
S. J. P. N. TRUST’S
HIRASUGAR INSTITUTE OF TECHNOLOGY, NIDASOSHI

Accredited at 'A' Grade by NAAC
Programmes Accredited by NBA: CSE, ECE, EEE & ME.

Department of Computer Science & Engineering

Course: Design And Analysis of Algorithms (18CS42)

Module 1: Introduction, What is an Algorithm?
Algorithm Specification Analysis Framework

Prof. A. A. Daptardar
Asst. Prof. , Dept. of Computer Science & Engg.,

Hirasugar Institute of Technology, Nidasoshi

Introduction
• The word “ALGORITHM” comes from the

name of a Persian author, Abu Ja’far
Mohammed ibn Musa al Khowarizmi (c.
825A.D.), who wrote a textbook on
mathematics

• This word has taken on a special significance
in computer science, where “ALGORITHM” has
come to refer to a method that can be used by
a computer for the solution of a problem

7/8/2022 2
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

What is an Algorithm
An “ALGORITHM” is a finite set of instructions that, if

followed, accomplishes a particular task.

In addition, all algorithm must satisfy the following
criteria:
1. Input – Zero or more quantities are externally supplied

2. Output – At least one quantity is produced

3. Definiteness – Each instruction is clear and unambiguous

4. Finiteness – After tracing all instructions in ALG, the ALG
terminates after a finite number of steps

5. Effectiveness - Every instruction must be very basic so
that it can be carried out, in principle, by a person using
only pencil and paper. Also each operation must feasible

7/8/2022 3
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Algorithm Specification
Pseudocode Conventions

ALG can be described using many ways

Graphic representation called flowcharts are another
possibility, but they work well only if the algorithm is
small and simple

 In this text we present most of our algorithm using a
Pseudocode that resembles C program
1. Comments begins with // and continue until the end of

line

2. Blocks are indicated with matching braces { and }

3. An identifier begins with a letter. The data types of
variables are not explicitly declared

7/8/2022 4
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Algorithm Specification
Pseudocode Conventions

4. Assignment of values to variables is done using the assignment
statement - <variable> = <expression>;

5. Boolean values – true and false, logical operators – and, or and
not, relational operators - <, >, == etc. are provided

6. Elements of multidimensional arrays are accessed using [and
]. Array indices start at zero

7. for, while and repeat-until looping statements are provided-

while < condition> do for variable:= value1 to value2 step step do

{ {

statement 1; statement 1;

…. …….

statement n; statement n;

} }

7/8/2022 5
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Pseudocode Conventions
A repeat-until statement is constructed as follows-
repeat

<statement 1>
….

<statement n>
until<condition>

8. A conditional statements has the following forms-
if <condition> then <statement>

if <condition> then <statement1> else <statement2>

case
{

:<condition1>: <statement1>;
……
……

:<condition n>: <statement n>;
:else: <statement n + 1>

}

7/8/2022 6
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Pseudocode Conventions
9. Input and Output are given using the

instruction read and write

10. An algorithm consists of a heading and a
body – Algorithm Name (<parameter list>)

Example:- ALG to find maximum element in Array

7/8/2022 7
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Algorithm to find GCD of two numbers

ALGORITHM Euclid(m, n)
//Computes gcd(m, n) by Euclid's algorithm
!!Input: Two nonnegative, not -both-zero integers m and n

//Output: Greatest common divisor of m and n
while n ≠ 0 do
r m mod n
m  n
n  r
return m

7/8/2022
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi
8

Recursive Algorithms

• A recursive function is a function that is
defined in terms of itself

• An ALG that calls itself is direct recursive

• ALG A is said to be indirect recursive if it calls
another algorithm which in turns calls A

7/8/2022 9
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

7/8/2022
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi
10

Analysis Framework

• The efficiency of an algorithm can be decided
by measuring the performance of an
algorithm.

• The performance of an algorithm can be
measured by computing two factors:

– Amount of time required by an algorithm to
execute.

– Amount of storage required by an algorithm.

7/8/2022
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi
11

Analysis Framework

7/8/2022 12

• There are two kinds of efficiency – Time and Space

• Time efficiency indicates how fast an algorithm in question runs

• Space efficiency deals with the extra space the algorithm requires

• Measuring an Input’s size – almost all ALGs run longer on larger
inputs. For example, it takes longer to sort larger arrays, multiply
larger matrices, and so on

• Units for Measuring Running Time – measuring an ALGs running
time, simply can use a standard unit as seconds, milliseconds and so
on. But, practically to identify the most important operation of the
algorithm, called the basic operation, the operation contributing
the most to the total running time, and compute the number of
times the basic operation is executed. Hence, we can estimate, T(n)
≈ CopC(n), where T(n) is running time of a program, Cop be the
execution time of an ALGs basic operation on a particular computer,
and C(n) be the number of times this basic operation needs to be
executed for this algorithm.Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Analysis Framework
• Worst-Case Efficiency –It is an efficiency when

algorithm runs for a longest time. Example –
Cworst(n)=n

• Best-Case Efficiency – It is an efficiency when the
algorithm runs for short time. Example – Cbest(n)=1

• Average-Case Efficiency – This type of efficiency
gives information about the behaviour of an
algorithm on specific or random input. Example –
Cavg(n)=p(n+1)/2 + n(1-p)

7/8/2022 13
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Performance Analysis
• Major goal of this subject is to develop skills for making

evaluative judgments about algorithm

• There are many criteria upon which we judge algorithm-
1. Does it do what we want it to do?

2. Does it work correctly according to the original specification of the task?

3. Is there documentation that describes how to use it and how it works?

4. Are procedures created in such a way that they perform logical sub-
functions?

5. Is the code readable?

• There are other important criteria for judging algorithms
that have a more direct relationship to performance

1. Space Complexity (Storage Requirement)

2. Time Complexity (Computing Time)

7/8/2022 14
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Space Complexity (Storage Requirement)

• The space complexity of an algorithm is the amount of
memory it needs to run to completion

• The space needed is the sum of a fixed part and variable part
1. Fixed Part – is independent of characters of the inputs and outputs.

It includes instruction space(space for code), space for simple
variables and fixed size component variables, space for constants
etc.

2. Variable Part – consists of the space needed by component variables
whose size is dependent on the particular problem instance being
solved, the space needed by referenced variables and recursion stack
space

• The space requirement S(P) of any algorithm P may
therefore be written as S(P) = c + Sp(instance characteristics)
, where c is constant

7/8/2022 15
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Time Complexity (Computing Time)
• The time complexity of an algorithm is the amount of

computer time it needs to run to completion

• The time T(P) taken by a program P is the sum of the
compile time and the run (or execution time)

• The compile time does not depend on the instance
characteristics

• Hence, we concern with just the run time of a
program

• This run time is denoted by tp(instance
characteristics)

7/8/2022 16
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Step Count for Array Element Addition

7/8/2022 17
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Step Count for Two Matrix Addition

7/8/2022 18
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Step Count for Rsum of Array Elements

7/8/2022 19
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

7/8/2022
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi
20

Module – 1
Asymptotic Notations

Big-Oh notation (O)
Big-Omega notation (Ω)
Big-Theta notation (Θ)

7/8/2022 21
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Asymptotic Notations

The efficiency analysis framework
concentrates on the order of growth of an
algorithm’s basic operation count as the
principal indicator of the algorithm’s efficiency

To compare and rank such orders of growth,
computer scientists use three notations:-
Big-Oh notation (O), Big-Omega notation (Ω)
and Big-Theta notation (Θ)

7/8/2022 22
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Big-Oh notation (O)

• A function t(n) is said to
be in O(g(n)), denoted
t(n) ϵ O(g(n)), if t(n) is
bounded above by
some constant multiple
of g(n) for all large n,
i.e., if there exist some
positive constant c and
some nonnegative
integer n0 such that t(n)
≤ cg(n) for all n ≥ n0

7/8/2022 23
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Big-Oh notation (O) - Example
Prove the following example –

100n + 5 ϵ O(n2)

Solution:-
100n + 5 ≤ 100n + n = n(100+1) = 101n
Hence Constant, c = 101
Hence, 100n + 5 ϵ O(n2) for all n ≥ 5 and

constant c=101

Prove the following example – 10n2 + 4n + 2 ≤ O(n2)
Solution - = 10n2 + n2

= n2(10 + 1)
= 11n2

Hence, constant, c = 11

Hence, 10n2 + 4n + 2 ≤ O(n2) for all n ≥ 5 and
constant c=11

7/8/2022 24
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Big-Omega notation (Ω)

• A function t(n) is said to
be in Ω(g(n)), denoted
t(n) ϵ Ω(g(n)), if t(n) is
bounded below by some
positive constant multiple
of g(n) for all large n, i.e.,
if there exist some
positive constant c and
some nonnegative
integers n0 such that

t(n) ≥ cg(n) for all n ≥ n0

7/8/2022 25
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Big-Omega notation (Ω) - Example

• Prove the following
examples-

1. n3 ϵ Ω (n2) - where n3

becomes greater
than n2 when we
select constant, c=1
and n0=0

2. 3n + 2 ϵ Ω (n) - where
3n + 2 becomes
greater than n when
we select constant,
c=3 and n0=0

• Prove the following
examples-

3. 3n + 3 ϵ Ω (1) - where
3n + 3 becomes
greater than 1 when
we select constant, c=3
and n0=0

4. 6 * 2n + n2 ϵ Ω (2n) -
where 6 * 2n + n2

becomes greater than
2n when we select
constant, c=6 and n0=0

7/8/2022 26
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Big-Theta notation (Θ)
• A function t(n) is said to

be in Θ(g(n)), denoted
t(n) ϵ Θ(g(n)), if t(n) is
bounded both above and
below by some positive
constant multiples of g(n)
for all large n, i.e., if there
exist some positive
constant c1 and c2 and
some nonnegative
integers n0 such that

c2g(n) ≤ t(n) ≤ c1g(n) for all n
≥ n0

7/8/2022 27
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Big-Theta notation (Θ) - Example

• Prove the following example of Big-Theta
3n + 2 ϵ Θ(n)

Solution:-
For 3n + 2 ≥ n, constant c1 = 3
For 3n + 2 ≤ n, = 3n + n = n (3 + 1) = 4n, constant c2 = 4
Hence 3n+2 ϵ Θ(n) with constant c1=3, c2=4 and for all n ≥ 2

7/8/2022 28
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

7/8/2022
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi
29

Basic Asymptotic Efficiency Classes

7/8/2022 30
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Module - 1
Mathematical analysis of Non-Recursive

Algorithms with Examples

Mathematical analysis of Recursive
Algorithms with Examples (T1:2.2, 2.3,
2.4).

7/8/2022 31
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Mathematical analysis of Non-Recursive
Algorithms with Examples

• General plan for Analyzing Time Efficiency of Non-Recursive
algorithms-
1. Decide on a parameter indicating an input size

2. Identify the algorithm’s basic operation

3. Check whether the number of times the basic operation is executed
depends only on the size of an input. If it also depends on some
additional property, the worst-case, average-case and best-case
efficiencies have to be investigated separately

4. Set up a sum expressing the number of times the algorithm’s basic
operation is executed

5. Using standard formulas and rules of sum manipulation, either find a
closed-form formula for the count or, at the very least, establish its
order of growth

7/8/2022 32
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Summation Rules & Formulas

7/8/2022 33

• Summation Rules

• Summation Formulae

Prof. A.A.Daptardar, Department of CSE,
HSIT, Nidasoshi

Maximum value in an array

7/8/2022
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi
34

Element Uniqueness Problem

7/8/2022 35
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

7/8/2022
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi
36

Matrix Multiplication Example

7/8/2022 37
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

7/8/2022
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi
38

Mathematical analysis of Recursive
Algorithms with Examples

• General plan for Analyzing Time Efficiency of Recursive
algorithms-
1. Decide on a parameter/parameter’s indicating an input’s size

2. Identify the algorithm’s basic operation

3. Check whether the number of times the basic operation is executed
can vary on different inputs of the same size; if it can, the worst-
case, average-case and best-case efficiencies must be investigated
separately

4. Set up a recurrence relation, with an appropriate initial condition for
number of times the basic operation is executed.

5. Solve the recurrence or at least ascertain the order of growth of its
solution

7/8/2022 39
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Tower of Hanoi Example

7/8/2022 40
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Algorithm TowerofHanoi(n, A, B, C)
{
if (n = 1)
{
write(“move disk from peg A to peg C”)
return;
}
else
{
TowerofHanoi(n-1, A, C, B);
TowerofHanoi(n-1, B, C, A);
}

7/8/2022
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi
41

Mathematical Analysis

7/8/2022 42
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Module - 1
Important Problem Types

1. Sorting

2. Searching

3. String processing

4. Graph Problems

5. Combinatorial Problems

7/8/2022 43
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Important Problem Types
 Sorting- The sorting problem asks us to rearrange the items of

a given list in ascending or descending order. As a practical
matter, we need to sort list of numbers, characters from
alphabets, character string and most important records about
students, employees, libraries about holding books etc.. The
special piece of information called “key” is used to sort list
items. For example, student name, number or grade point in
student records. Many types of sorting algorithms are – quick
sort, merge sort, bubble sort, selection sort etc.

 Searching- The searching problem deals with finding a given
value, called a search key, in a given set. There are two types
of searching algorithms – sequential searching and binary
searching

7/8/2022 44
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Important Problem Types
 String Processing- a string is a sequence of characters from

an alphabets. Text strings comprise letters, numbers and
special characters. Bit strings comprise of zeros and once.
String processing ALGs are important for computer
languages and compiling issues. Several string processing
algorithms are available like string matching, string
comparison, string concatenation, finding string length etc.

 Graph Problems- A graph can be thought of as a collection
of points called vertices, some of which are connected by
line segments called edges. Graphs can be used for
modeling a wide variety of real-life applications, including
transportation and communication network, project
scheduling and games. Examples are Traveling Salesman
Problem, Graph Coloring etc.

7/8/2022 45
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Important Problem Types
 Combinatorial Problems- The Travelling Salesman Problem and

Graph Coloring Problem are examples of combinatorial problems.
These are problems that ask (explicitly or implicitly) to find a
combinatorial object – such as a permutation, a combination, or a
subset – that satisfies certain constraints and has some desired
property (e.g., maximize a value or minimize a cost)

 Geometric Problems- Geometric algorithms deals with geometric
objects such as points, lines and polygons. Ancient Greeks
developed solution for variety of geometric problems, including
problems of constructing simple geometric shapes- triangles, circles
and so on

 Numerical Problems- Numerical problems, are problems that
involve mathematical objects of continuous nature: solving
equations and systems of equations, computing definite integrals,
evaluating functions and so on

7/8/2022 46
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Module - 1
Fundamental Data Structures

1. Stacks

2. Queues

3. Graphs

4. Trees

5. Sets and Dictionaries

7/8/2022 47
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Fundamental Data Structures

• A data structure can be defined as a particular
scheme of organizing related data items

• Linear data structures are array and linked lists

• Array - A (one dimensional) array is a
sequence of n items of the same data type
that are stored contiguously in computer
memory and made accessible by specifying a
value of the array’s index as shown in below
figure-

7/8/2022 48

Item[0] Item[1] ……………… Item[n-1]

Prof. A.A.Daptardar, Department of CSE,
HSIT, Nidasoshi

Fundamental Data Structures

• A linked list is a sequence of zero or more elements
called nodes each containing two kinds of
information: some data and one or more links called
pointers to other nodes of the linked list.

• Two types of linked lists are singly linked lists and
doubly linked lists. There working principles are
shown in below diagram-

7/8/2022 49
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Fundamental Data Structures

• Stack- A Stack is a list in which insertions and
deletions can be done only at the end. This end is
called the top because a stack is usually visualized
not horizontally but vertically. It operates in the
“last-in-first-out” (LIFO) fashion.

• Queue- is a list from which elements are deleted
from one end of the structure, called the front
(dequeue), and new elements are added to the
other end, called the rear (enqueue). It operates
in the “first-in-first-out” (FIFO) fashion.

7/8/2022 50
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

7/8/2022 51
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

7/8/2022 52
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

7/8/2022 53
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Circular Queue

7/8/2022 54
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

7/8/2022 55
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

7/8/2022 56
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Fundamental Data Structures

• Graphs- A graph G=<V,E> is defined by a pair
of two sets: a finite set V of items called
vertices and a set E of pairs of these items
called edges

7/8/2022 57
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

7/8/2022 58
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Fundamental Data Structures

• Graph Representation- A graphs for computer
algorithms can be represented in two principal
ways – the adjacency matrix and adjacency
lists

7/8/2022 59
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Fundamental Data Structures

• Weighted Graph - A weighted graph is a graph
with numbers assigned to its edges. These
numbers are called weights or costs.

7/8/2022 60
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Fundamental Data Structures

• Trees – A tree is a connected acyclic graph. A
graph that has no cycles but is not necessarily
connected is called a forest.

7/8/2022 61
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Fundamental Data Structures

• Free Tree & Rooted Trees

7/8/2022 62
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

Fundamental Data Structures

• Sets and Dictionaries- The notion of a set plays
a central role in mathematics.

• A set - can be described as an unordered
collection of distinct items called elements of
the set

• The dictionary - a data structure that
implements three operations that is searching
for a given item, adding a new item and
deleting an item on given set or multiset is
called dictionary

7/8/2022 63
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi

7/8/2022
Prof. A.A.Daptardar, Department of CSE,

HSIT, Nidasoshi
64

