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Binary Trees 

Definitions 

A tree is a finite set of one or more nodes that shows parent-child relationship such that 

 There is a special node called root 

 Remaining nodes are portioned into subsets T1,T2,T3 …. TN for N>-0 which are 

children of root. Consider the following tree 
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Terminologies 

Root Node: The first node written at the top and does not have a parent 

Child: Node obtained from the parent. A parent node can have zero or more child nodes 

example 50 and 60 are children of 100 

Siblings: Two or more nodes having the same parent 

 Ex 50 and 60 are siblings of 100 

 But 70 is NOT a sibling of 50 

Ancestors: Nodes obtained in the path from a specific node X while moving upwards towards 

root 

 Ex 100 is the ancestor of 50 and 60 

Descendents : Nodes in the path below the parent. ie nodes reachable from node X while moving 

downwards 

 ex  all nodes below 100 

Left descendent : Nodes to the left sub tree of X 

 ex  50 and 60 are left descendants of 100 

Right descendent :  Nodes to the right subtree of node X 

 ex  right descendents of 100 are 60,80,40,35,30 

Left sub tree: All nodes that are left descendents of X forms the left sub tree 

 ex  Left sub tree of 100 is 50 and 70 

Right Sub tree: All nodes that are right descendents of X is the right sub tree 

 ex  Right sub tree of 100 is 60,80,40,35,30 

Parent: A node having left sub tree or right sub tree or both is a parent for left and / or right 

subtree 

 ex  parent of 50 and 60 is 100 

Degree: Number of sub trees of a node 
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 ex  100 has 2 sub trees and hence degree is 2 

Leaf: A node in a tree whose degree is 0 

 ex 70,35,30 

Internal nodes: Nodes except the leaf 

 ex 100,50,60 

External nodes: They are leaf nodes 

Level: Distance of a node from root 

 ex Distance of root is 0 

 Distance of 50 is 1 

Height: Maximum level of any leaf 

 ex  height is 4 

Binary trees 

A binary tree is a tree that has finite set of nodes that is eitherempty or consist of root and two 

subtrees –left and right. A binary tree has 

 Root – If the tree is not empty trhen the first node is the root node 

 Left sub tree- It is tree connected to the left of the root 

 Right sub tree- It is the tree connected to the right of the root 

A tree which has zero,one,or two subtrees is a binary tree 
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ex  

 

 

 

 

 

 

 

Representation 

Binary trees can be represented in two ways 

 Linked representation 

 Array representation 

Linked representation 

 Here a node has 3 fields 

  -info – contains the actual information 

  -llink-contains the address of the left sub tree 

  -rlink- contains the address of right subtree 

Hence a node can be represented as 
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struct  node 

 {  

        int info; 

        struct node *llink; 

        struct node *rlink; 

}; 

typedef struct node * NODE; 

Pictorially a node is represented as 

 

 

A pointer variable root can be used to point to the root. 

Hence for a empty tree we have  

NODE root=NULL. 

Array representation 

A tree can be represented using a array. This method of representation is also called as sequential 

representation 

 

 

 

 

 

 

The sequential representation of the above tree would be as follows 

 

Llink                         info                                  rlink 
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        0       1      2     3      4     5     6        

Note : Nodes are numbered sequentially from 0 (root) 

Given the position of node I ,2*I +1 gives the position of the left child and 2*i+2 gives the 

position of the right sub child. 

If I is the position of the left child then i+1 gives the position of the right child  

If I is the position of the right child then i-1 gives the position of left child 

There are two ways of representing a tree using arrays 

Method 1: Here some of the locations may be used and some may not be used. Hence we need to 

use a flag called used which will indicate whether the location is used or not. If the value is 0 

then the location is not used and it indicates the absence of a node 

Hence we have  

#define MAX 200 

struct node  

{ 

int info; 

int used; 

}; 

typedef struct node *NODE;  

A array of type NODE can be used now as 

NODE a[MAX]; 

Method 2 

Instead of using a separate flag field we initialize each location to 0 indicating that the node is 

not used.Non zero value indicates the presence of a node. 

A        b       c       d       e      f       g 
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Types of binary trees 

We have the following types of binary trees 

Strictly binary tree(Full binary tree) 

Skewed binary tree 

Complete binary tree 

Expression tree 

Binary search tree 

Level
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Binary Tree Types: 

 Regular Binary Tree ( 2 ) 

 Skewed Left Binary Tree ( 1 ) 

 Skewed Right Binary Tree ( 3 ) 
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Three Graphical Pictures of the Binary Tree: 
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Properties of Binary Trees 

In particular, we want to find out the maximum number of nodes in a binary tree of depth k, and the 

number of leaf nodes and the number of nodes of degree two in a binary tree.   

Binary Tree Traversals 
There are many operations that we can perform on tree, but one that arises frequently is traversing a tree, 

that is, visiting each node in the tree exactly once.  A full traversal produces a linear order for the 

information in a tree. 

  

Binary Tree Traversals Types 

 Inorder Traversal (Left, Parent, Right) 

 Preorder Traversal (Parent, Left, Right) 

 Postorder Traversal (Left, Right, Parent) 

 Level Order Traversal (Top to Bottom, Left to Right) 

 

Example of the Binary Tree: 
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Level
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Binary Tree Traversals Functions  

Inorder Tree Traversal 

Recursive function: 

void    inorder (ptr_node  ptr) 

{ 

 if  (ptr) 

 { 
  inorder (ptr->left_child); 

  cout << ptr->data; 

  inorder (ptr->right_child); 

 } 

} 

 

Result of binary tree example: 

H, D, I, B, J, E, K, A, L, F, M, C, N, G, O 
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Preorder Tree Traversal 

Recursive function: 

void    preorder (ptr_node  ptr) 

{ 

 if  (ptr) 

 {  

cout << ptr->data; 

  preorder (ptr->left_child); 

  preorder (ptr->right_child); 

 } 

} 

 

Result of binary tree example: 

A, B, D, H, I, E, J, K, C, F, L, M, G, N, O 

 

Postorder Tree Traversal 

Recursive function: 

void    postorder (ptr_node  ptr) 

{ 

 if  (ptr) 

 {  

  postorder (ptr->left_child); 

  postorder (ptr->right_child);  

printf(“%d”, ptr->data); 
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 } 

} 

 

Result of binary tree example: 

H, I, D, J, K, E, B, L, M, F, N, O, G, C, A 

 

Level Order Tree Traversal 

Using queue: 

void    level_order (ptr_node  ptr) 

{ 

 int   front = rear = 0; 

 ptr_node   queue[max_queue_size]; 

 

 if  (!ptr)            // empty tree; 

  return;  

 addq(front, &rear, ptr); 

 for ( ; ; ) 

 {  

  ptr = deleteq (&front, rear); 

  if (ptr) 

  {  

cout << ptr->data; 

if (ptr->left_child) 

 addq (front, &rear, ptr->left_child); 

if (ptr->right_child) 

 addq (front, &rear, ptr->right_child);  
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} 

else 

 Break; 

 } 

} 

 

Result of binary tree example: 

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O 

 

Binary Search Tree 

Definition: A binary search tree is a binary tree.  It may be empty.  If it is not empty, it satisfies 

the following properties: 

(1) Every element has a key, and no two elements have the same key, that is, the keys are 

unique. 

(2) The keys in a nonempty left subtree must be smaller than the key in the root of the 

subtree. 

(3) The keys in a nonempty right subtree must be larger than the key in the root of the 

subtree. 

(4) The left and right subtrees are also binary search trees. 

 

Example of the Binary Search Tree: 

20

15 25

12 17 22 30
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Searching A Binary Search Tree 

Suppose we wish to search for an element with a key.  We begin at the root.  If the root is NULL, 

the search tree contains no elements and the search is unsuccessful.  Otherwise, we compare key 

with the key value in root.  If key equals root’s key value, then the search terminates 

successfully.  If key is less than root’s key value, then no elements in the right subtree subtree 

can have a key value equal to key.  Therefore, we search the left subtree of root.  If key is larger 

than root’s key value, we search the right subtree of root. 

Recursive Function for Binary Search Tree: 

tree_ptr   search ( tree_ptr   root, int   key )  

{ 

 if ( !=root ) 

  return   NULL; 

 if ( key = = root->data ) 

  return   root; 

 if ( key < root->data ) 

  return   search ( root->left_child, key ); 

 return   search ( root->right_child, key ); 

} 

 

Inserting Into A Binary Search Tree 

To insert a new element, key, we must first verify that the key is different from those of existing 

elements.  To do this we search the tree.  If the search is unsuccessful, then we insert the element 

at the point the search terminated. 

 

Insert Function: 
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void   insert_node ( tree_ptr   *node, int   num ) 

{ 

 tree_ptr   ptr, temp = modified_search ( *node, num );  // ** 

 if ( temp || ! ( *node ) ) 

 { 

  ptr = new node; 

  if ( ptr = = NULL) 

  { 

   cout << “The memory is full \n”; 

   exit ( 1 ); 

  } 

  ptr->data = num; 

  ptr->left_child = ptr->right_child = NULL; 

  if ( *node ) 

  { 

   if ( num < temp->data ) 

    temp->left_child = ptr; 

   else 

    temp->right_child = ptr; 

  } 

  else 

   *node = ptr; 

 } 

} 
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Deletion from a Binary Search Tree 

 Deletion of a leaf node is easy.  For example, if a leaf node is left child, we set the left 

child field of its parent to NULL and free the node.   

 The deletion of a nonleaf node that has only a single child is also easy.  We erase the 

node and then place the single child in the place of the erased node.   

 When we delete a nonleaf node with two children, we replace the node with either the 

largest element in its left subtree or the smallest elements in its right subtree.  Then we 

proceed by deleting this replacing element from the subtree from which it was taken. 

 
THREADED BINARY TREE 

A Threaded Binary Tree is a binary tree in which every node that does not have a right child has 

a THREAD (in actual sense, a link) to its INORDER successor. By doing this threading we 

avoid the recursive method of traversing a Tree, which makes use of stacks and consumes a lot 

of memory and time.  

The node structure for a threaded binary tree varies a bit and its like this -- 

struct NODE 

{ 

 struct NODE *leftchild; 

 int node_value; 

 struct NODE *rightchild; 

 struct NODE *thread; 

} 

Let's make the Threaded Binary tree out of a normal binary tree... 

 

The INORDER traversal for the above tree is -- D B A E C. So, the respective Threaded Binary 

tree will be -- 
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B has no right child and its inorder successor is A and so a thread has been made in between 

them. Similarly, for D and E. C has no right child but it has no inorder successor even, so it has a 

hanging thread 

 

A Threaded Binary Tree is a binary tree in which every node that does not have a right child has 

a THREAD (in actual sense, a link) to its INORDER successor. By doing this threading we 

avoid the recursive method of traversing a Tree, which makes use of stacks and consumes a lot 

of memory and time.  

 

The node structure for a threaded binary tree varies a bit and its like this -- 

struct NODE 

{ 

struct NODE *leftchild; 

int node_value; 

struct NODE *rightchild; 

struct NODE *thread; 

 

 

 

 

 

Tree traversal 

 

In computer science, tree traversal refers to the process of visiting (examining and/or updating) 

each node in a tree data structure, exactly once, in a systematic way. Such traversals are 

classified by the order in which the nodes are visited. The following algorithms are described for 

a binary tree, but they may be generalized to other trees as well. 

Depth-first traversal 

 

  

To traverse a non-empty binary tree in preorder, perform the following operations recursively at 

each node, starting with the root node: 

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Tree_(data_structure)
http://en.wikipedia.org/wiki/Binary_tree
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1. Visit the root.  

2. Traverse the left subtree.  

3. Traverse the right subtree.  

To traverse a non-empty binary tree in inorder (symmetric), perform the following operations 

recursively at each node: 

1. Traverse the left subtree.  

2. Visit the root.  

3. Traverse the right subtree.  

To traverse a non-empty binary tree in postorder, perform the following operations recursively at 

each node: 

1. Traverse the left subtree.  

2. Traverse the right subtree.  

3. Visit the root.  

 

 

 

 

 

 

Breadth-first traversal 

Trees can also be traversed in level-order, where we visit every node on a level before going to a 

lower level. 
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Depth-first  

 Preorder traversal sequence: F, B, A, D, C, E, G, I, H (root, left, right)  

 Inorder traversal sequence: A, B, C, D, E, F, G, H, I (left, root, right); note how this 

produces a sorted sequence  

 Postorder traversal sequence: A, C, E, D, B, H, I, G, F (left, right, root)  

Breadth-first  

 Level-order traversal sequence: F, B, G, A, D, I, C, E, H  

 

Algebraic expressions such as  

 a/b+(c-d) 

    

have an inherent tree-like structure. For example, Figure  is a representation of the expression 

in Equation . This kind of tree is called an expression tree  .  

The terminal nodes (leaves) of an expression tree are the variables or constants in the expression 

(a, b, c, d, and e). The non-terminal nodes of an expression tree are the operators (+, -, , and ). 

Notice that the parentheses which appear in Equation  do not appear in the tree. Nevertheless, 

http://en.wikipedia.org/wiki/File:Sorted_binary_tree.svg
http://www.brpreiss.com/books/opus5/html/page264.html
http://www.brpreiss.com/books/opus5/html/page264.html
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the tree representation has captured the intent of the parentheses since the subtraction is lower in 

the tree than the multiplication.  

 
. 

The common algebraic operators are either unary or binary. For example, addition, subtraction, 

multiplication, and division are all binary operations and negation is a unary operation. 

Therefore, the non-terminal nodes of the corresponding expression trees have either one or two 

non-empty subtrees. That is, expression trees are usually binary trees.  

What can we do with an expression tree? Perhaps the simplest thing to do is to print the 

expression represented by the tree. Notice that an inorder traversal of the tree  visits the nodes in 

the order  

 A , /,b,+,c,-,d,e 

  

Except for the missing parentheses, this is precisely the order in which the symbols appear in 

Equation . 

This suggests that an inorder traversal should be used to print the expression. Consider an 

inorder traversal which, when it encounters a terminal node simply prints it out; and when it 

encounters a non-terminal node, does the following:  

1. Print a left parenthesis; and then 

2. traverse the left subtree; and then 

3. print the root; and then 

4. traverse the right subtree; and then 

5. print a right parenthesis.  
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Application of trees 

One reason to use trees might be because you want to store information that naturally forms a 

hierarchy. For example, the file system on a computer:  

file system 

  

     /   <-- root 

  /      \ 

...        home 

      /          \ 

   ugrad        course 

    /          /    |    \ 

  ...        cs101 cs112 cs113 

2) If we organize keys in form of a tree (with some ordering e.g., BST), we can search for a 

given key in moderate time (quicker than Linked List and slower than arrays ) 

3) We can insert/delete keys in moderate time (quicker than Arrays and slower than Unordered 

Linked Lists).   

4) Like Linked Lists and unlike Arrays, Pointer implementation of trees don’t have an upper 

limit on number of nodes as nodes are linked using pointers. 

 The following are the common uses of tree. 

1. Manipulate hierarchical data. 

2. Make information easy to search (see tree traversal). 

3. Manipulate sorted lists of data. 

4. As a workflow for compositing digital images for visual effects. 

5. Router algorithms  


