Introduction to Graphs

Fundamental Data Structures and Algorithms

Prof. S.G.Gollagi

Announcements

- HW 6 is about to be released. Start asap.
- Reading: Chapter 14 in MAW.

There are quite few definitions there, make sure you understand the ideas and concepts.

- Extra credit: Write a one-page essay about roving eyeballs.

Introduction to Graphs

Terminology

- vertices (aka nodes, points)

- edges (aka arcs, lines) directed or undirected (digraphs and ugraphs) multiple or single loops

- vertex labels
- edge labels

 $G = (V,E)$ or $G = (V,E,lab)$

- directed (x,y) or just xy

 x is the source and y the target of the edge

- undirected $\{x,y\}$ or just xy

Note that $\{x,x\}$ means: undirected loop at x.

- edge is incident upon vertex x and y

- directed

out-degree of x: the number of edges (x,y) in-degree of x: the number of edges (y,x) degree: sum of in-degree and out-degree

- undirected degree of x: the number of edges $\{x,y\}$

Degrees are often important in determining the running time of an algorithm.

Graphs are Everywhere

Examples

- Roadmaps
- Communication networks
- WWW
- Electrical circuits
- Task schedules

Graphs as models

Physical objects are often modeled by meshes, which are a particular kind of graph structure.

By Jonathan Shewchuk

Web Graph

Web Pages are nodes (vertices) HTML references are links (edges)

Relationship graphs

Graphs are also used to model *relationships* among entities.

Scheduling and resource constraints.

Inheritance hierarchies.

Suppose we have a system with a collection of possible configurations. Suppose further that a configuration can change into a next configuration (transition, non-deterministic).

Model by a graph

 $G = ($ configurations, transitions $)$

Evolution of the system corresponds to a path in the graph.

Example: Games

The game of Hanoi with 5 disks corresponds to the following graph:

Solving a Game

A solution is just a path in the graph:

Discrete Math View

Can think of a graph $G = (V,E)$ as a binary relation E on V.

E.g.

G undirected: relation symmetric

G loop-free: relation irreflexive

But this does not address additional labeling and layout information.

A path from vertex a to vertex b in a graph G is a sequence of vertices

 $a = x_0, x_1, x_2, ..., x_k = b$

such that (x_i, x_{i+1}) is an edge in G for $i = 0, ..., k-1$. k is the length of the path.

Vertex b is reachable from a if there is a path from a to b.

 $R(a)$ is the set of all vertices reachable from a.

A distance from vertex a to vertex b is the length of the shortest path from a to b (infinity if there is no such path).

If the edges are labeled by a cost (a real number) the length of a path

 $a = x_0, x_1, x_2, ..., x_k = b$

is defined to be the sum of the edge-costs $cost(x_{i}, x_{i+1})$

So in the unlabeled case each edge is assumed to have cost 1.

Find a good way to compute the distance of any two Hanoi configurations.

A graph G is connected if $R(a) = V$ for all vertices a.

For an undirected graph this is equivalent to $R(a) =$ V for some vertex a.

A connected component of a ugraph G is a set C that is connected (meaning $R(a) = C$ for all a in C) and that is a maximal such.

For digraphs the situation is more complicated, postpone.

Typical Graph Problems

Connectivity

Given a graph G, check if G is connected.

Connected Components

Given a ugraph G, compute its connected components.

Typical Graph Problems

Shortest Path

Given a graph G and vertices a and b, find a shortest path from a to b.

Distance

Given a graph G, compute the distance between any pair of vertices.

Representing Graphs

Representing Graphs

We need a data structure to represent graphs.

Crucial parameters:

 $n =$ number of vertices e = number of edges

Note that e may be quadratic in n.

Size of a graph is $n + e$.

Representing Graphs

Ignoring labels, we may assume that $V =$ $\{1, 2, ..., n\}$.

Need to represent E.

- Edge lists
- Adjacency lists
- Adjacency matrices
- Succinct representation

Supporting Operations

We need to be able to perform operations such as the following:

- insert/delete a vertex
- insert/delete an edge
- check whether (x,y) is an edge
- given x, enumerate its neighbors y

Enumerating neighbors is crucial in many graph algorithms.

Example: Compute degrees.

A list of pairs (x,y) of vertices.

May be implemented by an array of pairs.

Size: $\Theta(e)$

Running time:

```
edge query ?
```
neighbor enumeration ?

Adjacency Lists

An array A of size n of lists of vertices:

 $A[x] =$ list of all neighbors of x.

Size: $\Theta(n+e)$

Running time:

edge query ?

neighbor enumeration ?

Adjacency Matrices

An n by n boolean array A:

 $A[x,y] = true$ iff (x,y) is an edge.

Size: $\Theta(n^2)$

Running time:

edge query ?

neighbor enumeration ?

Adjacency Matrices

Size alone often rules out the use of adjacency matrices.

But for small graphs very important alternative implementation.

Can exploit bit-parallelism or even special purpose parallel hardware (matrix multiplication).

Also a very nice conceptual tool.

Succinct Representation

For large n one often cannot afford to keep an explicit representation of the adjacencies.

But one may be able to get by with functions:

boolean edgeQ(vertex x, vertex y)

VertexList neighbors(vertex x)

Typical example: the web graph.

Example: Edge List

$$
\begin{array}{l}\n(1,3) (1,4) (2,4) (2,5) \\
(2,4) \\
(3,6) (4,6) (4,7) (5,4) \\
(5,7)\n\end{array}
$$

natural order, but could be arbitrarily permuted

Example: Adjacency List

natural order, but lists could be arbitrarily permuted

Example: Adjacency Matrix

Choosing a representation

- Size of V relative to size of E is a primary factor.
	- *Dense*: e/n is large
	- *Sparse*: e/n is small
	- *Adjacency matrix is expensive if the graph is sparse.*
	- *Adjacency list is expensive if the graph is dense.*
- Dynamic changes to V.

 Adjacency matrix is expensive to copy/extend if V is extended.

A Connectivity Algorithm

How do we test whether a given graph G is connected?

For an undirected graph we can

- pick any vertex v
- compute $R = R(v)$
- check if $|R| = n$

In the directed case we can repeat for all v (there are better algorithms).

Either way, the key problem is to compute $R(v)$.

Inductive Attack

Note that

- v is in $R(v)$
- x in $R(v)$ and (x,y) an edge implies y in $R(v)$

This can be used to construct $R(v)$ in stages.

Edge (x,y) requires attention if x is in R but y is not.

An edge (that requires attention) is relaxed (or receives attention) when the missing endpoint is placed into R.

A Reachability Algorithm

$R = \{v\};$ **while(some edge (x,y) requires attention) add y to R; // relax the edge**

Claim: The algorithm always terminates.

Proof: An edge can receive attention at most once.

So the loop executes at most e times.

Correctness

```
R = \{v\};while( some edge (x,y) requires attention )
     add y to R;
```
Claim: Upon completion of the algorithm $R = R(v)$.

Proof: "R is a subset of $R(v)$ " is a loop-invariant.

Suppose x is in $R(v)$ but not in R. Choose one such x with minimal distance d from v. Then there is some vertex y that is in R and such that (y,x) is an edge. But then this edge requires attention, contradiction.

```
R = \{v\};
while( some edge (x,y) requires attention )
     add y to R;
```
We have to specify a way to pick edges that require attention.

Place new vertices into a container (stack or queue) and then check all incident edges.

Breadth First Search

```
bfs( vertex s )
{
  Q.enqueue( s );
  mark s; // put x into R
   while( !Q.empty() ) {
      x = Q.dequeue();
      forall (x,y) in E do
        if( y not marked ) { // relax edges
           Q.enqueue(y);
           mark y; // put y into R
      }
    }
}
```
Correctness is already taken care of.

Efficiency:

Using adjacency lists the forall loop is linear in the number of edges starting at vertex x.

So total running time is $O(n+e)$.

How about edge lists? How about adjacency matrices?

BFS and Distance

BFS uses a queue.

As a consequence, vertices are traversed in order of non-decreasing distance from the starting point and we can easily modify the algorithm to compute distance:

$$
dist[v] = 0;
$$

...

```
dist[y] = dist[x] + 1;
```
Exercise: Prove that this modification really works.

Depth First Search

```
dfs( vertex x )
{
   mark x;
   forall (x,y) in E do
     if( y not marked ) 
        dfs( y ); // explore edge
}
```
Stack is hidden via recursion.

Again: correctness taken care of.

Running time is O(n+e) given adjacency lists.

DFS is a real workhorse: has many variants that solve a number of computational graph theory problems.

Application: Closure

Given a binary relation S on $\{1,2,...,n\}$, the transitive reflexive closure trc(S) is the least relation R such that

- x S y implies x R y
- $x R x$ for all x
- x R y and y R z implies x R z

If we model the relation by a graph, $\text{trc}(S)$ can be computed by repeated calls to DFS (or BFS).

Good solution if the graph is sparse.

But when S is dense one might as well bite the bullet and use a cubic (in n) algorithm that has good constants.

Compute a n by n by n boolean matrix B whose first slice B[...,0] is the adjacency matrix of S plus diagonal:

$$
for (k = 1; i <= n; k++)\nfor (x = 1; x <= n; i++)\nfor (y = 1; y <= n; j++)\nB[x,y,k] = B[x,y,k-1] ||\n(B[x,k,k-1] && B[k,y,k-1]);
$$

Upon completion $|B|$, n] is the adjacency matrix for

Warshall's Algorithm

$$
for (k = 1; i <= n; k++)
$$

\n
$$
for (x = 1; x <= n; i++)
$$

\n
$$
for (y = 1; y <= n; j++)
$$

\n
$$
B[x,y,k] = B[x,y,k-1] ||
$$

\n
$$
(B[x,k,k-1] && B[k,y,k-1]) ;
$$

Upon completion, B[.,.,n] is the adjacency matrix for the transitive reflexive closure of S.

What is the space complexity of this method?

Code is beautifully simple, but correctness is far from obvious.

Claim: $B[x,y,k] = 1$ iff there is a path from x to y using only intermediate vertices in $\{1,2,...,k\}$.

Proof: By induction on k.

Effectively we erase vertices higher than k and then put them back in.

Example of dynamic programming, more later.