

/ What is a Graph?

™

* A graph G =(V,E) is composed of:

V: set of vertices

E: set of edges connecting the vertices in V
* Anedgee=(u,v) is a pair of vertices

* Example:

V={ab,c,d,e}

E={(ab),(ac),
(ad),
(b,e),(c,d),(c.e),

de) %

/777iAppHcaﬁons

* clectronic circuits

l."

(1AX

K (i

* networks (roads, flig ommunications)

!.<==il'
~~ E’%\Vj

=+ 3

U

o L
Ty e

,sﬁ%
.y
@L&*‘.\\

(FTL

% Terminology: N
Adjacent and Incident

* If (vo, v1) 1s an edge 1n an undirected graph,

— vo and vi are adjacent

— The edge (vo, v1) 1s Incident on vertices vo and vi
* If <vo, vi>1s an edge 1n a directed graph

— vo 1s adjacent to vi, and vi1 1s adjacent from vo

— The edge <vo, vi> 1s incident on vo and vi

g J

% The degree of a vertex is the number of edges
incident to that vertex

¢ For directed graph,

@ the in-degree of a vertex v is the number of edges
that have v as the head

the out-degree of a vertex v is the number of edges
that have v as the tail

@ if di 1s the degree of a vertex i in a graph G with n
vertices and e edges, the number of edges is

count the adjoining edge, it will be
counted twice

e =(2 d)/2 Why? Since adjacent vertices each

;- o

3

5@5

()u/ 1 1
33 G2 | 1
A

in:1, out: 1

directed graph ‘
in-degree Y

out-degree %} n: 1, out: 2
@ in: 1, out: 0
G3

Path

* path: sequence of
vertices v,v,,. . .v, such

that consecutive vertices v,
and v, are adjacent.

/ More Terminology \

: 1 4 il
* simplepath—morepeated-vertices

* cycle: simple path, except that the last vertex 1s the same as the firs
vertex

acda

Even More Terminology

*connected graph: any two vertices are connected by some path

connected not connected
* subgraph: subset of vertices and edges forming a graph

* connected component: maximal connected subgraph. E.g., the graph below has
3 connected components.

o —— = e e e e - e e - - - - — - — — — —

,_O@
=
i

- 0
@%%%g§

1 (11) (iii)

Q

(a) Some of the subgraph of G,

(1) (11) (111) (IV)
13 (b) Some of the subgraph of G,

O

_@‘

Q

7 ore..

™

* tree - connected graph without cycles

f ; tree

forest

* forest - collection of trees

tree

J

Connectivity

Let n = #vertices, and m = #edges

A complete graph: one in which all pairs of vertices are
adjacent

How many total edges in a complete graph?

— Each of the n vertices 1s incident to n-1 edges, however, we would
have counted each edge twice! Therefore, intuitively, m = n(n -1)/2.

Therefore, 1f a graph 1s not complete, m < n(n -1)/2

n=>5
m =(514)/2=1C

% More Connectivity

n = #vertices
m = #edges

* Foratreem=n - 1

fm<n-1Gis
not connected

L

% Oriented (Directed) Graph

™

* A graph where edges are directed

% Directed vs. Undirected Graph N

* An undirected graph 1s one in which the pair
of vertices 1n a edge 1s unordered, (vo, vi) =
(V1,vo)

* A directed graph is one in which each edge 1s

a directed pair of vertices, <vo, vi> = <vi,vo>
tail head

g J

functions: for all graph U0 Graph, v, v, and v, O Vertices

Graph Create()::=return an empty graph

Graph InsertVertex(graph, v)::= return a graph with v inserted. v has no
incident edge.

Graph InsertEdge(graph, vi,v2)::= return a graph with new edge
between v: and v-

Graph DeleteVertex(graph, v)::= return a graph in which v and all edges
incident to it are removed

Graph DeleteEdge(graph, vi, v2)::=return a graph in which the edge (v, v2)

is removed
Boolean IsEmpty(graph)::= if (graph==empty graph) return TRUE
else return FALSE

List Adjacent(graph,v)::= return a list of all vertices that are adjacent to v

¥ Adjacency Matrix
¥ Adjacency Lists

e

L
wr
L
wr

L
N
L
wr
L
wr

™

Let G=(V,E) be a graph with n vertices.

The adjacency matrix of G is a two-dimensional

n by n array, say adj_mat

If the edge (vi, vi) is in E(G), adj_mat[i][j]=1
If there 1s no such edge in E(G), adj_mat[i][j]=0

The adjacency matrix for an undirected graph is
symmetric; the adjacency matrix for a digraph

need not be symmetric

J

Matrix

s i

Examples for Adjacency

.

S

p— oy p—
1101

[SNV —

gl

symmetric

—

S

undirected: n?/2
directed: n?

e

g

™

L
wr

iy
L4

L
wr

From the adjacency matrix, to determine the
connection of vertices is easy
n-1

The degree of a vertexis Y adj mat[i][/]

For a digraph (= directed graph), the row sum is
the out_degree, while the column sum is the

in_ degree

ind(vi)=5 A[j.i] outd(vi)=5 Afi,]]

Each row 1n adjacency matrix 1s represented as an adjacency list.

#define MAX VERTICES 50

typedef struct node *node pointer;
typedef struct node {
int vertex;

struct node *link;
};
node pointer graph[MAX VERTICES];
int n=0; /* vertices currently in use */

NN | e | O

L —

nd 2e-histnodes

AA A A
I I I
T

— | <& Q| -

& | [
A A
_ _
il 4
O
HEVa)) | \O

S — AN N <~ n»n O ™~

A A A A

OO +

cnjlen|en | O

A A A A

_ _ _ _

L]]

N AN || _ (@\

A A A A A

T T T O |

sinainain I
— | DN D - | .”L
)) })) } Q)
S — N S — N 2

% Some Operations N

degree of a vertex in an undirected graph

—# of nodes 1n adjacency list
of edges 1n a graph
—determined in O(n+e)

out-degree of a vertex 1n a directed graph

/

—# of nodes 1n its adjacency list

in-degree of a vertex 1n a directed graph

—traverse the whole data structure

g

e

L

Graph Traversal N

* Problem: Search for a certain node or traverse
all nodes 1n the graph

* Depth First Search

— Once a possible path is found, continue the search
until the end of the path

* Breadth First Search

— Start several paths at a time, and advance 1n each

one step at a time

/ Depth-First Search

™

&~
S

i P
] V4
P2
.
Q) ()

2
2
L
L
4

(My—

L

&

* A depth-first search (DFS) in an undirected graph G 1s like wandering
in a labyrinth with a string and a can of red paint without getting lost.

* We start at vertex s, tying the end of our string to the point and painting
s “visited”. Next we label s as our current vertex called u.

* Now we travel along an arbitrary edge (u, v).
* Ifedge (u, v) leads us to an already visited vertex v we return to u.

* If vertex v is unvisited, we unroll our string and move to v, paint v
“visited”, set v as our current vertex, and repeat the previous steps.

Breadth-First Search

Like DFS, a Breadth-First Search (BFS) traverses a connected component of a
graph, and in doing so defines a spanning tree with several useful properties.

The starting vertex s has level 0, and, as in DFS, defines that point as an
“anchor.”

In the first round, the string is unrolled the length of one edge, and all of the
edges that are only one edge away from the anchor are visited.

These edges are placed into level 1

In the second round, all the new edges that can be reached by unrolling the
string 2 edges are visited and placed in level 2.

This continues until every vertex has been assigned a level.

The label of any vertex v corresponds to the length of the shortest path from s
to .

27

A Graphical RepresentatiorN

BFS

e

2, .

LL \

AR N (OO (O
nru /./ \
O N
= @0 O 3

% CANL m_\

% Applications: Finding a Path N

* Find path from source vertex s to destination
vertex d

* Use graph search starting at s and terminating as
soon as we reach d

— Need to remember edges traversed
* Use depth — first search ?

* Use breath — first search?

L J

DFS Process ®/{Fﬁ
o

DFS vs. BFS

destination

Call DFSon D

»)

DFS on C

C
DFSon B B Return to call on B
A

> W

B
DFSonA | A

CallDFSon G found destination - done!
Path 1s implicitly stored in DFS recursion

Path 1s: A, B, D, G

DFS vs. BFS

F
@/?
BFS Process \G

G <
destination
rear front rear front rear front rear front
A B D C D
Initial call to BFSon A Dequeue A Dequeue B Dequeue C
Add A to queue Add B Add C,D Nothing to add
rear front
G found destination - done!
Dequeue D Path must be stored separately

Add G

