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Definition

* [t is a top-down technique for designing
algorithms that consists of dividing the
problem into smaller sub-problems hoping
that the solutions of the sub-problems are
easier to find & then combine the partial
solutions onto the solutions of the original
problems.



General Method

* The general method in solving a given
problem is shown below:

— An instance of a given problem is divided into a
number of smaller instances of same type & equal
Size.

— All the smaller instances of the problems are
solved recursively.

— The solutions of all the smaller instances are
combined together to get a solution to the original
problem.



General method

Given a function to compute on n inputs the divide-and-
conquer strategy suggests splitting the inputs into k
distinct subsets, 1 < k < n, yielding k sub-problems

These sub-problems must be solved, and then a method
must be found to combine sub-solutions into a solution
of the whole

If the sub-problems are still relatively large, then the
divide-and-conquer strategy can possibly be reapplied

Often the sub-problems resulting from a divide-and-
conquer design are of the same type as the original
problem

Similarly, smaller and smaller sub-problems of the same
kind are generated until no more splitting of sub-problem
is possible



Divide and Conquer Technique
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* The general algorithm for divide and conquer (DAC)
method is as follows:

//Purpose : Solve the problem of a given instance(P) by
dividing into various smaller instances such as p1,p2,p3

//Input: The instances of a problem are (P)

//output : The solution S to the input instances
if small (P)

return G(P)

else

Divide P into p1, p2,....... ,pk

S & DAC(pl) + DAC(p2)+........ +DAC(pk)
return S

end if



Divide and Conquer

Advantages

Solving difficult problems — D&C is a
powerful method for solving difficult
problems by breaking a problem into
sub problems, solving sub problems
and combining results of sub problem
to get solution of original problem

Parallelism — D&C allows us to solve
the sub problem independently, they
allow execution in multi-processor
machines, different sub problems can
be executed on different processors

Memory Access — D&C algorithm
makes efficient use of memory caches.
Sub problems are small so all sub
problems can be solved within cache,
without accessing much slower main
memory

1. Recursion IS

Disadvantages

slow -
because of overhead of the
repeated sub problem call

For some problem, D&C
technique become more
complicated than an
iterative technique — For
Example, to add n numbers
in Array



Time Complexity

 The time complexity of DAC can be obtained as
shown below:

— An instance of size n can be divided into several
instances say a of size n/b & the time complexity can
be obtained using the recurrence relation :

T(n) =a T(n/b) + f(n)

— where a & b are positive constants such that b > 1 &
f(n) is a function which is the time spent on dividing
the problem into smaller instances & combining them
to get a single solution.



Master Theorem

 The time complexity can be easily calculated
using the following relation (Master Theorem

):

T(n) = -

- O(n9Y)
O(n9log n)

\@(nlogba)

e where ¢

if a <
ifa =
if a >

Hd

f)d

f)d

is the power of nin f(n).



Ex: The recurrence relation is given by
0 if n=1
T(n)= | T(n/2) + T(n/2) +1 otherwise

Solve this using Backward Substitution & Master
Theorem.




1) Backward Substitution :
T(n) =T(n/2) + T(n/2) +1
= 2T(n/2) +1
replace n by n/2

= 2[2T(n/4)+1]+1

= 2°T(n/2%)+2+1

= 2°T(n/2°)+2°+2+1

= 2T (n/29) 4281+ 224+ ... ... + 2242+1

put 2= n

= 2T(n/n)+2K* + 2K24+ ... ... + 2242+1
= 2T (1)+2K  + 2824+ ... + 224+2+1
= n*0 + a(r-1)/(r-1)
= 1(2%1)/(2-1) = 2k = n

Time Complexity of given recurrence relation is T(n) = ©(n)

\
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2) Using Master Theorem :
Here: a = 2

b=2

f(n) =0(1)

d=20
Therefore:
a>blie.,2>2°
Case 3 of master theorem holds good. Therefore:
T(n) € ©(n logsa)

€ ©(n log,2)

€ O(n)
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Binary search

Binary search is one of the techniques used while
searching for an item.

But this technique is applied only if the items to be
compared are in either ascending order or descending
order.

It inspects the middle element of the sorted list.

If equal to the sought value, then the position has been
found.

Otherwise, if the key is less than the middle element,
do a binary search on the first half, else on the second

half.

Two ways are used to perform binary searching are-

1. Recursive Binary Search
2. lterative Binary Search



Recursive Binary Search

Algorithm Binary_Search(A, key, low, high)
//Purpose : Search for an item in the list identified by A
// Input : A - list of elements
low & high - lower bound & upper bound of the list
key - element to be searched
//Output : position is returned if search is successful otherwise -1 is returned
if low > high
return -1
mid < (low+high)/2
if key = A[mid]

return mid
else if key < A[mid]

return Binary_Search(A, key, low, mid-1)
else

return Binary__Search(A, key, mid+1, high)

end
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Iterative Binary Search

Algorithm Binary_Search(A, key, low, high)

//Purpose : Search for an item in the list identified by A

// Input : A — list of elements
low & high — lower bound & upper bound of the list
key — element to be searched

//Output : position is returned if search is successful otherwise -1 is returned

While low <= high do

{

mid & (low+high)/2

if key < A[mid] then

high =mid-1

Else if key > A[mid] then

Low = mid+1

Else

Return mid;

end



Example of Binary Search

e Let us select the 14 entries as shown below-
(-15, -6, 0, 7,9, 23, 54, 82, 101, 112, 125, 131, 142, 151)

 Place them in a[l : 14]; and simulate the steps that
BinSearch goes through as it searches for different
values of x

* Only the variables low, high and mid need to be traced
as we simulate the algorithm

* We try the following values for x: 151, -14 and 9 for
two successful searches and one unsuccessful search



Tracing of Binary Search

1, 2, 3,4,5,6, 7, 8 9, 10, 11, 12, 13, 14
(-15,-6,0, 7,9, 23,54, 82,101, 112, 125, 131, 142, 151)
values for x: 151, -14 and 9

=101 low high mid x=—14 low high mud
I 14 7 1 14 7
8 14 11 1 6 3
12 14 13 1 2 1
14 14 14 2 2 2
found 2 1 not found
r=9 low high mid
1 14 7
1 6 3
4 6 )
found

Table 3.2 Three examples of binary search on 14 elements
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Computing Time of Binary Search

a [1] 2] B3] [4] [5 (6] [7] (8 [8] {10] {11]  [12]  [13] = {14]
Elements: —15 —6 0 7 9 23 54 B2 101 112 125 131 142 1531
Comparisons: 3 4 2 4 3 4 1 4 3 4 2 4 3 4

|
.’"‘\.\_ £
-~ q___/‘\\
.,
h,

-

.

—

3.1 Binary decision tree for binary search, n = 14
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* Let us find the number of key comparisons in
the worst case C,.,..(n).

* The worst-case inputs include all arrays that
do not contain a given search key (and, in fact,
some cases of successful searches as well).

* Since after one comparison the algorithm
faces the same situation but for an array half

the size, we get the following recurrence
relation for C,,,(n):

C‘LUI")F.TT(H) - CWU‘J'SI’(}_H-’IZJ} + 1 fCIl‘ LLES 1! Cwﬂ;'.j'f{]-} = l-



e assume that n = 2¥ and solve the resulting
recurrence by backward substitutions or

another method.
Coorst @Y =k +1=log,n + 1.

 Let us verify by substitution that indeed
satisfies equation Cumwm=1logn+1 ( 4,2)

for any positive even number n. If n is positive
and even, n = 2i where i > 0. The left-hand side
of equation ( 4.2) for n = 2iis

Cuworst(n) = [logy n] +1=[log, 2i | + 1= [log, 2 + log, i | + 1



* The right hand side of the equation (4.2) for n
=211S
Cw{;._-;;;(!ﬁfzj) +1= Cwarﬂﬂ_zjfz_l) +1= ern(i) +1
=(llogyi] + 1)+ 1= log,¢]|+2.

* Since both expressions are the same, we
proved the assertion.



e What

IS
comparisons

the

largest

number
made by binary search
searching for a key in the following array?

of

3

14

27

31 {39 {42

55

70

74 | 81

85

93

o8

key
IN



Finding Maximum And Minimum

* Let us consider another simple problem that
can be solved by the divide-and-conquer
technique

* The problem is to find the maximum and
minimum items in a set of n elements



Algorithm StraightMaxMin(a, n, maz, min)
// Set maz to the maximum and min to the minimum of a[l : n}.

{
maz := min = a[l];
for 1:=2 ton do

if (a[i] > maz) then max = a[il;
if (a[é] < min) then min = afz];

= O 00 T U = W o —
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 This algorithm requires 2(n-1) element

comparisons in the best, worst and average
cases.

e A divide-and-conquer algorithm for this
problem would proceed as follows:



— 0 00 =] O T QOB

19
20)
21
22
23
241
25
26
27
28
29

Algorithm MaxMin(4, j, maz, min)
// al[l : n] is a global array. Parameters ¢ and ;7 are integers,
// 1 <1 <3 <n. The effect is to set mazx and min to the
// largest and smallest values in aléi : 7], respectively.
{

if (1 = j) then max := min := ali]; // Small(P)

else if (: = 7 — 1) then // Another case of Small(P)

if (a[i] < alj]) then

mazx = alj]; min = alt];
}
else
{ q ,
max = ali]; min = a[j];

}
}

else
{ // If P is not small, divide P into subproblems.
// Find where to split the set.
mid == [{(i + 7)/2];
// Solve the subproblems.
MaxMin(z, mid, mazx, rnin);
MaxMin(mid + 1, 7, maxl, minl);
// Combine the solutions.
if (max < maxl) then mar := maxl;
if (mn > minl) then min := minl;



1,9,60,-8

@/\@

1,5,22,-8 6,9,60,17

3 7 L ® ® 7 O

1,3,22,-5 4,5,15,-8 6,7,60,17 8,9,47,31

0 N0

1,2,22,13 3,3,-5-5

Trees of recursive calls of MaxMin



Examining Figure 3.2, we see that the root node containg 1 and 9 ag the
values of 1 and 7 corresponding to the mitial call to MaxMin, This execution
produces two new calls to MaxMin, where 1 and 7 have the values 1, 5 and
6, 9, respectively, and thus split the set mto two subsets of approximately
the same size. From the tree we can immediately see that the maximum
depth of recursion is four (including the first call]. The circled numbers in
the upper left corner of each node represent the orders in which maz and
man are assigned values.



* The number of element comparisons needed
for MaxMin is represented by T(n), then the
resulting Recurrence Relation is

T(n) = {

* When n is a power of 2, n = 2k for some
positive integer k, then

T (r)

f{(f'n/2—|) +T([n/2]))+2 nn>2

O

70 = 2

70 — 1

2T (n/2) + 2
22T (n/4) +2) + 2
AT (n/4) + 4 + 2

281T(2) + X cicn—1 2°
2k—1 4 2k _ 2 — 3n/2 — 2



* Let us see the count is when element
comparisons have the same cost as
comparisons between i and j. Let C(n) be this

number.
if (¢ = 7 — 1) { // Small(F)

* A single comparison between i and j-1 is
adequate to implement the modified if
statement. Assuming n = 2k for some positive
integer k, we get



C(n) = { %C(’R/Z) + 3 ’zig

Solving this equation, we obtain

C(n)

o

2C(n/2) +3
4C(n/4) + 6 +3

k-10(2) +3 Y22
k432513
Hn/2 — 3

t

o



Points about Algorithm

* |If comparisons among the elements of a[] are
much more costly than the comparisons of
integer variables, then the divide-and-conquer
technique has yielded a more efficient algorithm.

* |t is sometimes necessary to work out the
constants associated with the computing time
bound for an algorithm.

 Both MaxMin and StraightMaxMin are O(n), so
the use of asymptotic notation is not enough of a
discriminator in this situation.



 Apply the MaxMin algorithm to on the
following elements

56, 40, 3, 63, 36, 89, 27/, 8,13,55,72



Merge Sort



Introduction

* Given a sequence of elements a[1]............. aln].

* The general idea here is to split them into two
sets a[1]......... a[n/2] and a[n/2+1]...........a[n].

e Each set is individually sorted and the
resulting sorted sequences are merged to
produce a single sorted sequence of n
elements.



Working

Divide the array into equal parts.
Sort the left part of the array recursively.
Sort the right part of the array recursively.

Merge the left part & right part by comparing
the elements & placing the lowest elements

first in the resultant array.



e Algorithm MergeSort(low, high)

// Purpose: Sort the elements of the array between the lower bound & upper
bound

// Input : low & high as lower bound & upper bound of the global array A[1:n]
//Output: A is sorted vector

if(low<high)

mid & (low+high)/2
MergeSort(low, mid)
MergeSort(mid+1, high)
Merge(low, mid, high)
end if



Algorithm Merge(low, mid, high)

// allow : high] is a global array containing two sorted

// subsets 1n allow : mzzd] and in a[mid + 1 : high]. The goal
// is to merge these two sets into a single set residing

// in a[low : high]. b[ ] is an auxiliary global array.

h := low; 7 := low; 7 := mad + 1;
while ((h < mid) and (7 < high)) do

e O 00 AT O CT A N

if (a[h] < al7]) then

b[2] := alh];h = h + 1;

}

else

1 . o .
bli] == aljl; 7 =7 + 13

.

1 := 2 + 1;

by
if (h > mid) then
for £ := 3 to high do

{
blz] := alk]; ¢ := 7 + 13
}
else
for £k := h to mid do
{

bz] := alk]; 2z := 2 + 1;

for k := low to high do alk] :=



* Consider the array of ten elements a[1:10]
e 1, 2, 3, 4 5 6, 7, 8 9 10
 310,285,179,652,351,423,861,254,450,520



1,3

1,2

1,1

2,2

1,5

3,3

4,5

N

44

1,10

3,9

6.8

6,7

/\

6,10

8,8

6,6

1,1

9,10

10,10

Figure 3.3 Tree of calls of MergeSort(1, 10)



(310 | 285 | 179 | 652, 351 | 423, 861, 254, 450, 520)

(285, 310 | 179 | 652, 351 | 423, 861, 254, 450, 520)

(179, 285, 310 | 652, 351 | 423, 861, 254, 450, 520)

(179, 285, 310 | 351, 652 | 423, 861, 254, 450, 520)

(179, 285, 310, 351, 652 | 423, 861, 254, 450, 520)



(179, 285, 310, 351, 652 | 423 | 861 | 254 | 450, 520)

(179, 285, 310, 351, 652 | 254, 423, 861 | 450, 520)

(179, 285, 310, 351, 652 | 254, 423, 450, 520, 861)

(179, 254, 285, 310, 351, 423, 450, 520, 652, 861)



Fiocure 2.4 Tree of calle of Merge



Time Complexity

e If the time for merging operation s
proportional to n, then the computing time
for merge sort is described the recurrence
relation,

T | a n = 1,a a constant
(n) = 2T'(n/2) +cn  n > 1,c a constant



When n is a power of 2, n = 2%, we can solve this equation by successive
substitutions:

T(n) = 22T(n/4) +cn/2) +cn
4T(n/4) + 2en
4(2T(n/8) + cn/4) + 2en

1

2°T(1) + ken
an+ cnlogn

It is casy to see that if 2¢ < n < 2¥F1 then T(n) < T(2¥11). Therefore

T(n) = O(nlogn)



Advantages and Limitations:

* Advantages:

— Number of comparisons performed is nearly
optimal.

— Mergesort will never degrade to O(n?).
— It can be applied to files of any size.
* Limitations:

— Uses O(n) additional memory.



 Example:

 Apply merge sort for the following list of
elements:6,3,7,8,2,45,1
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Quick Sort
(Partition Exchange Sort)



Steps

* Pick an element called pivot from the list.

* Reorder the list so that all elements which are
ess than the pivot come before the pivot and
all elements greater than pivot come after it.

* After this partitioning, the pivot is in its final
position. This is called the partition operation.

e Recursively sort the sub-list of lesser elements
and sub-list of greater elements.



O —~J 0 O e Qo N =
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Algorithm QuickSort(p, g)
/] Sorts the elements afp), ..., a[q] which reside in the global
/[ array a[l : n] into ascendmg order; an + 1] is considered to

/] be defined and must be > all the clements in all:nl.

{

if (p < ¢) then // If there are more than one element

// divide P into two subproblems.
j = Partition(a,p,q + 1);
/] 7 is the position of the partitioning element.
// Solve the subproblems.
QuickSort(p, 7 — 1);
QuickSort(j + 1,9);
/| There is no need for combining solutions.



LN W=

Uk WN =

Algorithm Partition(a, m, p)

// Within a[m],a[m + 1],...,a[p — 1] the elements are
// rearranged in such a manner that if initially ¢ = alr],
// then after completion a[g] = ¢ for some g between m
// and p — 1, alk] <t for m < k < q, and alk] > ¢

// for g < k < p. g is returned. Set a[p] = co.

v = al[ml]; i ;== m;3 j 1= p;
repeat
{
repeat
¢ =12 + 1;

until (ali] = v);
g =3 — 13
until (alj] < v);
if (i << j7) then Interchange(a,, j);
} until (i = j);

alm] := alj]; alj] := v; return j;

+

Algorithm Interchange(a,?, 7)
// Exchange al[i] with a[7].



 Example:
*0,1,2,3,4,5,6,7
«53,1,9,8,2,4,7
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f=0, r=0

I=0, r=7

=2, r=1

5=4
=5 =7
5=
=%, r=3 =&, r=5H =7, r=7
g=2
=3, r=3
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Analysis

First, let us obtain the worst-case value Cyy(n) of C(n). The number of
element, comparisons in each call of Partition is at most p—m + 1. Let r
be the total number of elements in all the calls to Partition at any level of
recursion. At level one only one call, Partition(a,1,n+1), is made and r = n;
at level two at most two calls are made and r = n — 1; and so on. At each
level of recursion, O(r) element comparisons are made by Partition. At each
level, ris at least one less than the r at the previous level as the partitioning
elements of the previous level are eliminated. Hence Cy(n) is the sum on r
as r varics from 2 to n, or O(n?). Exercise 7 examines input data on which

QuickSort uses (n?) comparisons.
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The average value Ca(n) of C'(n) is much less than Cy(n). Under the
assummptions made earlier, the partitioning element » has an equal probability

of being the ith-smallest element, 1 <7 < p — m, in a[m : p — 1]. Hence the
two subarrays remaining to be sorted are a[m : j] and a[j + 1 : p — 1] with
probability 1/(p — m),m < 7 < p. From this we obtain the recurrence

CA(H)Z?’I+1+1 Z [CA(FL‘—].))-I-CA(R—E:‘)] (3-5)
1<k<n

The number of element comparisons required by Partition on its first call
is n + 1. Note that C4(0) = C4(1) = 0. Multiplying both sides of (3.5) by
nn, we obtain

nCa(n) =n(n—+ 1) + 2[Ca(0) + Ca(1l) +--- + Ca(n — 1)] (3.6)
Replacing n by n — 1 in (3.6) gives
(n— 1)Ca(n —1) =n(n — 1) + 2[Ca(0) + --- + C4a(n — 2)]

Subtracting this from (3.6), we get

nCa(n) —(n —1)Ca(n—1) = 2n+4+2C4(n—1)
or
Ca(n)/(in+1) = Caln—1)/n+2/(n+ 1)
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Repeatedly using this equation to substitute for C4(n —1),Ca(n —2),...,
we get

Caln) Ain 2l_|_ +_

n+1 _ ol 3 n-l—l
An ! 2
= +n_1+n+m

(3.7)

1
= “U +2 Z3<k«::n+1
= 2 Z3<k<n+1 i

Since

1 n+1 |
Z . < — d:r—loge(n+l) — log, 2
3<k<n il 2

(3.7) yields

Ca(n) < 2(n+ 1)[log.(n + 2) — log, 2] = O(nlogn)



Even though the worst-case time is O(n?), the average time is only O(n logn).
Let us now look at the stack space needed by the recursion. In the worst case
the maximum depth of recursion may be n — 1. This happens, for example,
when the partition element on each call to Partition is the smallest value in
a/m : p— 1]. The amount of stack space needed can be reduced to O(logn)
by using an iterative version of quicksort in which the smaller of the two
subarrays alp: j — 1] and a[j + 1 : ¢ is always sorted first. Also, the second
recursive call can be replaced by some assignment statements and a jump
to the beginning of the algorithm. With these changes, QuickSort takes the
form of Algorithm 3.14.

We can now verify that the maximum stack space needed is O(logn). Let
S(n) e the maximum stack space needed. Then it follows that

S(n)'i_f{ 3"‘8([(”_1)/2“ 22}

which is less than 2 log n.
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Strassen’s matrix
multiplication



Strassen’s matrix multiplication

e Let A and B be two n-by-n matrices. The
product matrix C=AB is also an n-by-n matrix
whose i, jth element is formed by taking the
elements in the ith row of A and jth column of
B and multiplying them to get

Clj) = 3. A(ik)B(k, )

1<k<n

 Foralliand jbetween 1 and n.

* The time using conventional method is ©(n3)



* Imagine that A and B are each partitioned into
four square sub-matrices, each submatrix
having dimensions n/2 X n/2. Then the
product of AB can be computed using above
formula for the product of 2 X 2 matrices. If
AB is

[Au Am] By Bm] _ [011 C?12]

Ay Ay By By Co1 Cox
then
Ci1i = AuBn + ApeBy
Ci2 = AnbBio+ ApBa
Co1 = AuBn + AxeBy
Coz = A21B1o 4+ A9 Bgo



To compute AB using (3.12), we need to perform eight multiplications
of n/2 X n/2 matrices and four additions of /2 x n/2 matrices. Since two

n/2xn/2 matrices can be added in time cn® for some constant c, the overall
computing time T(n) of the resulting divide-and-conquer algorithm is given
by the recurrence

: <)
Ttn :{ T2+ 1>

where b and ¢ are constants.
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This recurrence can be solved in the same way as earlier recurrences to
obtain T(n) = O(n*). Hence no improvement over the conventional method
has been made. Since matrix multiplications are more expensive than matrix
additions (O(n?) versus O(n?)), we can attempt to reformulate the equations
for C;; 80 as to have tewer multiplications and possibly more additions.
Volker Strassen has discovered a way to compute the Ci;'s of (3.12) using
only 7 multiplications and 18 additions or subtractions. His method involves
first computing the seven n/2 X n/2 matrices P, @, R, §, T, U, and V as
in (3.13). Then the Ci;'s are computed using the formulas in (3.14). As
can be seen, P, ¢, R, 5, T, U, and V can be computed using 7 matrix
multiplications and 10 matrix additions or subtractions. The G;;'s require
an additional 8 additions or subtractions.



TN Nl T

1 L | R | O L A

(A1) + Ag)(B11 + Byo)
(A2 + An) By
An1(By2 — By)
Ay(By — Byy)
(A1 + A12)Bog
(A1 — A11)(Bi1 + Bia)
(A12 — Ap)(By + By)

O T
o

(3.13)

(3.14)



The resulting recurrence relation for T(n) is

b n<2

In)= T(n/2) +an? n>2

319

wherc o and b are constants. Working with this formula, we get

T(n) = an{l+ 74+ T4+ + (T 47T()
< en(7/4)/%" £ TR ¢ constant
Cnlog.z 4+log, 7-log, 4 i nlogg 7

O} % O™

il



* Apply the strassen’s matrix multiplication to
the following matrices.

I

A B



P = (A11+A22)(B11+B22) = (2 + 9)(4+6) = 11X10=110
Q= (A21+A22)B11 = (7 + 9) 4= 16X4 = 64
R=A11(B12-B22)=2 (8 —6)=2X2=4

S =A22(B21-B11) =9 (1 — 4) = 9X-3 = -27

T = (A11+A12)B22 = (2+5) 6 = 7X6 = 42
U=(A21-A11)(B11+B12) = (7-2)(4+8)= 5X12=60

V = (A12-A22)(B21+B22) = (5-9)(1+6)= -4X7 = -28



C11=P+S—-T+V=110+(-27)—42 + (-28) = 13
C12=R+T=4+42=46
C21=Q+S=64+(-27) =37
C22=P+R-Q+U=110+4-64+60 =110

[2 5} {4 8} {13 46}
) ¢ =
7 9 1 6 37 110

A B C
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Decrease and Conquer
Topological Sorting



General Method

* Decrease & conquer is a general algorithm
design strategy based on exploiting the
relationship between a solution to a given
instance of a problem and a solution to a
smaller instance of the same problem.

* The exploitation can be either top-down
(recursive) or bottom-up (non-recursive).



The major variations of decrease and conquer are

1. Decrease by a constant :(usually by 1):

— a. insertion sort

— b. graph traversal algorithms (DFS and BFS)

— ¢. topological sorting

— d. algorithms for generating permutations, subsets
2. Decrease by a constant factor (usually by half)
— a. binary search and bisection method

3. Variable size decrease
— a. Euclid’s algorithm



Decrease by Constant :

* The problem Size is usually decremented by
one in each iteration of the loop.

problem of ﬁ

subproblerm
of size rn —1

solution to
the subproblerm

il

solution to
the original problerm
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Topological Sorting

* The topological sort of a directed acyclic graph
G = (V, E) is a linear ordering of all the vertices
such that for every edge (u, v) in graph G, the
vertex u appears before the vertex v in the
ordering.

* NOTE:

— There is no solution for topological sorting if there
is a cycle in the digraph .



* Topological sorting problem can be solved by
using
— DFS method
— Source removal method



DFS Method

Depth-first search starts visiting vertices of a graph at an arbitrary
vertex by marking it as having been visited.

On each iteration, the algorithm proceeds to an unvisited vertex
that is adjacent to the one it is currently in.

This process continues until a dead end-a vertex with no adjacent
unvisited vertices-is encountered.

At a dead end, the algorithm backs up one edge to the vertex it
came from and tries to continue visiting unvisited vertices from
there.

The algorithm eventually halts after backing up to the starting
vertex, with the latter being a dead end.

By then, all the vertices in the same connected component as the
starting vertex have been visited.

If unvisited vertices still remain, the depth-first search must be
restarted at any one of them.



* ALGORITHM DFS(G)

//Implements a depth-first search traversal of a
given graph

//Input: Graph G = (V, E)

/*Output: Graph G with its vertices marked with

consecutive integers in the order they've been
first encountered by the DFS traversal */

mark each vertex in V with 0 as a mark of being
"unvisited"”

Count<—0
for each vertex vin V do
if vis marked with O

dfs(v)



dfs(v)
//visits recursively all the unvisited vertices
connected to vertex v hy a path

//and numbers them in the order they are
encountered via global variable count

count<— count + 1;

mark v with count

for each vertex w in V adjacent to v do
if wis marked with O

dfs(w)



Chy The pﬂppiﬁgﬂﬁ order:

4, Ch, ¢4, C3, 1, C2
C3q The topciogicaily sorted hist:
Cl4 C2¢ C?2 1= C3—C4—+(D
N AN A
() (b) (c)

FIGURE 5.10 (a) Digraph for which the topological sorting problem needs to be solved.
(b} DFS traversal stack with the subscript numbers indicating the popping-
off order. (c) Solution to the problem.
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 Apply the DFS based algorithm to solve the

topological sorting problem for the following
graph

TN
b )
/ h fﬁ || \‘\\

/, \ f{, || \\\

B | S \ / I 4_
TN P R
-"x\ C ;‘ :..\ d / | Ik\‘ ) = /

- __./'\\ //fu |II ;’
4
\'\x/ h‘ * J;Irf’
m“ﬂ 5 ) \Kﬁ
. j?_,f“ AN g:y/f

a->b->e->g->f->c->d
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Source Removal Method

* Purely based on decrease & conquer.

* Repeatedly identify in a remaining digraph a
source, which is a vertex with no incoming
edges.

* Delete it along with all the edges outgoing
from it.



 Apply Source removal — based algorithm to
solve the topological sorting problem for the
given graph:

@0
@ ©



Solution:

@/" (& @/'

Delete C2
Delete C3
Delete C4 Delete C5
> -
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* Apply Source removal — based algorithm to
solve the topological sorting problem for the
given graph:
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The major variations of decrease and conquer are

1. Decrease by a constant :(usually by 1):

— a. insertion sort

— b. graph traversal algorithms (DFS and BFS)

— ¢. topological sorting

— d. algorithms for generating permutations, subsets
2. Decrease by a constant factor (usually by half)
— a. binary search and bisection method

3. Variable size decrease
— a. Euclid’s algorithm



Decrease by Constant :

* The problem Size is usually decremented by
one in each iteration of the loop.

problem of ﬁ

subproblerm
of size rn —1

solution to
the subproblerm

il

solution to
the original problerm
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Consider, as an example, the exponentiation problem of computing " for

positive integer exponents. The relationship between a solution to an instance of
suze n and an instance of size n — 1is obtained by the obvious formula: " = " -,

S0 the function f () =4" canbe computed either “top down” by using its recursive

definition

fin-1).a n>1
q ifn=1

flr)= G.1)

or “bottom up” by multiplying a by itselt n - 1 times. (Yes, it is the same as the
brute-force algorithm, but we have come 1o t by a different thought process)
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Decrease by a constant Factor

* The problem size is reduced by same constant factor(usually by 2) on each
iteration of the algorithm.

problem of size n

subproblem
of size /2

solution to
the subproblem

w

solution to
the original problem




For an example, let us revisit the exponentiation problem. If the instance of
size 1 is to compute a”, the instance of half its size will be to compute 4"/, with
the obvious relationship between the two: a” = (¢"/%)%. But since we consider here
instances of the exponentiation problem with integer exponents only, the former
does not work for odd n. If n is 0dd, we have to compute «”~ by using the rule for
even-valued exponents and then multiply the result by a. To summarize, we have
the following formula:

) (@"%)? if n is even and positive
a” =1 (@™ V2 .4 ilnisodd and greater than 1 (5.2)
a ifn=1.

I!f we compute a” recursively according to formula (5.2) and measure the algo-
rithm’s efficiency by the number of multiplications, we should expect the algorithm

to be in O(log n} because, on each iteration, the size is reduced by at least one half
at the expense of no more than two multiplications.
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Variable — Size - Decrease

* |n this, in each iteration of the loop, the size reduction
pattern varies from one iteration of the algorithm to
another iteration.

* Finding GCD of two numbers using Euclid's Algorithm

m ifn=0
GCD(m, n) | GCD(n, m mod n) otherwise

* Though the arguments on the right-hand side are
always smaller than those on the left-hand side (at
least starting with the second iteration of the
algorithm), they are smaller neither by a constant nor
by a constant factor.



