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Module 5 

 

Graphs - Terminology and Representation 

Definitions: Graph, Vertices, Edges 

A graph G consists of two sets V and E. V is  finite and non empty ,E is a set of pair of 

vertices and these pairs are also called as edges 

 Graph G = (V, E) by defining a pair of sets:  

1. V = a set of vertices  

2. E = a set of edges  

Vertices:  

o Vertices also called nodes  

o Denote vertices with labels  

Edges:  

o Each edge is defined by a pair of vertices  

o An edge connects the vertices that define it 

o In some cases, the vertices can be the same  

Representation:  

o Represent vertices with circles, perhaps containing a label  

o Represent edges with lines between circles  

Example:  

o V = {A,B,C,D}  

o E = {(A,B),(A,C),(A,D),(B,D),(C,D)}  
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Examples:  

o Cities with distances between  

o Roads with distances between intersection points  

o Course prerequisites  

o Network  

o Social networks  

o Program call graph and variable dependency graph  

Graph Classifications 

 There are several common kinds of graphs  

o Weighted or unweighted  

o Directed or undirected  

o Cyclic or acyclic  

Types of Graphs: Weighted and Unweighted 

Graphs can be classified by whether or not their edges have weights  

Weighted graph: edges have a weight  

o Weight typically shows cost of traversing  

o Example: weights are distances between cities  

 Unweighted graph: edges have no weight  

o Edges simply show connections  

o Example: course prereqs  

Types of Graphs: Directed and Undirected  

 Graphs can be classified by whether or their edges are have direction  

Undirected Graphs: each edge can be traversed in either direction  

Directed Graphs: each edge can be traversed only in a specified direction  
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Undirected Graphs 

 Undirected Graph: no implied direction on edge between nodes  

 

o The example from above is an undirected graph  

 

 
 

o In diagrams, edges have no direction (ie they are not arrows)  

o Can traverse edges in either directions  

In an undirected graph, an edge is an unordered pair  

o Actually, an edge is a set of 2 nodes, but for simplicity we write it with parens 

 For example, we write (A, B) instead of {A, B}  

 Thus, (A,B) = (B,A), etc  

 If (A,B) ∈ E then (B,A) ∈ E  

o Formally: ∀ u,v ∈ E, (u,v)=(v,u) and u ≠ v  

 A node normally does not have an edge to itself  

Directed Graphs 

 Digraph: A graph whose edges are directed (ie have a direction)  

o Edge drawn as arrow  

o Edge can only be traversed in direction of arrow  

o Example: E = {(A,B), (A,C), (A,D), (B,C), (D,C)}  

 

o Examples: courses and prerequisites, program call graph  

 In a digraph, an edge is an ordered pair  

o Thus: (u,v) and (v,u) are not the same edge  

o In the example, (D,C) ∈ E, (C,D) ∉ E  
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o What would edge (B,A) look like? Remember (A,B) ≠ (B,A)  

 A node can have an edge to itself (eg (A,A) is valid)  

Subgraph  

 If graph G=(V, E)  

o Then Graph G'=(V',E') is a subgraph of G if V' ⊆ V and E' ⊆ E and  

 Example ...  

Degree of a Node  

 The degree of a node is the number of edges the node is used to define  

 In the example above:  

o Degree 2: B and C  

o Degree 3: A and D  

o A and D have odd degree, and B and C have even degree  

 Can also define in-degree and out-degree  

o In-degree: Number of edges pointing to a node  

o Out-degree: Number of edges pointing from a node  

o Whare are the in- and out-degree of the example?  

Graphs: Terminology with Paths  

 Path: sequence of vertices in which each pair of successive vertices is connected by an 

edge  

 Cycle: a path that starts and ends on the same vertex  

 Simple path: a path that does not cross itself  

o That is, no vertex is repeated (except first and last)  

o Simple paths cannot contain cycles  

 Length of a path: Number of edges in the path  

o Sometimes the sum of the weights of the edges  

 Examples  

 

o A sequence of vertices: (A, B, C, D) [Is this path, simple path, cycle?] 

o (A, B, D, A, C) [path, simple path, cycle?] 

o (A, B, D, A, C) [path, simple path, cycle?] 

o Cycle: ?  

o Simple Cycle: ?  

o Lengths?  
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Cyclic and Acyclic Graphs  

 A Cyclic graph contains cycles  

o Example: roads (normally)  

 An acyclic graph contains no cycles  

o Example: Course prereqs!  

 Examples - Are these cyclic or acyclic?  

 
 

 
 

  

Connected and Unconnected Graphs and Connected Components  

 An undirected graph is connected if every pair of vertices has a path between it  

o Otherwise it is unconnected  

o Give an example of a connected graph  

 An unconnected graph can be broken in to connected components  

 A directed graph is strongly connected if every pair of vertices has a path between them, 

in both directions 

Data Structures for Representing Graphs 

 Two common data structures for representing graphs:  

o Adjacency lists  

o Adjacency matrix  

Adjacency List Representation  

 Each node has a list of adjacent nodes  

 Example (undirected graph):  

o A: B, C, D  

o B: A, D  

o C: A, D  
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o D: A, B, C  

 
 

 Example (directed graph):  

o A: B, C, D  

o B: D  

o C: Nil  

o D: C  

 

 
 

 Weighted graph can store weights in list  

 Space: Θ(V + E) (ie |V| + |E|)  

Adjacency Matrix Representation  

 Adjacency Matrix: 2D array containing weights on edges 

o Row for each vertex  

o Column for each vertex  

o Entries contain weight of edge from row vertex to column vertex  

o Entries contain ∞ (ie Integer'last) if no edge from row vertex to column vertex  

o Entries contain 0 on diagonal (if self edges not allowed)  

 Example undirected graph (assume self-edges not allowed):  

   A B C D 

A  0 1 1 1 

B  1 0 999 1 

C  1 999  0 1 

D  1 1 1 0 
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 Example directed graph (assume self-edges allowed):  

   A B C D 

A  999 1 1 1 

B  999 999 999 1 

C  999  999  999 999  

D  999 999 1 999 

 

 Can store weights in cells     

Insertion sort 

#include<stdio.h> 

int main(){ 

 

  int i,j,s,temp,a[20]; 

 

  printf("Enter total elements: "); 

  scanf("%d",&s); 

 

  printf("Enter %d elements: ",s); 

  for(i=0;i<s;i++) 

      scanf("%d",&a[i]); 

 

  for(i=1;i<s;i++){ 

      temp=a[i]; 

      j=i-1; 

      while((temp<a[j])&&(j>=0)){ 

      a[j+1]=a[j]; 
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          j=j-1; 

      } 

      a[j+1]=temp; 

  } 

 

  printf("After sorting: "); 

  for(i=0;i<s;i++) 

      printf(" %d",a[i]); 

 

  return 0; 

} 

 

Output: 

Enter total elements: 5 

Enter 5 elements: 3 7 9 0 2 

After sorting:  0 2 3 7 9 

 

Radix sort 

#include <stdio.h> 

#define MAX 100 

#define SHOWPASS 

void print(int *a, int n) { 

 int i;   

 for (i = 0; i < n; i++) 

   printf("%d\t", a[i]); 

} 

void radix_sort(int *a, int n) { 

 int i, b[MAX], m = 0, exp = 1; 

 for (i = 0; i < n; i++) { 

  if (a[i] > m) 

     m = a[i]; 
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 } 

 while (m / exp > 0) { 

  int box[10] = { 

   0 

  } 

  ; 

  for (i = 0; i < n; i++) 

     box[a[i] / exp % 10]++; 

  for (i = 1; i < 10; i++) 

     box[i] += box[i - 1]; 

  for (i = n - 1; i >= 0; i--) 

     b[--box[a[i] / exp % 10]] = a[i]; 

  for (i = 0; i < n; i++) 

     a[i] = b[i]; 

  exp *= 10; 

  #ifdef SHOWPASS 

    printf("\n\nPASS   : "); 

  print(a, n); 

  #endif 

 } 

} 

int main() { 

 int arr[MAX]; 
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 int i, num; 

 printf("\nEnter total elements (num < %d) : ", MAX); 

 scanf("%d", &num); 

 printf("\nEnter %d Elements : ", num); 

 for (i = 0; i < num; i++) 

   scanf("%d", &arr[i]); 

 printf("\nARRAY  : "); 

 print(&arr[0], num); 

 radix_sort(&arr[0], num); 

 printf("\n\nSORTED  : "); 

 print(&arr[0], num); 

 return 0; 

} 
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Hashing 

Hash Table is a data structure which store data in associative manner. In hash table, data is 

stored in array format where each data values has its own unique index value. Access of 

data becomes very fast if we know the index of desired data. 

Thus, it becomes a data structure in which insertion and search operations are very fast 

irrespective of size of data. Hash Table uses array as a storage medium and uses hash 

technique to generate index where an element is to be inserted or to be located from. 

Hashing 

Hashing is a technique to convert a range of key values into a range of indexes of an array. 

We're going to use modulo operator to get a range of key values. Consider an example of 

hashtable of size 20, and following items are to be stored. Item are in (key,value) format. 

 

(1,20) 

(2,70) 

(42,80) 

(4,25) 

(12,44) 

(14,32) 

(17,11) 

(13,78) 
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(37,98) 

S.n. Key Hash Array Index 

1 1 1 % 20 = 1 1 

2 2 2 % 20 = 2 2 

3 42 42 % 20 = 2 2 

4 4 4 % 20 = 4 4 

5 12 12 % 20 = 12 12 

6 14 14 % 20 = 14 14 

7 17 17 % 20 = 17 17 

8 13 13 % 20 = 13 13 

9 37 37 % 20 = 17 17 

 

 

 

 

Linear Probing 

As we can see, it may happen that the hashing technique used create already used index of 

the array. In such case, we can search the next empty location in the array by looking into 

the next cell until we found an empty cell. This technique is called linear probing. 
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S.n. Key Hash 
Array 

Index 

After Linear Probing, Array 

Index 

1 1 1 % 20 = 1 1 1 

2 2 2 % 20 = 2 2 2 

3 42 42 % 20 = 2 2 3 

4 4 4 % 20 = 4 4 4 

5 12 
12 % 20 = 

12 
12 12 

6 14 
14 % 20 = 

14 
14 14 

7 17 
17 % 20 = 

17 
17 17 

8 13 
13 % 20 = 

13 
13 13 

9 37 
37 % 20 = 

17 
17 18 

Basic Operations 

Following are basic primary operations of a hashtable which are following. 

 Search − search an element in a hashtable. 

 Insert − insert an element in a hashtable. 

 delete − delete an element from a hashtable. 

DataItem 

Define a data item having some data, and key based on which search is to be conducted in 

hashtable. 

struct DataItem { 

   int data;    
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   int key; 

}; 

 

 

 

Hash Method 

Define a hashing method to compute the hash code of the key of the data item. 

int hashCode(int key){ 

   return key % SIZE; 

} 

Search Operation 

Whenever an element is to be searched. Compute the hash code of the key passed and 

locate the element using that hashcode as index in the array. Use linear probing to get 

element ahead if element not found at computed hash code. 

struct DataItem *search(int key){                

   //get the hash  

   int hashIndex = hashCode(key);    

  

   //move in array until an empty  

   while(hashArray[hashIndex] != NULL){ 

  

      if(hashArray[hashIndex]->key == key) 

         return hashArray[hashIndex]; 

    

      //go to next cell 

      ++hashIndex; 

   

      //wrap around the table 

      hashIndex %= SIZE; 

   } 

  

   return NULL;         

} 
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Insert Operation 

Whenever an element is to be inserted. Compute the hash code of the key passed and locate 

the index using that hashcode as index in the array. Use linear probing for empty location if 

an element is found at computed hash code. 

void insert(int key,int data){ 

   struct DataItem *item = (struct DataItem*) malloc(sizeof(struct DataItem)); 

   item->data = data;   

   item->key = key;      

 

   //get the hash  

   int hashIndex = hashCode(key); 

 

   //move in array until an empty or deleted cell 

   while(hashArray[hashIndex] != NULL && hashArray[hashIndex]->key != -1){ 

      //go to next cell 

      ++hashIndex; 

   

      //wrap around the table 

      hashIndex %= SIZE; 

   } 

  

   hashArray[hashIndex] = item;         

} 

Delete Operation 

Whenever an element is to be deleted. Compute the hash code of the key passed and locate 

the index using that hashcode as index in the array. Use linear probing to get element ahead 

if an element is not found at computed hash code. When found, store a dummy item there 

to keep performance of hashtable intact. 

struct DataItem* delete(struct DataItem* item){ 

   int key = item->key; 

 

   //get the hash  

   int hashIndex = hashCode(key); 

 

   //move in array until an empty  

   while(hashArray[hashIndex] !=NULL){ 

  

      if(hashArray[hashIndex]->key == key){ 

         struct DataItem* temp = hashArray[hashIndex];  

    

         //assign a dummy item at deleted position 
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         hashArray[hashIndex] = dummyItem;  

         return temp; 

      }  

   

      //go to next cell 

      ++hashIndex; 

   

      //wrap around the table 

      hashIndex %= SIZE; 

   }   

  

   return NULL;         

} 

Collision Resolution 

 Introduction 

In this lesson we will discuss several collision resolution strategies. The key thing in 

hashing is to find an easy to compute hash function. However, collisions cannot be 

avoided. Here we discuss three strategies of dealing with collisions, linear probing, 

quadratic probing and separate chaining. 

  

Linear Probing 

Suppose that a key hashes into a position that is already occupied. The simplest strategy is 

to look for the next available position to place the item. Suppose we have a set of hash 

codes consisting of {89, 18, 49, 58, 9} and we need to place them into a table of size 10. 

The following table demonstrates this process. 
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The first collision occurs when 49 hashes to the same location with index 9. Since 89 

occupies the A[9], we need to place 49 to the next available position. Considering the array 

as circular, the next available position is 0. That is (9+1) mod 10. So we place 49 in A[0]. 

Several more collisions occur in this simple example and in each case we keep looking to 

find the next available location in the array to place the element. Now if we need to find the 

element, say for example, 49, we first compute the hash code (9), and look in A[9]. Since 

we do not find it there, we look in A[(9+1) % 10] = A[0], we find it there and we are done. 

So what if we are looking for 79? First we compute hashcode of 79 = 9. We probe in A[9], 

A[(9+1)%10]=A[0], A[(9+2)%10]=A[1], A[(9+3)%10]=A[2], A[(9+4)%10]=A[3] etc. 

Since A[3] = null, we do know that 79 could not exists in the set. 

  

 


