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What is a Graph?

• A graph G = (V,E) is composed of:

V: set of vertices

E: set of edges connecting the vertices in V

• An edge e = (u,v) is a pair of vertices

• Example:

a b

c

d e

V= {a,b,c,d,e}

E= {(a,b),(a,c),
(a,d),
(b,e),(c,d),(c,e),
(d,e)}



Applications

• electronic circuits

• networks (roads, flights, communications)

CS16

LAX

JFK

LAX

DFW

STL

HNL

FTL



Terminology: 
Adjacent and Incident

• If (v0, v1) is an edge in an undirected graph, 
– v0 and v1 are adjacent
– The edge (v0, v1) is incident on vertices v0 and v1

• If <v0, v1> is an edge in a directed graph
– v0 is adjacent to v1, and v1 is adjacent from v0

– The edge <v0, v1> is incident on v0 and v1



The degree of a vertex is the number of edges 
incident to that vertex
For directed graph, 

the in-degree of a vertex v is the number of edges
that have v as the head
the out-degree of a vertex v is the number of edges
that have v as the tail
if di is the degree of a vertex i in a graph G with n 
vertices and e edges, the number of edges is
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Terminology:
Degree of a Vertex

Why? Since adjacent vertices each 
count the adjoining edge, it will be 
counted twice 
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Terminology:
Path

• path:   sequence of 
vertices v1,v2,. . .vk  such 
that consecutive vertices vi 
and vi+1 are adjacent. 
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More Terminology
• simple path:  no repeated vertices

• cycle:   simple path, except that the last vertex is the same as the first 
vertex
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Even More Terminology

• subgraph: subset of vertices and edges forming a graph

• connected component: maximal connected subgraph. E.g., the graph below has 
3 connected components.

connected not connected

•connected graph: any two vertices are connected by some path
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More…

• tree - connected graph without cycles

• forest - collection of trees

tree

forest
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Connectivity

• Let n = #vertices, and m = #edges

• A complete graph: one in which all pairs of vertices are 
adjacent

• How many total edges in a complete graph? 
– Each of the n vertices is incident to n-1 edges, however, we would 

have counted each edge twice!  Therefore, intuitively, m = n(n -1)/2.

• Therefore, if a graph is not complete, m < n(n -1)/2

n = 5
m = (5 ∗ 4)/2 = 10



More Connectivity

n = #vertices

m = #edges

• For a tree m = n - 1

n = 5
m = 4

n = 5
m = 3

If m < n - 1, G is 
not connected



Oriented (Directed) Graph

• A graph where edges are directed



Directed vs. Undirected Graph

• An undirected graph is one in which the pair 
of vertices in a edge is unordered, (v0, v1) = 
(v1,v0) 

• A directed graph is one in which each edge is 
a directed pair of vertices, <v0, v1> != <v1,v0>

tail head



ADT for Graph

  objects: a nonempty set of vertices and a set of undirected edges, where each 
edge is a pair of vertices

  functions: for all graph ∈ Graph, v, v1 and v2 ∈ Vertices

    Graph Create()::=return an empty graph
    Graph InsertVertex(graph, v)::= return a graph with v inserted. v has no 

                                                   incident edge.
    Graph InsertEdge(graph, v1,v2)::= return a graph with new edge 

                                                      between v1 and v2

    Graph DeleteVertex(graph, v)::= return a graph in which v and all edges 
                                                     incident to it are removed

    Graph DeleteEdge(graph, v1, v2)::=return a graph in which the edge (v1, v2) 
                                                        is removed

    Boolean IsEmpty(graph)::= if (graph==empty graph) return TRUE 
                                                 else return FALSE
    List Adjacent(graph,v)::= return a list of all vertices that are adjacent to v



Graph Representations

Adjacency Matrix

Adjacency Lists



Adjacency Matrix

Let G=(V,E) be a graph with n vertices.

The adjacency matrix of G is a two-dimensional 
n by n array, say adj_mat

If the edge (vi, vj) is in E(G), adj_mat[i][j]=1

If there is no such edge in E(G), adj_mat[i][j]=0

The adjacency matrix for an undirected graph is 
symmetric; the adjacency matrix for a digraph 
need not be symmetric 



Examples for Adjacency Matrix
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Merits of Adjacency Matrix

From the adjacency matrix, to determine the 
connection of vertices is easy

The degree of a vertex is 

For a digraph (= directed graph), the row sum is 
the out_degree, while the column sum is the 
in_degree
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Adjacency Lists (data structures)

#define MAX_VERTICES 50
typedef struct node *node_pointer;
typedef struct node {
    int vertex;
    struct node *link;
};
node_pointer graph[MAX_VERTICES];
int n=0; /* vertices currently in use */

Each row in adjacency matrix is represented as an adjacency list.
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Some Operations

� degree of a vertex in an undirected graph
–# of nodes in adjacency list

� # of edges in a graph
–determined in O(n+e)

� out-degree of a vertex in a directed graph
–# of nodes in its adjacency list

� in-degree of a vertex in a directed graph
–traverse the whole data structure



Graph Traversal

• Problem: Search for a certain node or traverse 
all nodes in the graph

• Depth First Search
– Once a possible path is found, continue the search 

until the end of the path

• Breadth First Search
– Start several paths at a time, and advance in each 

one step at a time



Depth-First Search
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Exploring a Labyrinth 
Without Getting Lost

• A depth-first search (DFS) in an undirected graph G is like wandering 
in a labyrinth with a string and a can of red paint without getting lost. 

• We start at vertex s, tying the end of our string to the point and painting 
s “visited”. Next we label s as our current vertex called u.

• Now we travel along an arbitrary edge (u, v).

• If edge (u, v) leads us to an already visited vertex v we return to u.

• If vertex v is unvisited, we unroll our string and move to v, paint v 
“visited”, set v as our current vertex, and repeat the previous steps.



Breadth-First Search

• Like DFS, a Breadth-First Search (BFS) traverses a connected component of a 
graph, and in doing so defines a spanning tree with several useful properties.

• The starting vertex s has level 0, and, as in DFS, defines that point as an 
“anchor.”

• In the first round, the string is unrolled the length of one edge, and all of the 
edges that are only one edge away from the anchor are visited.

• These edges are placed into level 1
• In the second round, all the new edges that can be reached by unrolling the 

string 2 edges are visited and placed in level 2.
• This continues until every vertex has been assigned a level.
• The label of any vertex v corresponds to the length of the shortest path from s 

to v.
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BFS - A Graphical Representation
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More BFS
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Applications: Finding a Path

• Find path from source vertex s to destination 
vertex d

• Use graph search starting at s and terminating as 
soon as we reach d
– Need to remember edges traversed

• Use depth – first search ?
• Use breath – first search?



DFS vs. BFS
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Call DFS on GG found destination - done!
Path is implicitly stored in DFS recursion
Path is: A, B, D, G

DFS Process



DFS vs. BFS
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A start
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BFS Process

A

Initial call to BFS on A
Add A to queue

B

Dequeue A
Add B

frontrear frontrear

C

Dequeue B
Add C, D

frontrear

D D

Dequeue C
Nothing to add

frontrear

G

Dequeue D
Add G

frontrear

found destination - done!
Path must be stored separately


