
Subject
UNIX Shell Programming

Subject Code
15CS35

Module 1
UNIX File System

Prepared by
Mahesh G Huddar

Hirasugar Institute of Technology, Nidasoshi - 591236

 Dept. of Computer Science and Engineering 1

1. THE FILE
 The file is the container for storing information.

 Neither a file's size nor its name is stored in file.

 All file attributes such as file type, permissions, links, owner, group owner etc are kept in

a separate area of the hard disk, not directly accessible to humans, but only to kernel.

 The UNIX has divided files into three categories:

1. Ordinary file – also called as regular file. It contains only data as a stream of characters.

2. Directory file – it contains files and other sub-directories.

3. Device file – all devices and peripherals are represented by files.

Ordinary File - ordinary file itself can be divided into two types-

1. Text File – it contains only printable characters, and you can often view the contents and

make sense out of them.

2. Binary file – it contains both printable and unprintable characters that cover entire ASCII

range.

Examples- Most Unix commands, executable files, pictures, sound and video files are

binary.

Directory File - a directory contains no data but keeps some details of the files and

subdirectories that it contains. A directory file contains an entry for every file and subdirectories

that it houses. If you have 20 files in a directory, there will be 20 entries in the directory. Each

entry has two components-

 the filename

 a unique identification number for the file or directory (called as inode number).

Device File - Installing software from CD-ROM, printing files and backing up data files to

tape. All of these activities are performed by reading or writing the file representing the device.

Advantage of device file is that some of the commands used to access an ordinary file also work

with device file. Device filenames are generally found in a single directory structure, /dev.

2. WHAT'S IN A (FILE) NAME?
1. A filename can consist up to 255 characters.

2. File may or may not have extensions, and consist of any ASCII character expect the / &

NULL character.

3. Users are permitted to use control characters or other unprintable characters in a filename.

4. Examples - .last_time list. @#$%*abcd a.b.c.d.e

5. But, it is recommended that only the following characters be used in filenames-

 Alphabetic characters and numerals

 the period(.), hyphen(-) and underscore(_).

Subject
UNIX Shell Programming

Subject Code
15CS35

Module 1
UNIX File System

Prepared by
Mahesh G Huddar

Hirasugar Institute of Technology, Nidasoshi - 591236

 Dept. of Computer Science and Engineering 2

3. THE PARENT-CHILD RELATIONSHIP
 The files in UNIX are related to one another.

 The file system in UNIX is a collection of all of these files (ordinary, directory and device

files) organized in a hierarchical (an inverted tree) structure as shown in below figure.

 The feature of UNIX file system is that there is a top, which serves as the reference point

for all files.

 This top is called root and is represented by a / (Front slash).

 The root is actually a directory.

 The root directory (/) has a number of subdirectories under it.

 The subdirectories in turn have more subdirectories and other files under them.

 Every file apart from root, must have a parent, and it should be possible to trace the

ultimate parentage of a file to root.

 In parent-child relationship, the parent is always a directory.

4. The HOME VARIABLE: HOME DIRECTORY
 When you logon to the system, UNIX places you in a directory called home directory.

 It is created by the system when the user account is created.

 If a user login using the login name kumar, user will land up in a directory that could

have the path name /home/kumar.

 The shell variable HOME knows the home directory.

$echo $HOME

/home/kumar

Subject
UNIX Shell Programming

Subject Code
15CS35

Module 1
UNIX File System

Prepared by
Mahesh G Huddar

Hirasugar Institute of Technology, Nidasoshi - 591236

 Dept. of Computer Science and Engineering 3

5. pwd: CHECKING YOUR CURRENT DIRECTORY

 Any time user can know the current working directory using pwd command.

$ pwd

/home/kumar

 Like HOME it displays the absolute path.

6. cd: CHANGING THE CURRENT DIRECTORY

 User can move around the UNIX file system using cd (change directory) command.

 When used with the argument, it changes the current directory to the directory specified

as argument, progs:

$ pwd

/home/kumar

$cd progs

$ pwd

/home/kumar/progs

 Here we are using the relative pathname of progs directory. The same can be done with

the absolute pathname also.

$cd /home/kumar/progs

$ pwd

/home/kumar/progs

 $cd /bin

$ pwd

/bin

 cd can also be used without arguments:

$ pwd

/home/kumar/progs

$cd

$ pwd

/home/kumar

 cd without argument changes the working directory to home directory.

$cd /home/sharma

$ pwd

/home/sharma

$cd

/home/kumar

Subject
UNIX Shell Programming

Subject Code
15CS35

Module 1
UNIX File System

Prepared by
Mahesh G Huddar

Hirasugar Institute of Technology, Nidasoshi - 591236

 Dept. of Computer Science and Engineering 4

7. mkdir: MAKING DIRECTORIES

 Directories are created with mkdir (make directory) command. The command is followed

by names of the directories to be created. A directory patch is created under current

directory like this:

$mkdir patch

 You can create a number of subdirectories with one mkdir command:

$mkdir patch dba doc

 For instance the following command creates a directory tree:

$mkdir progs progs/cprogs progs/javaprogs

 This creates three subdirectories – progs, cprogs and javaprogs under progs.

 The order of specifying arguments is important. You cannot create subdirectories before

creation of parent directory.

 For instance following command doesn‘t work

$mkdir progs/cprogs progs/javaprogs progs

mkdir: Failed to make directory “progs/cprogs”; No such directory

mkdir: Failed to make directory “progs/javaprogs”; No such directory

 System refuses to create a directory due to fallowing reasons:

 The directory is already exists.

 There may be ordinary file by that name in the current directory.

 User doesn‘t have permission to create directory

8. rmdir: REMOVING A DIRECTORY

 The rmdir (remove directory) command removes the directories. You have to do this to

remove progs:

$rmdir progs

 If progs is empty directory then it will be removed form system.

 rmdir expect the arguments reverse of mkdir.

 Following command used with mkdir fails with rmdir

Subject
UNIX Shell Programming

Subject Code
15CS35

Module 1
UNIX File System

Prepared by
Mahesh G Huddar

Hirasugar Institute of Technology, Nidasoshi - 591236

 Dept. of Computer Science and Engineering 5

$mkdir progs progs/cprogs progs/javaprogs

rmdir: directory “progs”: Directory not empty

 First subdirectories need to be removed from the system then parent.

 Following command works with rmdir

$mkdir progs/cprogs progs/javaprogs progs

 First it removes cprogs and javaprogs form progs directory and then it removes progs

fro system.

 rmdir : Things to remember

 You can‘t remove a directory which is not empty

 You can‘t remove a directory which doesn‘t exist in system.

 You can‘t remove a directory if you don‘t have permission to do so.

9. ABSOLUTE PATHNAME

 Directories are arranged in a hierarchy with root (/) at the top. The position of any file

within the hierarchy is described by its pathname.

 Elements of a pathname are separated by a /. A pathname is absolute, if it is described in

relation to root, thus absolute pathnames always begin with a /.

 Following are some examples of absolute filenames.

/etc/passwd

/users/kumar/progs/cprogs

/dev/rdsk/Os3

Example

 date command can executed in two ways as

$date // Relative path

Thu Sep 7 10:20:29 IST 2017

$/bin/date // Absolute path

Thu Sep 7 10:20:29 IST 2017

Subject
UNIX Shell Programming

Subject Code
15CS35

Module 1
UNIX File System

Prepared by
Mahesh G Huddar

Hirasugar Institute of Technology, Nidasoshi - 591236

 Dept. of Computer Science and Engineering 6

10. RELATIVE PATHNAME

 A pathname can also be relative to your current working directory. Relative pathnames

never begin with /. Relative to user amrood's home directory, some pathnames might look

like this –

progs/cprogs

rdsk/Os3

Using . and .. in relative path name
 User can move from working directory /home/kumar/progs/cprogs to home directory

/home/kumar using cd command like

$pwd

/home/kumar/progs/cprogs

$cd /home/kumar

$pwd

/home/kumar

 Navigation becomes easy by using common ancestor.

 . (a single dot) - This represents the current directory

 .. (two dots) - This represents the parent directory

 Assume user is currently placed in /home/kumar/progs/cprogs

$pwd

/home/kumar/progs/cprogs

$cd ..

$pwd

/home/kumar/progs

 This method is compact and easy when ascending the directory hierarchy. The command

cd .. Translates to this ―change your current directory to parent of current directory‖.

 The relative paths can also be used as:

$pwd

/home/kumar/progs

$cd ../..

$pwd

/home

 The following command copies the file prog1.java present in javaprogs, which is present

is parent of current directory to current directory.

$pwd

/home/kumar/progs/cprogs

$cp ../javaprogs/prog1.java .

 Now prog1.java is copied to cprogs under progs directory.

Subject
UNIX Shell Programming

Subject Code
15CS35

Module 1
UNIX File System

Prepared by
Mahesh G Huddar

Hirasugar Institute of Technology, Nidasoshi - 591236

 Dept. of Computer Science and Engineering 7

FILE RELATED COMMANDS

11. cat: DISPLAYING AND CREATING FILES

cat command is used to display the contents of a small file on the terminal.

$ cat cprogram.c

include <stdioh>

void main ()

{

Printf(―hello‖);

}

As like other files cat accepts more than one filename as arguments

$ cat ch1 ch2

It contains the contents of chapter1

It contains the contents of chapter2

In this the contents of the second files are shown immediately after the first file without any

header information. So cat concatenates two files- hence its name.

cat OPTIONS

 Displaying Nonprinting Characters (-v)

cat without any option it will display text files. Nonprinting ASCII characters can be

displayed with –v option.

 Numbering Lines (-n)

-n option numbers lines. This numbering option helps programmer in debugging

programs.

Using cat to create a file

cat is also useful for creating a file. Enter the command cat, followed by > character and the

filename.

$ cat > new

This is a new file which contains some text, just to

Add some contents to the file new

[ctrl-d]

$_

When the command line is terminated with [Enter], the prompt vanishes. Cat now waits to take

input from the user. Enter few lines; press [ctrl-d] to signify the end of input to the system

To display the file contents of new use file name with cat command.

Subject
UNIX Shell Programming

Subject Code
15CS35

Module 1
UNIX File System

Prepared by
Mahesh G Huddar

Hirasugar Institute of Technology, Nidasoshi - 591236

 Dept. of Computer Science and Engineering 8

$ cat new

This is a new file which contains some text, just to

Add some contents to the file new

12. cp: COPYING A File

The cp command copies a file or a group of files. It creates an exact image of the file on the disk

with a different name. The syntax takes two filename to be specified in the command line.

 When both are ordinary files, first file is copied to second.

$ cp csa csb

 If the destination file (csb) doesn‘t exist, it will first be created before copying

takes place. If not it will simply be overwritten without any warning from the

system.

 Example to show two ways of copying files to the cs directory:

$ cp ch1 cs/module1 ch1 copied to module1 under cs

$ cp ch1 cs ch1 retains its name under cs

 cp can also be used with the shorthand notation, .(dot), to signify the current directory

as the destination. To copy a file „new‟ from /home/user1 to your current directory,

use the following command:

$cp /home/user1/new new destination is a file

$cp /home/user1/new . destination is the current directory

 cp command can be used to copy more than one file with a single invocation of the

command. In this case the last filename must be a directory.

 Ex: To copy the file ch1,chh2,ch3 to the module , use cp as

$ cp ch1 ch2 ch3 module

 The files will have the same name in module. If the files are already resident in

module, they will be overwritten. In the above diagram module directory should

already exist and cp doesn‘t able create a directory.

 UNIX system uses * as a shorthand for multiple filenames.

 Ex:

$ cp ch* usp Copies all the files beginning with ch

cp options

 Interactive Copying(-i) : The –i option warns the user before overwriting the

destination file, If unit 1 exists, cp prompts for response

$ cp -i ch1 unit1

$ cp: overwrite unit1 (yes/no)? Y

 A y at this prompt overwrites the file, any other response leaves it uncopied.

Subject
UNIX Shell Programming

Subject Code
15CS35

Module 1
UNIX File System

Prepared by
Mahesh G Huddar

Hirasugar Institute of Technology, Nidasoshi - 591236

 Dept. of Computer Science and Engineering 9

Copying directory structure (-R) :

 It performs recursive behavior command can descend a directory and examine all

files in its subdirectories.

 -R : behaves recursively to copy an entire directory structure

$ cp -R usp newusp

$ cp -R class newclass

 If the newclass/newusp doesn‘t exist, cp creates it along with the associated

subdirectories.

13. rm: DELETING FILES

 The rm command deletes one or more files.

 Ex: Following command deletes three files:

$ rm mod1 mod2 mod3

 Can remove two chapters from usp directory without having to cd

 Ex:

$rm usp/marks ds/marks

 To remove all file in a directory use *

$ rm *

 Removes all files from that directory

rm options

 Interactive Deletion (-i) : Ask the user confirmation before removing each file:

$ rm -i ch1 ch2

rm: remove ch1 (yes/no)? ? y

rm: remove ch1 (yes/no)? ? n [Enter]

 A ‗y‘ removes the file (ch1) any other response like n or any other key leave the file

undeleted.

 Recursive deletion (-r or -R): It performs a recursive search for all directories and

files within these subdirectories. At each stage it deletes everything it finds.

$ rm -r * Works as rmdir

 It deletes all files in the current directory and all its subdirectories.

 Forcing Removal (-f): rm prompts for removal if a file is write-protected. The -f

option overrides this minor protection and forces removal.

rm -rf* Deletes everything in the current directory and below

Subject
UNIX Shell Programming

Subject Code
15CS35

Module 1
UNIX File System

Prepared by
Mahesh G Huddar

Hirasugar Institute of Technology, Nidasoshi - 591236

 Dept. of Computer Science and Engineering 10

14. mv: RENAMING FILES

 The mv command renames (moves) files. The main two functions are:

1. It renames a file(or directory)

2. It moves a group of files to different directory

 It doesn't create a copy of the file; it merely renames it. No additional space is

consumed on disk during renaming.

 Ex: To rename the file csb as csa we can use the following command

$ mv csb csa

 If the destination file doesn‘t exist in the current directory, it will be created. Or else

it will just rename the specified file in mv command.

 A group of files can be moved to a directory.

 Ex: Moves three files ch1,ch2,ch3 to the directory module

$ mv ch1 ch2 ch3 module

 Can also used to rename directory

$ mv rename newname

 mv replaces the filename in the existing directory entry with the new name. It doesn't

create a copy of the file; it renames it

 Group of files can be moved to a directory

 mv chp1 chap2 chap3 unix

15. more : PAGING OUTPUT

 To view the file ch1, we can use more command along with the filename, it is used

for display

$ more odfile press q to exit

 this file is an example for od command ^d used as an interrupt key ^e indicates the

end of file.

 It displays the contents of ch1 on the screen, one page at a time. If the file contents is

more it will show the filename and percentage of the file that has been viewed:

----More--- (15%)

Navigation

 f or Spacebar: to scroll forward a page at a time

 b to move back one page

Subject
UNIX Shell Programming

Subject Code
15CS35

Module 1
UNIX File System

Prepared by
Mahesh G Huddar

Hirasugar Institute of Technology, Nidasoshi - 591236

 Dept. of Computer Science and Engineering 11

Using more in pipeline

 The ls outpu won‘t fit on the screen if there are too many files, So the command can

be used like this:

ls | more

 The pipeline of two commands where the output of two commands, where the output

of one is used as the input of the other.

16. wc: COUNTING LINES,WORDS AND CHARACTERS

 wc command performs Word counting including counting of lines and characters in a

specified file. It takes one or more filename as arguments and displays a four

columnar output.

$ wc ofile

4 20 97 ofile

 Line: Any group of characters not containing a newline

 Word: group of characters not containing a space, tab or newline

 Character: smallest unit of information, and includes a space, tab and newline

 wc offers 3 options to make a specific count. –l option counts only number of lines, -

w and –c options count words and characters, respectively.

$ wc -l ofile

4 ofile

$ wc -w ofile

20 ofile

 Multiple filenames, wc produces a line for each file, as well as a total count.

$ wc -c ofile file

97 ofile

15 file

112 total

Subject
UNIX Shell Programming

Subject Code
15CS35

Module 1
UNIX File System

Prepared by
Mahesh G Huddar

Hirasugar Institute of Technology, Nidasoshi - 591236

 Dept. of Computer Science and Engineering 12

17. od: DISPLAYING DATA IN OCTAL

 od command displays the contents of executable files in a ASCII octal value.

$ more ofile

this file is an example for od command

^d used as an interrupt key

 -b option displays this value for each character separately.

 Each line displays 16 bytes of data in octal, preceded by the offset in the file of the

first byte in the line.

$ od –b file

0000000 164 150 151 163 040 146 151 154 145 040 151 163 040 141 156 040

0000020 145 170 141 155 160 154 145 040 146 157 162 040 157 144 040 143

0000040 157 155 155 141 156 144 012 136 144 040 165 163 145 144 040 141

0000060 163 040 141 156 040 151 156 164 145 162 162 165 160 164 040 153

0000100 145 171

 -c character option

 Now it shows the printable characters and its corresponding ASCII octal

representation

$ od –bc file

od -bc ofile

0000000 164 150 151 163 040 146 151 154 145 040 151 163 040 141 156 040

 T h i s f i l e i s a n

0000020 145 170 141 155 160 154 145 040 146 157 162 040 157 144 040 143

 e x a m p l e f o r o d c

0000040 157 155 155 141 156 144 012 136 144 040 165 163 145 144 040 141

 o m m a n d \n ^ d u s e d a

0000060 163 040 141 156 040 151 156 164 145 162 162 165 160 164 040 153

 s a n i n t e r r u p t k

0000100 145 171

 e y

 Some of the representation:

 The tab character, [ctrl-i], is shown as \t and the octal vlaue 011

 The bell character , [ctrl-g] is shown as 007, some system show it as \a

 The form feed character,[ctrl-l], is shown as \f and 014

 The LF character, [ctrl-j], is shown as \n and 012

 Od makes the newline character visible too.

Subject
UNIX Shell Programming

Subject Code
15CS35

Module 1
UNIX File System

Prepared by
Mahesh G Huddar

Hirasugar Institute of Technology, Nidasoshi - 591236

 Dept. of Computer Science and Engineering 13

BASIC FILE ATTRIBUTES

The UNIX file system allows the user to access other files not belonging to them and without

infringing on security. A file has a number of attributes (properties) that are stored in the inode. In

this chapter, we discuss,

 ls –l to display file attributes (properties)

 Listing of a specific directory

 Ownership and group ownership

 Different file permissions

18. LISTING FILE ATTRIBUTES

ls command is used to obtain a list of all filenames in the current directory. The output in UNIX

lingo is often referred to as the listing. Sometimes we combine this option with other options for

displaying other attributes, or ordering the list in a different sequence. ls look up the file‘s inode

to fetch its attributes. It lists seven attributes of all files in the current directory and they are:

 File type and Permissions

o The file type and its permissions are associated with each file.

 Links

o Links indicate the number of file names maintained by the system. This does not

mean that there are so many copies of the file.

 Ownership

o File is created by the owner. The one who creates the file is the owner of that file.

 Group ownership

o Every user is attached to a group owner. Every member of that group can access

the file depending on the permission assigned.

 File size

o File size in bytes is displayed. It is the number of character in the file rather than

the actual size occupied on disk.

 Last Modification date and time

o Last modification time is the next field. If you change only the permissions or

ownership of the file, the modification time remains unchanged. If at least one

character is added or removed from the file then this field will be updated.

 File name

o In the last field, it displays the file name.

For example,

$ ls -l

total 72

-rw-r--r-- 1 kumar metal 19514 may 10 13:45 chap01

-rw-r--r-- 2 kumar metal 19555 may 10 15:45 chap02

drwxr-xr-x 2 kumar metal 512 may 09 12:55 helpdir

drwxr-xr-x 3 kumar metal 512 may 09 11:05 progs

Subject
UNIX Shell Programming

Subject Code
15CS35

Module 1
UNIX File System

Prepared by
Mahesh G Huddar

Hirasugar Institute of Technology, Nidasoshi - 591236

 Dept. of Computer Science and Engineering 14

Listing Directory Attributes
$ls -d

This command will not list all subdirectories in the current directory .

For example,

$ls –ld helpdir progs

drwxr-xr-x 2 kumar metal 512 may 9 10:31 helpdir

drwxr-xr-x 2 kumar metal 512 may 9 09:57 progs

 Directories are easily identified in the listing by the first character of the first column,

which here shows a d.

 The significance of the attributes of a directory differs a good deal from an ordinary

file.

 To see the attributes of a directory rather than the files contained in it, use ls –ld with

the directory name. Note that simply using ls –d will not list all subdirectories in the

current directory. Strange though it may seem, ls has no option to list only directories.

File Ownership

 When you create a file, you become its owner. Every owner is attached to a group

owner. Several users may belong to a single group, but the privileges of the group are

set by the owner of the file and not by the group members. When the system

administrator creates a user account, he has to assign these parameters to the user:

The user-id (UID) – both its name and numeric representation

The group-id (GID) – both its name and numeric representation

File Permissions
UNIX follows a three-tiered file protection system that determines a file‘s access rights. It is

displayed in the following format: Filetype owner (rwx) groupowner (rwx) others (rwx)

For Example:

-rwxr-xr-- 1 kumar metal 20500 may 10 19:21 chap02

rwx r-x r--

owner/user group owner others

 The first group has all three permissions. The file is readable, writable and executable

by the owner of the file.

 The second group has a hyphen in the middle slot, which indicates the absence of

write permission by the group owner of the file.

 The third group has the write and execute bits absent. This set of permissions is

applicable to others.

 You can set different permissions for the three categories of users – owner, group and

others. It‘s important that you understand them because a little learning here can be a

dangerous thing. Faulty file permission is a sure recipe for disaster.

Subject
UNIX Shell Programming

Subject Code
15CS35

Module 1
UNIX File System

Prepared by
Mahesh G Huddar

Hirasugar Institute of Technology, Nidasoshi - 591236

 Dept. of Computer Science and Engineering 15

19. CHANGING FILE PERMISSIONS

A file or a directory is created with a default set of permissions, which can be determined by

umask. Let us assume that the file permission for the created file is -rw-r-- r--. Using chmod

command, we can change the file permissions and allow the owner to execute his file.

The command can be used in two ways:

 In a relative manner by specifying the changes to the current permissions

 In an absolute manner by specifying the final permissions

Relative Permissions

 chmod only changes the permissions specified in the command line and leaves the

other permissions unchanged.

 Its syntax is:

chmod category operation permission filename(s)

 chmod takes an expression as its argument which contains:

 user category (user, group, others)

 operation to be performed (assign or remove a permission)

 type of permission (read, write, execute)

 Category : u – user g – group o – others a - all (ugo)

 operations : + assign - remove = absolute

 permissions: r – read w – write x - execute

 Let us discuss some examples:

 Initially,

-rw-r—r-- 1 kumar metal 1906 sep 23:38 xstart

$chmod u+x xstart

-rwxr—r-- 1 kumar metal 1906 sep 23:38 xstart

 The command assigns (+) execute (x) permission to the user (u), other permissions

remain unchanged.

$chmod ugo+x xstart or chmod a+x xstart or chmod +x xstart

$ls –l xstart

-rwxr-xr-x 1 kumar metal 1906 sep 23:38 xstart

 chmod accepts multiple file names in command line

$chmod u+x note note1 note3

 Let initially,

-rwxr-xr-x 1 kumar metal 1906 sep 23:38 xstart

$chmod go-r xstart

Subject
UNIX Shell Programming

Subject Code
15CS35

Module 1
UNIX File System

Prepared by
Mahesh G Huddar

Hirasugar Institute of Technology, Nidasoshi - 591236

 Dept. of Computer Science and Engineering 16

 Then, it becomes

$ls –l xstart

-rwx—x--x 1 kumar metal 1906 sep 23:38 xstart

Absolute Permissions
 Here, we need not to know the current file permissions. We can set all nine permissions

explicitly. A string of three octal digits is used as an expression. The permission can be

represented by one octal digit for each category. For each category, we add octal digits. If

we represent the permissions of each category by one octal digit, this is how the

permission can be represented:

Read permission – 4 (octal 100)

Write permission – 2 (octal 010)

Execute permission – 1 (octal 001)

Octal Permissions Significance

0 --- no permissions

1 --x execute only

2 -w- write only

3 -wx write and execute

4 r-- read only

5 r-x read and execute

6 rw- read and write

7 rwx read, write and execute

 We have three categories and three permissions for each category, so three octal digits

can describe a file‘s permissions completely. The most significant digit represents user

and the least one represents others. chmod can use this three-digit string as the expression.

 Using relative permission, we have,

$chmod a+rw xstart

 Using absolute permission, we have,

$chmod 666 xstart

$chmod 644 xstart

$chmod 761 xstart

 will assign all permissions to the owner, read and write permissions for the group and

only execute permission to the others.

 777 signify all permissions for all categories, but still we can prevent a file from being

deleted.

Subject
UNIX Shell Programming

Subject Code
15CS35

Module 1
UNIX File System

Prepared by
Mahesh G Huddar

Hirasugar Institute of Technology, Nidasoshi - 591236

 Dept. of Computer Science and Engineering 17

 000 signifies absence of all permissions for all categories, but still we can delete a file.

 It is the directory permissions that determine whether a file can be deleted or not.

 Only owner can change the file permissions. User cannot change other user‘s file‘s

permissions.

 But the system administrator can do anything.

The Security Implications
 Let the default permission for the file xstart is

-rw-r—r- -

$chmod u-rw, go-r xstart or chmod 000 xstart

 This is simply useless but still the user can delete this file.

 On the other hand,

$chmod a+rwx xstart or chmod 777 xstart

-rwxrwxrwx

 The UNIX system by default, never allows this situation as you can never have a secure

system. Hence, directory permissions also play a very vital role here .

We can use chmod Recursively.

$chmod -R a+x shell_scripts

 This makes all the files and subdirectories found in the shell_scripts directory, executable

by all users. When you know the shell meta characters well, you will appreciate that the *

doesn‘t match filenames beginning with a dot. The dot is generally a safer but note that

both commands change the permissions of directories also.

Directory Permissions
 It is possible that a file cannot be accessed even though it has read permission, and can be

removed even when it is write protected. The default permissions of a directory are,

rwxr-xr-x (755)

 A directory must never be writable by group and others .

 Example:

$mkdir c_progs

$ls –ld c_progs

drwxr-xr-x 2 kumar metal 512 may 9 09:57 c_progs

Subject
UNIX Shell Programming

Subject Code
15CS35

Module 1
UNIX File System

Prepared by
Mahesh G Huddar

Hirasugar Institute of Technology, Nidasoshi - 591236

 Dept. of Computer Science and Engineering 18

 If a directory has write permission for group and others also, be assured that every user

can remove every file in the directory. As a rule, you must not make directories

universally writable unless you have definite reasons to do so.

20. Changing File Ownership
 Usually, on BSD and AT&T systems, there are two commands meant to change the

ownership of a file or directory. Let kumar be the owner and metal be the group owner. If

sharma copies a file of kumar, then sharma will become its owner and he can manipulate

the attributes.

 chown changing file owner and chgrp changing group owner

 On BSD, only system administrator can use chown

 On other systems, only the owner can change both

chown
 Changing ownership requires super user permission, so use su command

$ls -l note

-rwxr----x 1 kumar metal 347 may 10 20:30 note

$chown sharma note; ls -l note

-rwxr----x 1 sharma metal 347 may 10 20:30 note

 Once ownership of the file has been given away to sharma, the user file permissions that

previously applied to Kumar now apply to sharma. Thus, Kumar can no longer edit note

since there is no write privilege for group and others. He cannot get back the ownership

either. But he can copy the file to his own directory, in which case he becomes the owner

of the copy.

chgrp
 This command changes the file‘s group owner. No super user permission is required.

#ls –l dept.lst

-rw-r—r-- 1 kumar metal 139 jun 8 16:43 dept.lst

#chgrp dba dept.lst; ls –l dept.lst

-rw-r—r-- 1 kumar dba 139 Jun 8 16:43 dept.lst

 In this chapter we considered two important file attributes – permissions and ownership.

After we complete the first round of discussions related to files, we will take up the other

file attributes.

