
GRAPH

What is a Graph?

• A graph G = (V,E) is composed of:

V: set of vertices

E: set of edges connecting the vertices in V

• An edge e = (u,v) is a pair of vertices

• Example:

a b

c

d e

V= {a,b,c,d,e}

E= {(a,b),(a,c),
(a,d),
(b,e),(c,d),(c,e),
(d,e)}

Applications

• electronic circuits

• networks (roads, flights, communications)

CS16

LAX

JFK

LAX

DFW

STL

HNL

FTL

Terminology:
Adjacent and Incident

• If (v0, v1) is an edge in an undirected graph,
– v0 and v1 are adjacent
– The edge (v0, v1) is incident on vertices v0 and v1

• If <v0, v1> is an edge in a directed graph
– v0 is adjacent to v1, and v1 is adjacent from v0

– The edge <v0, v1> is incident on v0 and v1

The degree of a vertex is the number of edges
incident to that vertex
For directed graph,

the in-degree of a vertex v is the number of edges
that have v as the head
the out-degree of a vertex v is the number of edges
that have v as the tail
if di is the degree of a vertex i in a graph G with n
vertices and e edges, the number of edges is

e d i
n

=
−

∑() /
0

1

2

Terminology:
Degree of a Vertex

Why? Since adjacent vertices each
count the adjoining edge, it will be
counted twice

0

1 2

3 4 5 6

G1 G2

3 2

3 3

1 1 1 1

directed graph
in-degree
out-degree

0

1

2

G3

in:1, out: 1

in: 1, out: 2

in: 1, out: 0

0

1 2

3

33

3

Examples

Terminology:
Path

• path: sequence of
vertices v1,v2,. . .vk such
that consecutive vertices vi
and vi+1 are adjacent.

7

3

3 3

3

2

a b

c

d e

a b

c

d e

a b e d c b e d c

More Terminology
• simple path: no repeated vertices

• cycle: simple path, except that the last vertex is the same as the first
vertex

a b

c

d e

b e c

a c d a

a b

c

d e

Even More Terminology

• subgraph: subset of vertices and edges forming a graph

• connected component: maximal connected subgraph. E.g., the graph below has
3 connected components.

connected not connected

•connected graph: any two vertices are connected by some path

0 0

1 2 3

1 2 0

1 2

3 (i) (ii) (iii) (iv)
 (a) Some of the subgraph of G1

0 0

1

0

1

2

0

1

2
(i) (ii) (iii) (iv)

 (b) Some of the subgraph of G3

0

1 2

3
G1

0

1

2

G3

Subgraphs Examples

More…

• tree - connected graph without cycles

• forest - collection of trees

tree

forest

tree

tree

tree

Connectivity

• Let n = #vertices, and m = #edges

• A complete graph: one in which all pairs of vertices are
adjacent

• How many total edges in a complete graph?
– Each of the n vertices is incident to n-1 edges, however, we would

have counted each edge twice! Therefore, intuitively, m = n(n -1)/2.

• Therefore, if a graph is not complete, m < n(n -1)/2

n = 5
m = (5 ∗ 4)/2 = 10

More Connectivity

n = #vertices

m = #edges

• For a tree m = n - 1

n = 5
m = 4

n = 5
m = 3

If m < n - 1, G is
not connected

Oriented (Directed) Graph

• A graph where edges are directed

Directed vs. Undirected Graph

• An undirected graph is one in which the pair
of vertices in a edge is unordered, (v0, v1) =
(v1,v0)

• A directed graph is one in which each edge is
a directed pair of vertices, <v0, v1> != <v1,v0>

tail head

ADT for Graph

 objects: a nonempty set of vertices and a set of undirected edges, where each
edge is a pair of vertices

 functions: for all graph ∈ Graph, v, v1 and v2 ∈ Vertices

 Graph Create()::=return an empty graph
 Graph InsertVertex(graph, v)::= return a graph with v inserted. v has no

 incident edge.
 Graph InsertEdge(graph, v1,v2)::= return a graph with new edge

 between v1 and v2

 Graph DeleteVertex(graph, v)::= return a graph in which v and all edges
 incident to it are removed

 Graph DeleteEdge(graph, v1, v2)::=return a graph in which the edge (v1, v2)
 is removed

 Boolean IsEmpty(graph)::= if (graph==empty graph) return TRUE
 else return FALSE
 List Adjacent(graph,v)::= return a list of all vertices that are adjacent to v

Graph Representations

Adjacency Matrix

Adjacency Lists

Adjacency Matrix

Let G=(V,E) be a graph with n vertices.

The adjacency matrix of G is a two-dimensional
n by n array, say adj_mat

If the edge (vi, vj) is in E(G), adj_mat[i][j]=1

If there is no such edge in E(G), adj_mat[i][j]=0

The adjacency matrix for an undirected graph is
symmetric; the adjacency matrix for a digraph
need not be symmetric

Examples for Adjacency Matrix

0

1

1

1

1

0

1

1

1

1

0

1

1

1

1

0

0

1

0

1

0

0

0

1

0

 0

1

1

0

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

G1
G2

G4

0

1 2

3

0

1

2

1

0

2

3

4

5

6

7

symmetric

undirected: n2/2
directed: n2

Merits of Adjacency Matrix

From the adjacency matrix, to determine the
connection of vertices is easy

The degree of a vertex is

For a digraph (= directed graph), the row sum is
the out_degree, while the column sum is the
in_degree

adj mat i j
j

n

_ [][]
=

−

∑
0

1

ind vi A j i
j

n

() [,]=
=

−

∑
0

1

outd vi A i j
j

n

() [,]=
=

−

∑
0

1

Adjacency Lists (data structures)

#define MAX_VERTICES 50
typedef struct node *node_pointer;
typedef struct node {
 int vertex;
 struct node *link;
};
node_pointer graph[MAX_VERTICES];
int n=0; /* vertices currently in use */

Each row in adjacency matrix is represented as an adjacency list.

0
1
2
3

0
1
2

0
1
2
3
4
5
6
7

1 2 3
0 2 3
0 1 3
0 1 2

G1

1
0 2

G3

1 2
0 3
0 3
1 2
5
4 6
5 7
6
G4

0

1 2

3

0

1

2

1

0

2

3

4

5

6

7

An undirected graph with n vertices and e edges ==> n head nodes and 2e list nodes

Some Operations

� degree of a vertex in an undirected graph
–# of nodes in adjacency list

� # of edges in a graph
–determined in O(n+e)

� out-degree of a vertex in a directed graph
–# of nodes in its adjacency list

� in-degree of a vertex in a directed graph
–traverse the whole data structure

Graph Traversal

• Problem: Search for a certain node or traverse
all nodes in the graph

• Depth First Search
– Once a possible path is found, continue the search

until the end of the path

• Breadth First Search
– Start several paths at a time, and advance in each

one step at a time

Depth-First Search

M N O P

I J K L

E F G H

A B C D

Exploring a Labyrinth
Without Getting Lost

• A depth-first search (DFS) in an undirected graph G is like wandering
in a labyrinth with a string and a can of red paint without getting lost.

• We start at vertex s, tying the end of our string to the point and painting
s “visited”. Next we label s as our current vertex called u.

• Now we travel along an arbitrary edge (u, v).

• If edge (u, v) leads us to an already visited vertex v we return to u.

• If vertex v is unvisited, we unroll our string and move to v, paint v
“visited”, set v as our current vertex, and repeat the previous steps.

Breadth-First Search

• Like DFS, a Breadth-First Search (BFS) traverses a connected component of a
graph, and in doing so defines a spanning tree with several useful properties.

• The starting vertex s has level 0, and, as in DFS, defines that point as an
“anchor.”

• In the first round, the string is unrolled the length of one edge, and all of the
edges that are only one edge away from the anchor are visited.

• These edges are placed into level 1
• In the second round, all the new edges that can be reached by unrolling the

string 2 edges are visited and placed in level 2.
• This continues until every vertex has been assigned a level.
• The label of any vertex v corresponds to the length of the shortest path from s

to v.

27

BFS - A Graphical Representation

M N O P

I J K L

E F G H

A B C D

0

M N O P

I J K L

E F G H

A B C D

0 1

28
M N O P

I J K L

E F G H

A C DB

0 1 2

M N O P

I J K L

E F G H

A B C D

0 1 2 3

d)c)

b)a)

More BFS

M N O P

I J K L

E F G H

A B C D

4

0 1 2 3

M N O P

I J K L

E F G H

A B C D

4

5

0 1 2 3

Applications: Finding a Path

• Find path from source vertex s to destination
vertex d

• Use graph search starting at s and terminating as
soon as we reach d
– Need to remember edges traversed

• Use depth – first search ?
• Use breath – first search?

DFS vs. BFS

E
F

G

B

CD

A start

destination

A DFS on A A
DFS on BB

A

DFS on C

B
C

A
B Return to call on B

D Call DFS on D

A
B

D

Call DFS on GG found destination - done!
Path is implicitly stored in DFS recursion
Path is: A, B, D, G

DFS Process

DFS vs. BFS

E
F

G

B

CD

A start

destination

BFS Process

A

Initial call to BFS on A
Add A to queue

B

Dequeue A
Add B

frontrear frontrear

C

Dequeue B
Add C, D

frontrear

D D

Dequeue C
Nothing to add

frontrear

G

Dequeue D
Add G

frontrear

found destination - done!
Path must be stored separately

