5 1,2
Weight | 10 12 14 16 18 22 24 25 28

Edge 1,6 > 2
19/
Weight 10 & @ @
Insertion Status Yes .
Insertion Order 1 4
Edge 3,4 (1)
10/ (2)
Weight 12 /
| (65 (7T (3
Insertion Status Yes - s e
PE— z'f]. 2
(5 /
e B _{,
Insertion Order 2 (4)

7/8/2022

62

Edge 2,7 (1)
10/ SRe)
Weight 14 //' 1 4
(6, (7, (3
Insertion Status Yes - ya
. N2
§ s
Insertion Order 3 45
Edge 2,3 .’T‘)
r_f filx}
Weight 16)/ 14 \16
(6) @ 3
Insertion Status Yes
. /12
SO <
Insertion Order 4 @

7/8/2022

63

Edge 7,4
Weight 18
Insertion Status No
Insertion Order --
Edge 4,5 1T
Weight 22 10/ —
/o 14/ 16
Insertion Status Yes E’x (7 3_
. /12
Insertion Order 5 27 '"f_:4 ?

7/8/2022

64

7/8/2022

Edge 7,5
Weight 24
Insertion Status No
Insertion Order --
Edge 5,6 T
Weight 25 SN
° 0/ ¥
Insertion Status Yes t_if (—7,1 \3
25 \/-_K ;';12
| Ord 6 QL /
nsertion Order i N,
22 f_x4a

Algorithm Stops as | V| - 1 edges are included in the MST

Minimum Cost (MST) = 10+12+14+16+22+25

65

KRUSKAL'S ALGORITHM EXAMPLE-2

28

ccanpre 2 < el v Uulal < Ag oSy T 5Ffven :rzrculpbj £S5 v A
e v T Svruaan [o X o i

SoluSon 3

C\WOL)é Lo eN ’ig—)— & @'C’JGS {b"ijUéd"" Crwrz._?h
bd b ke e dd ce o

2 B R 5 & g
Stee—-1 <Fe=p-2 sder -2
(5 G : e
S | - = 1=
s—lep—'z‘)'
et & A
Scanned.\Nith'C‘al"r{Scar1ner :

7/8/2022 66

Single Source Shortest
Path

Dijkstra’s Algorithm

SINGLE SOURCE SHORTEST PATH PROBLEM

* |t is a problem in which, consider one source
vertex in a given weighted connected graph
and find shortest paths to all its other vertices
from source vertex

* That is to generate separate paths from source
vertex to remaining vertex of shortest
distance.

* Dijkstra’s algorithm is the best-known
algorithm used to solve single source shortest-
paths problem.

Algorithm

Algorithm Dijkstra(G, s)

//Input: Weighted connected graph G and source vertex s
//Output: The length Dv of a shortest path from s to v and its penultimate
vertex Pv for every vertex vin V

for every vertex vin V do

D, & oo

P, <& null // Pv, the parent of v

d. <0

V. &0

fori<0to |V]|-1do

V; & ViU {u*}

for every vertex u in V-V that is adjacent to u* do

if Du* +w (u*, u) < Du

Du & Du +w (u*, u)

Pu < u*

The Method :

Dijkstra’s algorithm solves the single source shortest path problem in 2
stages.

 Stage 1 : A greedy algorithm computes the shortest distance from
source to all other nodes in the graph and saves in a data structure.

* Stage 2 : Uses the data structure for finding a shortest path from
source to any vertex v.

1. At each step, and for each vertex x, keep track of a “distance” D(x) and
a directed path P(x) from root to vertex x of length D(x).

2. Scan first from the root and take initial paths P(r, x) = (r, x) with
D(x) =w(rx) when rx is an edge,
D(x) = oo when rx is not an edge.

3. For each temporary vertex y distinct from x, set D(y) = min{ D(y), D(x) +
w(xy) }

Example:

* Apply Dijkstra’s algorithm to find Single source
shortest paths with vertex a as the source.

Nodes

Tree Vertices

Remaining vertices

a}

d (_a())

b(a,3)
c(-,)
d(-,»)
e(a,6)
f(a,d)

{a.b}

¢c(b,3+1)
d(-,=)
e(a,6)
f(a,s)

{a,b,c}

c(b,4)

d(c,4+6)
e(a,6)
f(a,s)

7/8/2022

72

{a,b,c.f}

f(a,5)

d(c,10)
e(a.6)

{a,b,c.f.e}

e(a,0)

d(c, 10)

{a,b.c.f.e.d}

d(c, 10)

1]O) Ve

Example:

* Apply Dijkstra’s algorithm to find Single source
shortest paths with vertex a as the source.

Dijkstra’s Algorithm — Examplel

S =
P 3N4<TeR S ALaorITHRN(EXAMP -
P PR R >
Cyc,vr\e— Lo\v e G vneale counce Claot¥est \"""m P 2 .
\O) . 1"\“}(a’5 A"SOY)’}V’")

4
= <
2= 5

= ZSs = =

C
(2.

oY Som 2

= L |7

= §L/j5 * oo [D
< hovresy Podr Bovr Lotrme 1o AN\ veB e A€ —
For a to b T & - S8 of \engdw 3
il i e & 3 AEWTe- of lengs 2o
- A= bod. ©F \engir 5
Gow a o L b%dﬂ;e ah ol
o AT € - " =3

Scanned with CamScanner

7/8/2022

Dijkstra’s Algorithm — Example2

PASKRETEOA'S ALt o TH ™M EXAm puis
L A

2 5

&3

~

7 @\ pr =
v~ <owace e e @ e

Sl bsorm =

ool o/ 12—

£ 7/ - oo/

<S bhovdest P For \some@ o ald\ verrsceg —

N a i d = b &6 lersyits . 25
= A —
cov~ atYocol iy 0[/5 e b o of leng™ (IS3

== A —
W\O\"T)Q

Scanned with CamScanner

7/8/2022

rajh fos cedoove ?4‘\)&/‘ G==p b

31 -

76

Huffman Trees & Codes

Huffman Coding

 Huffman coding is lossless data compression
technique widely used while transmitting
data over network or storing data on the disk

e Huffman coding assigns codeword's of
different lengths to different characters.
Hence, it is a variable-length encoding
technique

* Fixed-length encoding assigns codeword’s of
same length to different characters

Fixed Length Vs. Variable Length

Fixed Length Encoding Example:

Assume 4 characters A, B, C, D are
given

Then minimum 3-bits are required
to encode all 4-characters

Each character are represented by
using 3-bits as shown below-A=000,
B=001, C=010, D=011

Hence final codeword results as-
000 001 010011

Total 12 bits are used to encode 4-
characters A, B, C, D

It takes more time to transfer data
over network

Also takes more storage space to
save data on disk

Variable Length Encoding Example:

Assume 4 characters A, B, C, D are
given

Then different length bits are used
to encode all 4-characters

Each character are represented by
using variable length bits as shown
below- A=00, B=001, C=10, D=111

Hence final codeword results as-
0000110111

Only 10 bits are used to encode 4-
charactes A, B, C, D

It takes less time to transfer data
over network

Also takes less storage space to
save data on disk

Huffman algorithm to Construct Huffman Tree

e Step 1:- Initialize n one-node trees and label
them with the characters of the alphabet.
Record the frequency of each character in its
tree’s root to indicate the tree’s weight

* Step 2:- Repeat the following operation until a
single tree is obtained. Find two trees with the
smallest weight and make them the left and
right subtree of new tree and record the sum
of their weights in the root of new tree as its
weight

7/8/2022 81

@O REDMI NOTE 8
C O A QuUunD cAMERA

7/8/2022

Encoding & Decoding

character | A B Gisnb

probability | 0.35 0.1 0.2 02 0.15
codeword 11 100 00 01 101

* From above table, now characters
DAD is encoded as 01 11 01

e BAD is encoded as 100 11 01

e Similarly codeword 100 11 01 101
11 01 is decoded as BAD_AD

7/8/2022

84

7/8/2022

85

7/8/2022

86

Transform and Conquer

The General Method

* |t deals with a group of desigh methods that
are based on the idea of transformation.

 These methods work as two-stage procedures.

— First, in the transformation stage, the problem's
instance is modified to be, for one reason or
another, more amenable to solution.

— Then, in the second or conquering stage, it is
solved.

stmpler instance

or
problem's mesl another representation
Instance . or

another problem's mstance

FIGURE 8. 1 Transform-and-conguer strategy

7/8/2022

solution

89

Major Variations of Transform and
Conquer

 There are three major variations of this idea that
differ by what we transform a given instance to

— transformation to a simpler or more convenient
instance of the same problem-we call it instance
simplification

— transformation to a different representation of the
same instance-we call it representation change

— transformation to an instance of a different problem
for which an algorithm is already available-we call it
problem reduction

Heap Definition

A heap can be defined as a BINARY TREE with keys assigned to
its each nodes that satisfies following two conditions-

* Condition 1: The Binary Tree shape Requirement

— BT is complete BT, that is, all its levels are full expect last
level , where only some rightmost leaves may be missing

* Condition 2: The Parental dominance Requirement

— The key at each parent node is greater than or equal to the
keys at its children. It is called as Max heap.

— The key at each parent node is less than or equal to the
keys at its children. It is called as Min heap.

7/8/2022

92

7/8/2022

Min Heap Example
For Input = 35, 33, 42, 10, 14, 19, 27, 44, 26, 31

10
14 19
26 31 42 2%
44 35 33

93

7/8/2022

Max Heap Example
For Input = 35, 33, 42, 10, 14, 19, 27, 44, 26, 31

W N
NG O\
/“\ / .

94

Max Heap Construction Algorithm

Step 1 - Create a new node at the end of
heap.

Step 2 - Assign new value to the node.

Step 3 - Compare the value of this child node
with its parent.

Step 4 - If value of parent is less than child,
then swap them.

Step 5 - Repeat step 3 & 4 until Heap property
holds.

Bottom-Up Heap Construction

<
o
w
>N
<
)
(@]
<
=)
g
<

@O REDMINOTE 8

7/8/2022

Max Heap Deletion Algorithm

Step 1 - Remove root node.

Step 2 - Move the last element of last level to
root.

Step 3 - Compare the value of this child node
with its parent.

Step 4 - If value of parent is less than child,
then swap them.

Step 5 - Repeat step 3 & 4 until Heap property
holds.

Maximum Key Deletion from a Heap

7/8/2022

Heapsort Algorithm

Heapsort algorithm has two stages as shown
below-

stage 1: Heap Construction
Construct a heap for a given array

stage 2: Maximum Deletion

Apply the root deletion operation n-1
times for remaining heap

HeapSort Example

7/8/2022

 Construct a heap forthelist 1, 8, 6,5, 3,7, 4
by the bottom-up algorithm.

7/8/2022 102

7/8/2022 103

