
Introduction to Graphs

Fundamental Data Structures and
Algorithms

Prof. S.G.Gollagi

Announcements

- HW 6 is about to be released.
Start asap.

- Reading: Chapter 14 in MAW.

There are quite few definitions there,
make sure you understand the ideas and
concepts.

- Extra credit: Write a one-page essay about
roving eyeballs.

Introduction to Graphs

Graphs — an overview

vertices

Graphs — an overview

PIT

BOS

JFK

DTW

LAX

SFO

labelled vertices

Graphs — an overview

PIT

BOS

JFK

DTW

LAX

SFO

labelled vertices

edges

undirected

Graphs — an overview

PIT

BOS

JFK

DTW

LAX

SFO

labelled vertices

edges

labelled edges

Graphs — an overview

PIT

BOS

JFK

DTW

LAX

SFO

labelled vertices

1987

2273

344
2145

2462

618

211

318

190

Terminology

- vertices (aka nodes, points)

- edges (aka arcs, lines)
directed or undirected (digraphs and ugraphs)
multiple or single
loops

- vertex labels

- edge labels

G = (V,E) or G = (V,E,lab)

Edges

- directed (x,y) or just xy

x is the source and y the target of the edge

- undirected {x,y} or just xy

Note that {x,x} means: undirected loop at x.

- edge is incident upon vertex x and y

Degrees

- directed
out-degree of x: the number of edges (x,y)
in-degree of x: the number of edges (y,x)

degree: sum of in-degree and out-degree

- undirected
degree of x: the number of edges {x,y}

Degrees are often important in determining the
running time of an algorithm.

Graphs are Everywhere

Examples

- Roadmaps

- Communication networks

- WWW

- Electrical circuits

- Task schedules

Graphs as models

 Physical objects are often modeled
by meshes, which are a particular
kind of graph structure.

By Jonathan Shewchuk

Web Graph

<href …>

<href …>

<href …>

<href …>

<href …>

<href …>

<href …>

Web Pages are nodes (vertices)

HTML references are links (edges)

Relationship graphs

 Graphs are also used to model
relationships among entities.

Scheduling and resource constraints.

Inheritance hierarchies.

15-113 15-151

15-211

15-212 15-213

15-312

15-411 15-412

15-251

15-45115-462

More Generally

Suppose we have a system with a collection of
possible configurations. Suppose further that a
configuration can change into a next configuration
(transition, non-deterministic).

Model by a graph

G = (configurations, transitions)

Evolution of the system corresponds to a path in
the graph.

Example: Games

The game of Hanoi with 5 disks corresponds to the
following graph:

Solving a Game

A solution is just a path in the graph:

Discrete Math View

Can think of a graph G = (V,E) as a binary relation
E on V.

E.g.

G undirected: relation symmetric

G loop-free: relation irreflexive

But this does not address additional labeling and
layout information.

Path Problems

A path from vertex a to vertex b in a graph G is a
sequence of vertices

a = x0, x1, x2 ,..., xk = b

such that (xi, xi+1) is an edge in G for i = 0,...,k-1.
k is the length of the path.

Vertex b is reachable from a if there is a path from
a to b.

R(a) is the set of all vertices reachable from a.

Distance

A distance from vertex a to vertex b is the length of
the shortest path from a to b (infinity if there is no
such path).

If the edges are labeled by a cost (a real number)
the length of a path

a = x0, x1, x2 ,..., xk = b

is defined to be the sum of the edge-costs
cost(xi, xi+1) .

So in the unlabeled case each edge is assumed to
have cost 1.

Exercise

Find a good way to compute the distance of any two
Hanoi configurations.

Connectivity

A graph G is connected if R(a) = V for all vertices
a.

For an undirected graph this is equivalent to R(a) =
V for some vertex a.

A connected component of a ugraph G is a set C
that is connected (meaning R(a) = C for all a in C)
and that is a maximal such.

For digraphs the situation is more complicated,
postpone.

Typical Graph Problems

Connectivity

Given a graph G, check if G is connected.

Connected Components

Given a ugraph G, compute its connected
components.

Typical Graph Problems

Shortest Path

Given a graph G and vertices a and b, find a
shortest path from a to b.

Distance

Given a graph G, compute the distance between any
pair of vertices.

Representing Graphs

Representing Graphs

We need a data structure to represent graphs.

Crucial parameters:

n = number of vertices
e = number of edges

Note that e may be quadratic in n.

Size of a graph is n + e.

Representing Graphs

Ignoring labels, we may assume that V =
{1,2,...,n}.

Need to represent E.

- Edge lists

- Adjacency lists

- Adjacency matrices

- Succinct representation

Supporting Operations

We need to be able to perform operations such as
the following:

- insert/delete a vertex
- insert/delete an edge
- check whether (x,y) is an edge
- given x, enumerate its neighbors y

Enumerating neighbors is crucial in many graph
algorithms.

Example: Compute degrees.

Edge Lists

A list of pairs (x,y) of vertices.

May be implemented by an array of pairs.

Size: (e)

Running time:

edge query ?

neighbor enumeration ?

Adjacency Lists

An array A of size n of lists of vertices:

A[x] = list of all neighbors of x.

Size: (n+e)

Running time:

edge query ?

neighbor enumeration ?

Adjacency Matrices

An n by n boolean array A:

A[x,y] = true iff (x,y) is an edge.

Size: (n2)

Running time:

edge query ?

neighbor enumeration ?

Adjacency Matrices

Size alone often rules out the use of adjacency
matrices.

But for small graphs very important alternative
implementation.

Can exploit bit-parallelism or even special purpose
parallel hardware (matrix multiplication).

Also a very nice conceptual tool.

Succinct Representation

For large n one often cannot afford to keep an explicit
representation of the adjacencies.

But one may be able to get by with functions:

boolean edgeQ(vertex x, vertex y)

VertexList neighbors(vertex x)

Typical example: the web graph.

Example: Edge List

1

4

76

3 5

2
(1,3) (1,4) (2,4) (2,5)
(2,4)
(3,6) (4,6) (4,7) (5,4)
(5,7)

natural order, but could
be arbitrarily permuted

Example: Adjacency List

1

4

76

3 5

2

natural order, but lists
could be arbitrarily
permuted

7

6

5

4

3

2

1 3 4

4 5

6

3 6

4 7

7

Example: Adjacency Matrix

1

4

76

3 5

2

7

6

xx5

xxx4

x3

xx2

xx1

7654321

Choosing a representation

 Size of V relative to size of E is a primary
factor.

 Dense: e/n is large

 Sparse: e/n is small

 Adjacency matrix is expensive if the graph is
sparse.

 Adjacency list is expensive if the graph is
dense.

 Dynamic changes to V.

 Adjacency matrix is expensive to copy/extend
if V is extended.

A Connectivity Algorithm

How do we test whether a given graph G is
connected?

For an undirected graph we can

- pick any vertex v
- compute R = R(v)
- check if |R| = n

In the directed case we can repeat for all v (there are
better algorithms).

Either way, the key problem is to compute R(v).

Inductive Attack

Note that

- v is in R(v)
- x in R(v) and (x,y) an edge implies y in R(v)

This can be used to construct R(v) in stages.

Edge (x,y) requires attention if x is in R but y is not.

An edge (that requires attention) is relaxed (or
receives attention) when the missing endpoint is
placed into R.

A Reachability Algorithm

R = {v};

while(some edge (x,y) requires attention)

add y to R; // relax the edge

Claim: The algorithm always terminates.

Proof: An edge can receive attention at most once.

So the loop executes at most e times.

Correctness

R = {v};

while(some edge (x,y) requires attention)

add y to R;

Claim: Upon completion of the algorithm R = R(v).

Proof:
“R is a subset of R(v)” is a loop-invariant.

Suppose x is in R(v) but not in R. Choose one such x
with minimal distance d from v. Then there is some
vertex y that is in R and such that (y,x) is an edge.
But then this edge requires attention, contradiction.

Efficiency

R = {v};

while(some edge (x,y) requires attention)

add y to R;

We have to specify a way to pick edges that require
attention.

Place new vertices into a container (stack or queue)
and then check all incident edges.

Breadth First Search

bfs(vertex s)

{

Q.enqueue(s);

mark s; // put x into R

while(!Q.empty()) {

x = Q.dequeue();

forall (x,y) in E do

if(y not marked) { // relax edges

Q.enqueue(y);

mark y; // put y into R

}

}

}

BFS

Correctness is already taken care of.

Efficiency:

Using adjacency lists the forall loop is linear in the
number of edges starting at vertex x.

So total running time is O(n+e).

How about edge lists?
How about adjacency matrices?

BFS and Distance

BFS uses a queue.

As a consequence, vertices are traversed in order of
non-decreasing distance from the starting point and
we can easily modify the algorithm to compute
distance:

dist[v] = 0;
...

dist[y] = dist[x] + 1;

Exercise: Prove that this modification really works.

Depth First Search

dfs(vertex x)

{

mark x;

forall (x,y) in E do

if(y not marked)

dfs(y); // explore edge

}

Stack is hidden via recursion.

DFS

Again: correctness taken care of.

Running time is O(n+e) given adjacency lists.

DFS is a real workhorse: has many variants that
solve a number of computational graph theory
problems.

Application: Closure

Given a binary relation S on {1,2,...,n}, the
transitive reflexive closure trc(S) is the least relation
R such that

- x S y implies x R y
- x R x for all x
- x R y and y R z implies x R z

If we model the relation by a graph, trc(S) can be
computed by repeated calls to DFS (or BFS).

Good solution if the graph is sparse.

Warshall's Algorithm

But when S is dense one might as well bite the bullet
and use a cubic (in n) algorithm that has good
constants.

Compute a n by n by n boolean matrix B whose first
slice B[.,.,0] is the adjacency matrix of S plus
diagonal:

for(k = 1; i <= n; k++)

for(x = 1; x <= n; i++)

for(y = 1; y <= n; j++)

B[x,y,k] = B[x,y,k-1] ||

(B[x,k,k-1] && B[k,y,k-1]);

Upon completion, B[.,.,n] is the adjacency matrix for
the transitive reflexive closure of S.

Warshall's Algorithm

for(k = 1; i <= n; k++)

for(x = 1; x <= n; i++)

for(y = 1; y <= n; j++)

B[x,y,k] = B[x,y,k-1] ||

(B[x,k,k-1] && B[k,y,k-1]);

Upon completion, B[.,.,n] is the adjacency matrix for
the transitive reflexive closure of S.

What is the space complexity of this method?

Warshall's Algorithm

Code is beautifully simple, but correctness is far from
obvious.

Claim: B[x,y,k] = 1 iff there is a path from x to y
using only intermediate vertices in {1,2,...,k}.

Proof:
By induction on k.

Effectively we erase vertices higher than k and then
put them back in.

Example of dynamic programming, more later.

