
Module 4 17CS33

Binary Trees

Definitions

A tree is a finite set of one or more nodes that shows parent-child relationship such that

 There is a special node called root

 Remaining nodes are portioned into subsets T1,T2,T3 …. TN for N>-0 which are

children of root. Consider the following tree

 Height 1

 Height 2

100

60 50

70 80

35 30

40

Module 4 17CS33

Terminologies

Root Node: The first node written at the top and does not have a parent

Child: Node obtained from the parent. A parent node can have zero or more child nodes

example 50 and 60 are children of 100

Siblings: Two or more nodes having the same parent

 Ex 50 and 60 are siblings of 100

 But 70 is NOT a sibling of 50

Ancestors: Nodes obtained in the path from a specific node X while moving upwards towards

root

 Ex 100 is the ancestor of 50 and 60

Descendents : Nodes in the path below the parent. ie nodes reachable from node X while moving

downwards

 ex all nodes below 100

Left descendent : Nodes to the left sub tree of X

 ex 50 and 60 are left descendants of 100

Right descendent : Nodes to the right subtree of node X

 ex right descendents of 100 are 60,80,40,35,30

Left sub tree: All nodes that are left descendents of X forms the left sub tree

 ex Left sub tree of 100 is 50 and 70

Right Sub tree: All nodes that are right descendents of X is the right sub tree

 ex Right sub tree of 100 is 60,80,40,35,30

Parent: A node having left sub tree or right sub tree or both is a parent for left and / or right

subtree

 ex parent of 50 and 60 is 100

Degree: Number of sub trees of a node

Module 4 17CS33

 ex 100 has 2 sub trees and hence degree is 2

Leaf: A node in a tree whose degree is 0

 ex 70,35,30

Internal nodes: Nodes except the leaf

 ex 100,50,60

External nodes: They are leaf nodes

Level: Distance of a node from root

 ex Distance of root is 0

 Distance of 50 is 1

Height: Maximum level of any leaf

 ex height is 4

Binary trees

A binary tree is a tree that has finite set of nodes that is eitherempty or consist of root and two

subtrees –left and right. A binary tree has

 Root – If the tree is not empty trhen the first node is the root node

 Left sub tree- It is tree connected to the left of the root

 Right sub tree- It is the tree connected to the right of the root

A tree which has zero,one,or two subtrees is a binary tree

Module 4 17CS33

ex

Representation

Binary trees can be represented in two ways

 Linked representation

 Array representation

Linked representation

 Here a node has 3 fields

 -info – contains the actual information

 -llink-contains the address of the left sub tree

 -rlink- contains the address of right subtree

Hence a node can be represented as

Module 4 17CS33

struct node

 {

 int info;

 struct node *llink;

 struct node *rlink;

};

typedef struct node * NODE;

Pictorially a node is represented as

A pointer variable root can be used to point to the root.

Hence for a empty tree we have

NODE root=NULL.

Array representation

A tree can be represented using a array. This method of representation is also called as sequential

representation

The sequential representation of the above tree would be as follows

Llink info rlink

a

b

d e f

c

g

Module 4 17CS33

 0 1 2 3 4 5 6

Note : Nodes are numbered sequentially from 0 (root)

Given the position of node I ,2*I +1 gives the position of the left child and 2*i+2 gives the

position of the right sub child.

If I is the position of the left child then i+1 gives the position of the right child

If I is the position of the right child then i-1 gives the position of left child

There are two ways of representing a tree using arrays

Method 1: Here some of the locations may be used and some may not be used. Hence we need to

use a flag called used which will indicate whether the location is used or not. If the value is 0

then the location is not used and it indicates the absence of a node

Hence we have

#define MAX 200

struct node

{

int info;

int used;

};

typedef struct node *NODE;

A array of type NODE can be used now as

NODE a[MAX];

Method 2

Instead of using a separate flag field we initialize each location to 0 indicating that the node is

not used.Non zero value indicates the presence of a node.

A b c d e f g

Module 4 17CS33

Types of binary trees

We have the following types of binary trees

Strictly binary tree(Full binary tree)

Skewed binary tree

Complete binary tree

Expression tree

Binary search tree

Level

B

A

C D

E F G H I J

K L M N

1

4

3

2

Binary Tree Types:

 Regular Binary Tree (2)

 Skewed Left Binary Tree (1)

 Skewed Right Binary Tree (3)

Module 4 17CS33

Three Graphical Pictures of the Binary Tree:

A

B

E F

C

G H

A

B

C

D

A

B

C

D

(1)

Skewed Left

Binary Tree

(3)

Skewed Right

 Binary Tree

(2)

Regular Binary Tree

Properties of Binary Trees

In particular, we want to find out the maximum number of nodes in a binary tree of depth k, and the

number of leaf nodes and the number of nodes of degree two in a binary tree.

Binary Tree Traversals
There are many operations that we can perform on tree, but one that arises frequently is traversing a tree,

that is, visiting each node in the tree exactly once. A full traversal produces a linear order for the

information in a tree.

Binary Tree Traversals Types

 Inorder Traversal (Left, Parent, Right)

 Preorder Traversal (Parent, Left, Right)

 Postorder Traversal (Left, Right, Parent)

 Level Order Traversal (Top to Bottom, Left to Right)

Example of the Binary Tree:

Module 4 17CS33

Level

1

4

3

2B

A

D E

H I J K L M N

C

F G

O

Binary Tree Traversals Functions

Inorder Tree Traversal

Recursive function:

void inorder (ptr_node ptr)

{

 if (ptr)

 {
 inorder (ptr->left_child);

 cout << ptr->data;

 inorder (ptr->right_child);

 }

}

Result of binary tree example:

H, D, I, B, J, E, K, A, L, F, M, C, N, G, O

Module 4 17CS33

Preorder Tree Traversal

Recursive function:

void preorder (ptr_node ptr)

{

 if (ptr)

 {

cout << ptr->data;

 preorder (ptr->left_child);

 preorder (ptr->right_child);

 }

}

Result of binary tree example:

A, B, D, H, I, E, J, K, C, F, L, M, G, N, O

Postorder Tree Traversal

Recursive function:

void postorder (ptr_node ptr)

{

 if (ptr)

 {

 postorder (ptr->left_child);

 postorder (ptr->right_child);

printf(“%d”, ptr->data);

Module 4 17CS33

 }

}

Result of binary tree example:

H, I, D, J, K, E, B, L, M, F, N, O, G, C, A

Level Order Tree Traversal

Using queue:

void level_order (ptr_node ptr)

{

 int front = rear = 0;

 ptr_node queue[max_queue_size];

 if (!ptr) // empty tree;

 return;

 addq(front, &rear, ptr);

 for (; ;)

 {

 ptr = deleteq (&front, rear);

 if (ptr)

 {

cout << ptr->data;

if (ptr->left_child)

 addq (front, &rear, ptr->left_child);

if (ptr->right_child)

 addq (front, &rear, ptr->right_child);

Module 4 17CS33

}

else

 Break;

 }

}

Result of binary tree example:

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O

Binary Search Tree

Definition: A binary search tree is a binary tree. It may be empty. If it is not empty, it satisfies

the following properties:

(1) Every element has a key, and no two elements have the same key, that is, the keys are

unique.

(2) The keys in a nonempty left subtree must be smaller than the key in the root of the

subtree.

(3) The keys in a nonempty right subtree must be larger than the key in the root of the

subtree.

(4) The left and right subtrees are also binary search trees.

Example of the Binary Search Tree:

20

15 25

12 17 22 30

Module 4 17CS33

Searching A Binary Search Tree

Suppose we wish to search for an element with a key. We begin at the root. If the root is NULL,

the search tree contains no elements and the search is unsuccessful. Otherwise, we compare key

with the key value in root. If key equals root’s key value, then the search terminates

successfully. If key is less than root’s key value, then no elements in the right subtree subtree

can have a key value equal to key. Therefore, we search the left subtree of root. If key is larger

than root’s key value, we search the right subtree of root.

Recursive Function for Binary Search Tree:

tree_ptr search (tree_ptr root, int key)

{

 if (!=root)

 return NULL;

 if (key = = root->data)

 return root;

 if (key < root->data)

 return search (root->left_child, key);

 return search (root->right_child, key);

}

Inserting Into A Binary Search Tree

To insert a new element, key, we must first verify that the key is different from those of existing

elements. To do this we search the tree. If the search is unsuccessful, then we insert the element

at the point the search terminated.

Insert Function:

Module 4 17CS33

void insert_node (tree_ptr *node, int num)

{

 tree_ptr ptr, temp = modified_search (*node, num); // **

 if (temp || ! (*node))

 {

 ptr = new node;

 if (ptr = = NULL)

 {

 cout << “The memory is full \n”;

 exit (1);

 }

 ptr->data = num;

 ptr->left_child = ptr->right_child = NULL;

 if (*node)

 {

 if (num < temp->data)

 temp->left_child = ptr;

 else

 temp->right_child = ptr;

 }

 else

 *node = ptr;

 }

}

Module 4 17CS33

Deletion from a Binary Search Tree

 Deletion of a leaf node is easy. For example, if a leaf node is left child, we set the left

child field of its parent to NULL and free the node.

 The deletion of a nonleaf node that has only a single child is also easy. We erase the

node and then place the single child in the place of the erased node.

 When we delete a nonleaf node with two children, we replace the node with either the

largest element in its left subtree or the smallest elements in its right subtree. Then we

proceed by deleting this replacing element from the subtree from which it was taken.

THREADED BINARY TREE

A Threaded Binary Tree is a binary tree in which every node that does not have a right child has

a THREAD (in actual sense, a link) to its INORDER successor. By doing this threading we

avoid the recursive method of traversing a Tree, which makes use of stacks and consumes a lot

of memory and time.

The node structure for a threaded binary tree varies a bit and its like this --

struct NODE

{

 struct NODE *leftchild;

 int node_value;

 struct NODE *rightchild;

 struct NODE *thread;

}

Let's make the Threaded Binary tree out of a normal binary tree...

The INORDER traversal for the above tree is -- D B A E C. So, the respective Threaded Binary

tree will be --

Module 4 17CS33

B has no right child and its inorder successor is A and so a thread has been made in between

them. Similarly, for D and E. C has no right child but it has no inorder successor even, so it has a

hanging thread

A Threaded Binary Tree is a binary tree in which every node that does not have a right child has

a THREAD (in actual sense, a link) to its INORDER successor. By doing this threading we

avoid the recursive method of traversing a Tree, which makes use of stacks and consumes a lot

of memory and time.

The node structure for a threaded binary tree varies a bit and its like this --

struct NODE

{

struct NODE *leftchild;

int node_value;

struct NODE *rightchild;

struct NODE *thread;

Tree traversal

In computer science, tree traversal refers to the process of visiting (examining and/or updating)

each node in a tree data structure, exactly once, in a systematic way. Such traversals are

classified by the order in which the nodes are visited. The following algorithms are described for

a binary tree, but they may be generalized to other trees as well.

Depth-first traversal

To traverse a non-empty binary tree in preorder, perform the following operations recursively at

each node, starting with the root node:

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Tree_(data_structure)
http://en.wikipedia.org/wiki/Binary_tree

Module 4 17CS33

1. Visit the root.

2. Traverse the left subtree.

3. Traverse the right subtree.

To traverse a non-empty binary tree in inorder (symmetric), perform the following operations

recursively at each node:

1. Traverse the left subtree.

2. Visit the root.

3. Traverse the right subtree.

To traverse a non-empty binary tree in postorder, perform the following operations recursively at

each node:

1. Traverse the left subtree.

2. Traverse the right subtree.

3. Visit the root.

Breadth-first traversal

Trees can also be traversed in level-order, where we visit every node on a level before going to a

lower level.

Module 4 17CS33

Depth-first

 Preorder traversal sequence: F, B, A, D, C, E, G, I, H (root, left, right)

 Inorder traversal sequence: A, B, C, D, E, F, G, H, I (left, root, right); note how this

produces a sorted sequence

 Postorder traversal sequence: A, C, E, D, B, H, I, G, F (left, right, root)

Breadth-first

 Level-order traversal sequence: F, B, G, A, D, I, C, E, H

Algebraic expressions such as

 a/b+(c-d)

have an inherent tree-like structure. For example, Figure is a representation of the expression

in Equation . This kind of tree is called an expression tree .

The terminal nodes (leaves) of an expression tree are the variables or constants in the expression

(a, b, c, d, and e). The non-terminal nodes of an expression tree are the operators (+, -, , and).

Notice that the parentheses which appear in Equation do not appear in the tree. Nevertheless,

http://en.wikipedia.org/wiki/File:Sorted_binary_tree.svg
http://www.brpreiss.com/books/opus5/html/page264.html
http://www.brpreiss.com/books/opus5/html/page264.html

Module 4 17CS33

the tree representation has captured the intent of the parentheses since the subtraction is lower in

the tree than the multiplication.

.

The common algebraic operators are either unary or binary. For example, addition, subtraction,

multiplication, and division are all binary operations and negation is a unary operation.

Therefore, the non-terminal nodes of the corresponding expression trees have either one or two

non-empty subtrees. That is, expression trees are usually binary trees.

What can we do with an expression tree? Perhaps the simplest thing to do is to print the

expression represented by the tree. Notice that an inorder traversal of the tree visits the nodes in

the order

 A , /,b,+,c,-,d,e

Except for the missing parentheses, this is precisely the order in which the symbols appear in

Equation .

This suggests that an inorder traversal should be used to print the expression. Consider an

inorder traversal which, when it encounters a terminal node simply prints it out; and when it

encounters a non-terminal node, does the following:

1. Print a left parenthesis; and then

2. traverse the left subtree; and then

3. print the root; and then

4. traverse the right subtree; and then

5. print a right parenthesis.

Module 4 17CS33

Application of trees

One reason to use trees might be because you want to store information that naturally forms a

hierarchy. For example, the file system on a computer:

file system

 / <-- root

 / \

... home

 / \

 ugrad course

 / / | \

 ... cs101 cs112 cs113

2) If we organize keys in form of a tree (with some ordering e.g., BST), we can search for a

given key in moderate time (quicker than Linked List and slower than arrays)

3) We can insert/delete keys in moderate time (quicker than Arrays and slower than Unordered

Linked Lists).

4) Like Linked Lists and unlike Arrays, Pointer implementation of trees don’t have an upper

limit on number of nodes as nodes are linked using pointers.

 The following are the common uses of tree.

1. Manipulate hierarchical data.

2. Make information easy to search (see tree traversal).

3. Manipulate sorted lists of data.

4. As a workflow for compositing digital images for visual effects.

5. Router algorithms

