
S. J. P. N. TRUST’S
HIRASUGAR INSTITUTE OF TECHNOLOGY, NIDASOSHI

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME.

Department of Computer Science & Engineering

Course: Design And Analysis of Algorithms (18CS42)

Module 2: Divide And Conquer,

Prof. A. A. Daptardar
Asst. Prof. , Dept. of Computer Science & Engg.,

Hirasugar Institute of Technology, Nidasoshi
7/8/2022 1

Definition

• It is a top-down technique for designing
algorithms that consists of dividing the
problem into smaller sub-problems hoping
that the solutions of the sub-problems are
easier to find & then combine the partial
solutions onto the solutions of the original
problems.

7/8/2022 2

General Method

• The general method in solving a given
problem is shown below:
– An instance of a given problem is divided into a

number of smaller instances of same type & equal
size.

– All the smaller instances of the problems are
solved recursively.

– The solutions of all the smaller instances are
combined together to get a solution to the original
problem.

7/8/2022 3

General method
• Given a function to compute on n inputs the divide-and-

conquer strategy suggests splitting the inputs into k
distinct subsets, 1 < k ≤ n, yielding k sub-problems

• These sub-problems must be solved, and then a method
must be found to combine sub-solutions into a solution
of the whole

• If the sub-problems are still relatively large, then the
divide-and-conquer strategy can possibly be reapplied

• Often the sub-problems resulting from a divide-and-
conquer design are of the same type as the original
problem

• Similarly, smaller and smaller sub-problems of the same
kind are generated until no more splitting of sub-problem
is possible

7/8/2022 4

Divide and Conquer Technique

7/8/2022 5

• The general algorithm for divide and conquer (DAC)
method is as follows:

//Purpose : Solve the problem of a given instance(P) by
dividing into various smaller instances such as p1,p2,p3
......pn.

//Input: The instances of a problem are (P)
//output : The solution S to the input instances
if small (P)
return G(P)
else
Divide P into p1, p2,.......,pk
S ← DAC(p1) + DAC(p2)+........+DAC(pk)
return S
end if

7/8/2022 6

Divide and Conquer
Advantages

1. Solving difficult problems – D&C is a
powerful method for solving difficult
problems by breaking a problem into
sub problems, solving sub problems
and combining results of sub problem
to get solution of original problem

2. Parallelism – D&C allows us to solve
the sub problem independently, they
allow execution in multi-processor
machines, different sub problems can
be executed on different processors

3. Memory Access – D&C algorithm
makes efficient use of memory caches.
Sub problems are small so all sub
problems can be solved within cache,
without accessing much slower main
memory

Disadvantages

1. Recursion is slow –
because of overhead of the
repeated sub problem call

2. For some problem, D&C
technique become more
complicated than an
iterative technique – For
Example, to add n numbers
in Array

7/8/2022 7

Time Complexity

• The time complexity of DAC can be obtained as
shown below:
– An instance of size n can be divided into several

instances say a of size n/b & the time complexity can
be obtained using the recurrence relation :
T(n) = a T(n/b) + f(n)

– where a & b are positive constants such that b > 1 &
f(n) is a function which is the time spent on dividing
the problem into smaller instances & combining them
to get a single solution.

7/8/2022 8

Master Theorem

• The time complexity can be easily calculated
using the following relation (Master Theorem
):

Θ(nd) if a < bd

T(n) = Θ(nd log n) if a = bd

Θ(nlog
b

a) if a > bd

• where d is the power of n in f(n).

7/8/2022 9

Ex: The recurrence relation is given by

0 if n=1

T(n) = T(n/2) + T(n/2) +1 otherwise

Solve this using Backward Substitution & Master
Theorem.

7/8/2022 10

7/8/2022 11

7/8/2022 12

Binary search
• Binary search is one of the techniques used while

searching for an item.
• But this technique is applied only if the items to be

compared are in either ascending order or descending
order.

• It inspects the middle element of the sorted list.
• If equal to the sought value, then the position has been

found.
• Otherwise, if the key is less than the middle element,

do a binary search on the first half, else on the second
half.

• Two ways are used to perform binary searching are-
1. Recursive Binary Search
2. Iterative Binary Search

7/8/2022 13

Recursive Binary Search

7/8/2022 14

Iterative Binary Search
Algorithm Binary_Search(A, key, low, high)
//Purpose : Search for an item in the list identified by A
// Input : A – list of elements

low & high – lower bound & upper bound of the list
key – element to be searched

//Output : position is returned if search is successful otherwise -1 is returned
While low <= high do
{
mid ← (low+high)/2
if key < A[mid] then
high =mid-1
Else if key > A[mid] then
Low = mid+1
Else
Return mid;
end

7/8/2022 15

Example of Binary Search

• Let us select the 14 entries as shown below-

(-15, -6, 0, 7, 9, 23, 54, 82, 101, 112, 125, 131, 142, 151)

• Place them in a[1 : 14]; and simulate the steps that
BinSearch goes through as it searches for different
values of x

• Only the variables low, high and mid need to be traced
as we simulate the algorithm

• We try the following values for x: 151, -14 and 9 for
two successful searches and one unsuccessful search

7/8/2022 16

Tracing of Binary Search
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

(-15, -6, 0, 7, 9, 23, 54, 82, 101, 112, 125, 131, 142, 151)

values for x: 151, -14 and 9

7/8/2022 17

Computing Time of Binary Search

7/8/2022 18

• Let us find the number of key comparisons in
the worst case Cworst(n).

• The worst-case inputs include all arrays that
do not contain a given search key (and, in fact,
some cases of successful searches as well).

• Since after one comparison the algorithm
faces the same situation but for an array half
the size, we get the following recurrence
relation for Cworst(n):

7/8/2022 19

• assume that n = 2k and solve the resulting
recurrence by backward substitutions or
another method.

• Let us verify by substitution that indeed
satisfies equation (4.2)

for any positive even number n. If n is positive
and even, n = 2i where i > 0. The left-hand side
of equation (4.2) for n = 2i is

7/8/2022 20

• The right hand side of the equation (4.2) for n
= 2i is

• Since both expressions are the same, we
proved the assertion.

7/8/2022 21

• What is the largest number of key
comparisons made by binary search in
searching for a key in the following array?

7/8/2022 22

Finding Maximum And Minimum

• Let us consider another simple problem that
can be solved by the divide-and-conquer
technique

• The problem is to find the maximum and
minimum items in a set of n elements

7/8/2022 23

7/8/2022 24

• This algorithm requires 2(n-1) element
comparisons in the best, worst and average
cases.

• A divide-and-conquer algorithm for this
problem would proceed as follows:

7/8/2022 25

7/8/2022 26

7/8/2022 27

7/8/2022 28

• The number of element comparisons needed
for MaxMin is represented by T(n), then the
resulting Recurrence Relation is

• When n is a power of 2, n = 2k for some
positive integer k, then

7/8/2022 29

• Let us see the count is when element
comparisons have the same cost as
comparisons between i and j. Let C(n) be this
number.

• A single comparison between i and j-1 is
adequate to implement the modified if
statement. Assuming n = 2k for some positive
integer k, we get

7/8/2022 30

7/8/2022 31

Points about Algorithm

• If comparisons among the elements of a[] are
much more costly than the comparisons of
integer variables, then the divide-and-conquer
technique has yielded a more efficient algorithm.

• It is sometimes necessary to work out the
constants associated with the computing time
bound for an algorithm.

• Both MaxMin and StraightMaxMin are Θ(n), so
the use of asymptotic notation is not enough of a
discriminator in this situation.

7/8/2022 32

• Apply the MaxMin algorithm to on the
following elements

56, 40, 3, 68, 36, 89, 27, 8,13,55,72

7/8/2022 33

Merge Sort

7/8/2022 34

Introduction

• Given a sequence of elements a[1]………….a[n].

• The general idea here is to split them into two
sets a[1]………a[n/2] and a[n/2+1]………..a[n].

• Each set is individually sorted and the
resulting sorted sequences are merged to
produce a single sorted sequence of n
elements.

7/8/2022 35

Working

• Divide the array into equal parts.

• Sort the left part of the array recursively.

• Sort the right part of the array recursively.

• Merge the left part & right part by comparing
the elements & placing the lowest elements
first in the resultant array.

7/8/2022 36

• Algorithm MergeSort(low, high)
// Purpose: Sort the elements of the array between the lower bound & upper

bound

// Input : low & high as lower bound & upper bound of the global array A[1:n]

//Output: A is sorted vector

if(low<high)

mid ← (low+high)/2

MergeSort(low, mid)

MergeSort(mid+1, high)

Merge(low, mid, high)

end if

7/8/2022 37

7/8/2022 38

• Consider the array of ten elements a[1:10]

• 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

• 310,285,179,652,351,423,861,254,450,520

7/8/2022 39

7/8/2022 40

7/8/2022 41

7/8/2022 42

7/8/2022 43

Time Complexity

• If the time for merging operation is
proportional to n, then the computing time
for merge sort is described the recurrence
relation,

7/8/2022 44

7/8/2022 45

Advantages and Limitations:

• Advantages :

– Number of comparisons performed is nearly
optimal.

– Mergesort will never degrade to O(n2).

– It can be applied to files of any size.

• Limitations:

– Uses O(n) additional memory.

7/8/2022 46

• Example:

• Apply merge sort for the following list of
elements : 6, 3, 7, 8, 2, 4, 5, 1

7/8/2022 47

7/8/2022 48

Quick Sort
(Partition Exchange Sort)

7/8/2022 49

Steps

• Pick an element called pivot from the list.

• Reorder the list so that all elements which are
less than the pivot come before the pivot and
all elements greater than pivot come after it.

• After this partitioning, the pivot is in its final
position. This is called the partition operation.

• Recursively sort the sub-list of lesser elements
and sub-list of greater elements.

7/8/2022 50

7/8/2022 51

7/8/2022 52

• Example :

• 0, 1, 2, 3, 4, 5, 6, 7

• 5, 3, 1, 9, 8, 2, 4, 7

7/8/2022 53

7/8/2022 54

7/8/2022 55

Analysis

7/8/2022 56

7/8/2022 57

7/8/2022 58

7/8/2022 59

Strassen’s matrix
multiplication

7/8/2022 60

Strassen’s matrix multiplication

• Let A and B be two n-by-n matrices. The
product matrix C=AB is also an n-by-n matrix
whose i, jth element is formed by taking the
elements in the ith row of A and jth column of
B and multiplying them to get

• For all i and j between 1 and n.

• The time using conventional method is Ɵ(n3)

7/8/2022 61

• Imagine that A and B are each partitioned into
four square sub-matrices, each submatrix
having dimensions n/2 X n/2. Then the
product of AB can be computed using above
formula for the product of 2 X 2 matrices. If
AB is

7/8/2022 62

7/8/2022 63

7/8/2022 64

7/8/2022 65

7/8/2022 66

• Apply the strassen’s matrix multiplication to
the following matrices.

2 5 4 8

7 9 1 6

A B

7/8/2022 67

• P = (A11+A22)(B11+B22) = (2 + 9)(4+6) = 11X10=110

• Q = (A21+A22)B11 = (7 + 9) 4= 16X4 = 64

• R = A11(B12-B22) = 2 (8 – 6) = 2X 2 = 4

• S = A22(B21-B11) = 9 (1 – 4) = 9X-3 = -27

• T = (A11+A12)B22 = (2+5) 6 = 7X6 = 42

• U = (A21-A11)(B11+B12) = (7-2)(4+8)= 5X12=60

• V = (A12-A22)(B21+B22) = (5-9)(1+6)= -4X7 = -28

7/8/2022 68

• C11 = P + S – T + V = 110 + (-27) – 42 + (-28) = 13

• C12 = R + T = 4 + 42 = 46

• C21 = Q + S = 64 + (-27) = 37

• C22 = P + R – Q + U = 110 + 4 – 64 + 60 =110

2 5 4 8 13 46

7 9 1 6 37 110

A B C

7/8/2022 69

Decrease and Conquer

Topological Sorting

7/8/2022 70

General Method

• Decrease & conquer is a general algorithm
design strategy based on exploiting the
relationship between a solution to a given
instance of a problem and a solution to a
smaller instance of the same problem.

• The exploitation can be either top-down
(recursive) or bottom-up (non-recursive).

7/8/2022 71

• The major variations of decrease and conquer are
• 1. Decrease by a constant :(usually by 1):

– a. insertion sort
– b. graph traversal algorithms (DFS and BFS)
– c. topological sorting
– d. algorithms for generating permutations, subsets

• 2. Decrease by a constant factor (usually by half)
– a. binary search and bisection method

• 3. Variable size decrease
– a. Euclid’s algorithm

7/8/2022 72

Decrease by Constant :
• The problem Size is usually decremented by

one in each iteration of the loop.

7/8/2022 73

Topological Sorting

• The topological sort of a directed acyclic graph
G = (V, E) is a linear ordering of all the vertices
such that for every edge (u, v) in graph G, the
vertex u appears before the vertex v in the
ordering.

• NOTE:

– There is no solution for topological sorting if there
is a cycle in the digraph .

7/8/2022 74

• Topological sorting problem can be solved by
using

– DFS method

– Source removal method

7/8/2022 75

DFS Method

• Depth-first search starts visiting vertices of a graph at an arbitrary
vertex by marking it as having been visited.

• On each iteration, the algorithm proceeds to an unvisited vertex
that is adjacent to the one it is currently in.

• This process continues until a dead end-a vertex with no adjacent
unvisited vertices-is encountered.

• At a dead end, the algorithm backs up one edge to the vertex it
came from and tries to continue visiting unvisited vertices from
there.

• The algorithm eventually halts after backing up to the starting
vertex, with the latter being a dead end.

• By then, all the vertices in the same connected component as the
starting vertex have been visited.

• If unvisited vertices still remain, the depth-first search must be
restarted at any one of them.

7/8/2022 76

• ALGORITHM DFS(G)
//Implements a depth-first search traversal of a

given graph
//Input: Graph G = (V, E)
/*Output: Graph G with its vertices marked with

consecutive integers in the order they've been
first encountered by the DFS traversal */

mark each vertex in V with 0 as a mark of being
"unvisited"

Count 0
for each vertex v in V do
if v is marked with 0
dfs(v)

7/8/2022 77

dfs(v)

//visits recursively all the unvisited vertices
connected to vertex v hy a path

//and numbers them in the order they are
encountered via global variable count

count count + 1;

mark v with count

for each vertex w in V adjacent to v do

if w is marked with 0

dfs(w)

7/8/2022 78

7/8/2022 79

• Apply the DFS based algorithm to solve the
topological sorting problem for the following
graph :

a -> b -> e -> g -> f -> c -> d

7/8/2022 80

Source Removal Method

• Purely based on decrease & conquer.

• Repeatedly identify in a remaining digraph a
source, which is a vertex with no incoming
edges.

• Delete it along with all the edges outgoing
from it.

7/8/2022 81

• Apply Source removal – based algorithm to
solve the topological sorting problem for the
given graph:

7/8/2022 82

7/8/2022 83

• Apply Source removal – based algorithm to
solve the topological sorting problem for the
given graph:

7/8/2022 84

• The major variations of decrease and conquer are
• 1. Decrease by a constant :(usually by 1):

– a. insertion sort
– b. graph traversal algorithms (DFS and BFS)
– c. topological sorting
– d. algorithms for generating permutations, subsets

• 2. Decrease by a constant factor (usually by half)
– a. binary search and bisection method

• 3. Variable size decrease
– a. Euclid’s algorithm

7/8/2022 85

Decrease by Constant :
• The problem Size is usually decremented by

one in each iteration of the loop.

7/8/2022 86

7/8/2022 87

Decrease by a constant Factor
• The problem size is reduced by same constant factor(usually by 2) on each

iteration of the algorithm.

7/8/2022 88

7/8/2022 89

Variable – Size - Decrease

• In this, in each iteration of the loop, the size reduction
pattern varies from one iteration of the algorithm to
another iteration.

• Finding GCD of two numbers using Euclid's Algorithm

m if n = 0

GCD(m, n) GCD(n, m mod n) otherwise

• Though the arguments on the right-hand side are
always smaller than those on the left-hand side (at
least starting with the second iteration of the
algorithm), they are smaller neither by a constant nor
by a constant factor.

7/8/2022 90

